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Abstract 

Background: Electronic health records (EHR) are increasingly used for studying 

multimorbidities. However, concerns about accuracy, completeness, and EHRs being primarily 

designed for billing and administrative purposes raise questions about the consistency and 

reproducibility of EHR-based multimorbidity research. 

Methods: Utilizing phecodes to represent the disease phenome, we analyzed pairwise 

comorbidity strengths using a dual logistic regression approach and constructed multimorbidity 

as an undirected weighted graph. We assessed the consistency of the multimorbidity networks 

within and between two major EHR systems at local (nodes and edges), meso (neighboring 

patterns), and global (network statistics) scales. We present case studies to identify disease 

clusters and uncover clinically interpretable disease relationships. We provide an interactive web 

tool and a knowledge base combining data from multiple sources for online multimorbidity 

analysis. 

Findings: Analyzing data from 500,000 patients across Vanderbilt University Medical Center 

and Mass General Brigham health systems, we observed a strong correlation in disease 

frequencies ( Kendall’s τ = 0.643) and comorbidity strengths (Pearson ρ = 0.79). Consistent 

network statistics across EHRs suggest similar structures of multimorbidity networks at various 

scales. Comorbidity strengths and similarities of multimorbidity connection patterns align with 

the disease genetic correlations. Graph-theoretic analyses revealed a consistent core-periphery 

structure, implying efficient network clustering through threshold graph construction. Using 
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hydronephrosis as a case study, we demonstrated the network’s ability to uncover clinically 

relevant disease relationships and provide novel insights.   

Interpretation: Our findings demonstrate the robustness of large-scale EHR data for 

studying phenome-wide multimorbidities. The alignment of multimorbidity patterns with genetic 

data suggests the potential utility for uncovering shared biology of diseases. The consistent core-

periphery structure offers analytical insights to discover complex disease interactions. This work 

also sets the stage for advanced disease modeling, with implications for precision medicine. 

Funding: VUMC Biostatistics Development Award, the National Institutes of Health, and the 

VA CSRD   

Introduction 

Multimorbidity, the coexistence of multiple health conditions within an individual, poses 

significant challenges for personalized care and hinders patient-centric medicine.1,2 Electronic 

health records (EHRs) offer a rich data resource for investigating phenome-wide multimorbidity 

patterns at scale3–5, capturing real-world disease interactions. Understanding multimorbidity 

patterns is essential for unraveling disease heterogeneity, uncovering shared etiology, enhancing 

precision in disease risk assessments, and optimizing decision support tailored to individual 

needs 6–9.  

Network analysis has emerged as a pivotal tool for large-scale multimorbidity research10. 

By modeling diseases as nodes and their co-occurrences as edges, this method provides an 

intuitive and efficient approach to explore intricate disease relationships. However, concerns 

remain about the reproducibility of such analyses, stemming from limitations in the accuracy and 

completeness of EHR data and its primary design for billing and administrative purposes.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 27, 2024. ; https://doi.org/10.1101/2024.03.28.24305045doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.28.24305045
http://creativecommons.org/licenses/by-nc/4.0/


In this study, we address these concerns through a comparative analysis of 

multimorbidity networks derived from two large-scale EHR systems. We assessed the 

consistency of multimorbidity patterns both within and across the systems, employing graph-

theoretical analyses to derive novel insights and enhance knowledge discovery. Our findings 

demonstrate the remarkable robustness of multimorbidity network analyses across EHRs at 

multiple scales, from local-scale disease frequencies and comorbidity strengths to meso-scale 

core-periphery and clustering structures, and up to global network statistics (Figure 1A). These 

networks effectively identify clinically relevant disease clusters, and a case study on 

hydronephrosis revealed their capability to uncover both known and potentially novel causative 

disease associations. Additionally, we have developed an interactive web-based tool to facilitate 

the exploration of multimorbidity patterns and their comparisons across systems. Our analyses 

indicate the strong interoperability of network analysis leveraging extensive diagnostic 

information from EHRs and affirm the reliability of our multimorbidity network modeling 

strategy.  

Methods 

EHR and disease phenome 

We conducted a prevalence study to characterize phenome-wide disease comorbidity patterns 

across two large-scale electronic health record (EHR) systems. Individual-level diagnostic code 

data were extracted for 250,000 randomly selected patients from each of Vanderbilt University 

Medical Center (VUMC) and Mass General Brigham (MGB)’s EHR systems, which comprised  

2.2 million and 1.8 million patients at the time of data extraction, respectively. The selection of 

250,000 patients from each institution was intended to balance a representative sample with 
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computational feasibility and costs. The sampled patients’ longitudinal records were then 

collapsed to the number of occurrences of ICD9 and ICD10 codes. These code counts were 

mapped to phecodes v1.2 using the PheWAS R package11. Demographic data, including patient 

age at sample extraction date, EHR age (patient age at last recorded visit), sex, self-identified 

race, and the logarithm of the disease burden (number of unique phecodes), were extracted for 

model adjustment. These covariates help account for age-related disease patterns, healthcare 

utilization differences (indicated by EHR age and burden), and potential biases related to 

demographic differences reflected in sex and race. The covariate adjustments address the fact 

that the observed multimorbidity patterns are driven by demographic factors or variations in 

healthcare utilization1,12–14. The study was approved by the Vanderbilt University Medical Center 

(VUMC) Institutional Review Board (IRB# 172041) and by the Mass General Brigham (MGB) 

Institutional Review Board (IRB# 2018P002642). 

Dual regression analysis of disease comorbidities 

We applied a dual logistic regression analysis strategy to characterize pairwise comorbidity 

strengths for each phecode pair. Previous studies demonstrated the utility of regression models 

for large-scale comorbidity analysis15. This approach allows us to adjust for confounding factors 

that vary across institutions or populations, as well as differences in disease prevalence that 

could influence the accuracy of observed comorbidity frequencies. Our dual regression analysis 

includes two regression models for each pair of phecodes (e.g., phecode A and B):  

��������	|�, �� � ��� � ���� � ��                    �1� 

���������|	, �� � ��� � ���	 � ��                   �2� 

where Z represents covariates including patient age at the event, hospital usage in years, sex, 

self-identified race and the logarithm of disease burden. We extracted and averaged the test 
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statistics (Wald statistics) of the ��� and ��� coefficients from the two regressions to generate a 

symmetric score for each phecode pair to normalize the phecode effects which we call pairwise 

comorbidity strength (PCS) of the phecode pair, or simply comorbidity strengths of the phecode 

pair.  

This approach simplifies the complex nature of multimorbidity, enabling a structured 

evaluation of both disease association strengths and statistical significances while adjusting for 

potential confounders. This ensures robust findings, distinguishing true associations from 

spurious correlations within large EHR datasets and promoting generalizability across diverse 

populations. The detailed methodology for the regression analyses is provided in the 

Supplementary Materials (see Supplementary A1) 

Network model of phenome-wide multimorbidities 

We model phenome-wide disease multimorbidities as undirected, weighted networks 

where diseases are nodes, and edges represent the pairwise comorbidity strengths derived from 

our dual regression analysis. Separate networks were constructed for the VUMC and MGB EHR 

systems to enable comparative analysis and assess the consistency of multimorbidity patterns. 

This network modeling approach provides an intuitive foundation for understanding intricate 

multi-disease interactions, facilitates analyses such as disease cluster identification and disease 

progression modeling, and quantifies disease importance within the multimorbidity network 

using graph-theoretic principles. Our approach is computationally efficient, easy to visualize, and 

serves as a strategic starting point for characterizing complex disease-disease relationships. It 

balances simplicity with the ability to derive essential insights about complex disease 

relationships.  
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Structural equivalence in multimorbidity networks  

We define a phecode's "multimorbidity pattern" as its profile of comorbidity strengths to all other 

phecodes within the network (Figure 1B). To quantify the similarity between phecodes, 

considering both the magnitude of comorbidity strength and pattern of connections with 

neighboring nodes, we use a correlation-based structural equivalence measure16. Two phecodes 

are structurally equivalent if their multimorbidity patterns exhibit a high correlation, indicating 

similar relationships with other diseases within the network (Figure 1C, Supplementary A2). 

This approach characterizes nuanced meso-scale structures (clustering pattern) and positional 

roles of nodes within their neighboring nodes. It is often hypothesized that structurally equivalent 

nodes in a network will be similar in other ways such as sharing common mechanisms or 

functions.  

Since our multimorbidity networks are constructed using identical phecode mappings, we 

can directly compare the structure equivalence measurements across two EHR systems. 

Therefore, we define the "conservation " of each phecode as the correlation between its 

comorbidity strength vectors in the VUMC and MGB networks (Figure 1D, Supplementary A2). 

High conservation scores indicate consistent multimorbidity patterns across EHR systems, 

suggesting that the underlying mechanisms driving disease-disease relationships are transferable 

across the systems.  

This intra- and inter-system structural equivalence analysis offers a novel approach to 

investigate multimorbidity relationships. By focusing on connection patterns with others, it 

transcends simple pairwise comorbidities to uncover complex disease interactions, while 

facilitating the evaluation of both the generalizability of findings and the transferability of 

implied analysis strategies across EHR systems. The detailed methodology of structural 
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equivalence analysis and its application to analyzing multimorbidity patterns within and between 

systems is provided in the Supplementary Materials (see Supplementary A2). 

Spectral analysis of multimorbidity network topology 

We use network centrality measures to assess the global-scale topological consistency of 

multimorbidity networks across institutions. Eigenvector centrality, calculated from the leading 

eigenvector of the network adjacency matrix, quantifies a node's importance based on the 

number, strength, and importance of its connections in the network. Analyzing and comparing 

the distribution of centrality measures across the networks reveals the overall structure and their 

consistency17. Specifically, we consider the multimorbidity network as an undirected network of 

phecode nodes (phecode v1.2). The eigenvector centrality ��  of disease � is the ��� element of the 

leading eigenvetor � of the network adjacency matrix �, such that,   

A� � ���;  where �� is the largest eigenvalue of A        (3) 

To evaluate meso-scale structure of the multimorbidity networks, we used eigengap 

heuristic18. This metric, defined as 1 � �� ��⁄ , where �� and �� are the largest and second largest 

eigenvalues of the network adjacency matrix �, respectively,  assesses how closely a network 

resembles an ideal core-periphery model19 (like a threshold graph). Higher eigengap values 

indicate a densely connected core, suggesting a prominent core-periphery structure. For a more 

detailed discussion of spectral analysis techniques and applications to multimorbidity networks, 

please see Supplementary Materials A3. 

Construction of consensus multimorbidity network 

To facilitate cross-institutional analysis, we constructed a consensus multimorbidity network. 

Pairwise comorbidity strengths in this consensus network were calculated as weighted averages 

of the corresponding comorbidity strengths from the VUMC and MGB networks. Weights were 
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proportional to the number of shared patients exhibiting each comorbidity pair in the respective 

system. For phecodes A and B, the combined pairwise comorbidity strength score (PCS) is 

calculated as follows: 

Combined �&'��
	
,� �

��&'��
 ( N��

 � � ��&'��� ( N��

� �
N��

 � N��

�   �4� 

where N��

  and N��

�  are number of shared patients between phecodes A and B in VUMC (V) and 

MGB (M) cohorts, respectively. This weighting scheme prioritizes comorbidity estimates 

supported by larger patient populations, increasing the reliability of the consensus network.  

Interactive online exploration of phenome-wide multimorbidities  

We developed an interactive web application (https://prod.tbilab.org/PheMIME/) to facilitate the 

exploration of multimorbidity patterns across multiple EHR systems 20. This PheMIME tool 

allows users to visualize pairwise comorbidity patterns across institutions, examine the 

consistency of multimorbidity relationships across diverse EHR systems, and explore subgraph 

structures using associationSubgraphs 21. This application provides researchers an intuitive 

interface to explore complex multimorbidity data, facilitating insights into disease relationships 

and the reproducibility of findings across different healthcare datasets. For a detailed explanation 

of the associationSubgraphs algorithm and its connection to the theoretical properties of 

threshold graphs, please refer to Supplementary Materials A4 and A5. 

Role of the funding source 

The funders of this study had no role in the study design, data collection and analysis, 

interpretation of results, or preparation of the manuscript. 
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Results 

High concordance of disease frequencies and comorbidity strengths across EHR systems 

We extracted demographic and clinical data (phecodes) for 250,000 randomly selected patients 

from de-identified EHRs at two healthcare systems (see Methods). The patient populations 

differed slightly in demographics, with VUMC having a lower proportion of females (55%) 

compared to MGB (58%), and a higher proportion of white race (81%) compared to MGB (74%). 

Additionally, VUMC exhibited a younger median age (42.7 years) compared to MGB (52.6 

years) likely due to a larger pediatric population (Table 1). Despite these demographic variations, 

disease frequencies exhibited a strong positive correlation across the phenome (Kendall's 

τ=0.643, p < 2.2e-16). We observed higher diagnostic frequencies at VUMC, particularly within 

the "Sense Organs" category (Figure S4). 

Table 1. Demographics of EHR patient cohorts 

 VUMC: counts (percentage) 

(N=250,000) 

MGB: counts (percentage) 

(N=250,000) 

Age* Group(yrs)   
< 19 59,190 (23.68%) 7,613 (3.05%) 

20 - 29 29,286 (11.71%) 24,878 (9.95%) 

30 - 39 27,712 (11.08%) 37,563 (15.03%) 

40 - 49 27,468 (10.99%) 41,166 (16.47%) 

50 - 59 32,243 (12.90%) 44,962 (17.98%) 

60 - 69 33,487 (13.39%) 41,922 (16.77%) 

70 - 79 24,735 (9.89%) 29,577 (11.83%) 

80 - 89 12,106 (4.84%) 18,289 (7.32%) 

> 90 3,772 (1.51%) 4,030 (1.61%) 

Age overall Mean (SD) Mean (SD) 
 42.68 (24.37) 52.6 (19) 

Self-identified 
Race/Ethnicity 

  

White 201,373 (80.55%) 185727 (74.29%) 

Black 34,521 (13.81%) 16138 (6.46%) 

Unknown 13,366 (5.35%) 17704 (7.08%) 

Hispanic (not white) 514 (0.21%) 15967 (6.39%) 
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We then calculated pairwise comorbidity strengths for all phecode pairs using the dual 

logistic regression approach (see Methods). The comorbidity strength scores demonstrated high 

concordance between the two EHRs (Pearson ρ=0.79; 95% CI: 0.787 – 0.792, Figure 2A). This 

indicates that the patterns of disease co-occurrence are remarkably consistent after adjusting for  

variations in patient populations and potential differences in healthcare practices. 

Strong conservation of multimorbidity patterns across EHRs, with variations offering 

insights 

We assessed the conservation of multimorbidity patterns across the two EHR systems using 

correlation-based structural equivalence (see Methods, Supplementary A2). High correlation 

scores indicate that a disease consistently co-occurs with the same set of diseases across EHRs. 

Specifically, we calculated Pearson correlations of phenome-wide multimorbidity patterns for 

each phecode with 500 bootstrap iterations to assess variability (Figure 2B). Overall, we 

observed strong conservation (median correlation = 0.772, Figure 2C). "Spinal stenosis" had the 

most conserved patterns (correlation = 0.942, CI = 0.921-0.958), while "Dental abrasion, erosion, 

and attrition" was the least conserved (correlation = -0.051, CI = -0.182-0.078). Examining 

conservation across categories, we found "Sense Organs" phecodes exhibited the lowest average 

conservation, while "Neoplasms" were the most conserved (Figure S5). These variations in 

conservation likely reflect differences in site-specific healthcare practices and patient populations. 

Other 140 (0.056%) 443 (0.18%) 

Asian 69 (0.028%) 9435 (3.77%) 

Native American/Alaskan 17 (0.0068%) 4586 (1.83%) 

Sex   

Female 137,912 (55.17%) 144700 (57.88%) 

Male 111,805 (44.72%) 105271 (42.11%) 
Unknown 283 (0.11%) 29 (0.01%) 
*Age when data exported from system, regardless of death status. 
†A Phecode is counted as "in record" when there are at least two observations of that Phecode 
over all the patient's records. 
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Consistent global structure of multimorbidity networks across EHRs 

We assessed the global-scale structural consistency of multimorbidity networks across 

institutions using leading eigenvector centrality (see Methods, Supplementary A3), a metric that 

quantifies a disease node's importance based on the number, strength, and centrality of its 

connections. Our analysis revealed a remarkably high correlation in eigenvector centralities 

between VUMC and MGB (Spearman correlation = 0.902; 95% CI: 0.889 – 0.914, Figure 3A), 

indicating a consistent global network structure across systems.   

Despite this overall consistency, we observed nuanced differences in centrality for 

specific disease categories. "Sense Organ" (diseases and disorders of the eyes and ears) and 

"Respiratory" phecodes (e.g., "Cataract" and "Acute Sinusitis") tended to be more central in the 

VUMC network, while "Neoplasms" were more central in the MGB network (Table S3, Figure 

S7). These patterns are further explored in Supplementary A9, where we analyze eigen-centrality 

distributional differences across categories. Notably, only "Neoplasms," "Musculoskeletal," and 

"Dermatologic" phecodes were, on average, more central in MGB.  

This high consistency of centrality measures across VUMC and MGB networks, despite 

variations in patient populations and healthcare practices, suggests a high degree of robustness in 

the overall structure of multimorbidity networks, and strengthens the generalizability of network-

based insights into multimorbidity patterns using large-scale EHR data. 

Spectral analysis reveals core-periphery structure of multimorbidity networks 

Spectral analysis revealed prominent core-periphery structures within the multimorbidity 

networks for both VUMC and MGB. This is evidenced by their large eigengaps (0.836 and 0.844) 

and consistently high eigenvector centralities across systems (see Methods, Figure 3A&B). In a 

core-periphery network, a densely connected core exists where diseases exhibit strong 
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interconnections, while a sparsely connected periphery contains diseases with weaker links. Our 

UMAP representation (Figure 4) visually supports this interpretation, with musculoskeletal, 

metabolic, circulatory, and injuries & poisoning diseases enriched in the core. 

This core-periphery structure implies a strategic analytical approach: isolating central 

disease clusters can identify more commonly occurring diseases in the population with shared 

mechanisms and functional overlaps, while investigating peripheral diseases could uncover more 

specific etiologies present only in subsets of patients. Furthermore, the networks' proximity to 

threshold graphs enables efficient search algorithms: applying the associationSubgraphs 

algorithm allowed us to dynamically cluster the multimorbidity networks, identifying subgraphs 

(disease clusters) even in cases where not all diseases within the cluster exhibit uniformly strong 

pairwise comorbidities, potentially uncovering broader and more clinically relevant disease 

clusters (see Supplementary A4 and A5). 

Multimorbidity patterns and genetic correlations of diseases strongly align 

Genetically correlated diseases often share common pathophysiological mechanisms, potentially 

leading to elevated comorbidities. This suggests a link between multimorbidity patterns and 

shared disease etiology 22,23. To investigate this connection, we analyzed the genetic correlation 

of 15 common, heritable phenotypes (Supplementary A13 & A14). Among the 105 phenotype 

pairs, 28 (26.7%) showed substantial genetic correlations (>0.5), including well-established pairs 

like "Coronary Atherosclerosis" and "Myocardial Infarction." We compared pairwise 

comorbidity strengths and multimorbidity similarity measures with their corresponding genetic 

correlations. Results revealed significant positive associations (Pearson correlations of 0.59 and 

0.62, respectively; Figure 5). Notably, multimorbidity similarity demonstrated a stronger linear 
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relationship with genetic correlation, suggesting it may be a more sensitive indicator of potential 

shared disease etiology, especially when direct comorbidity is weak.  

Multimorbidity subgraphs identify robust disease clusters 

We applied the associationSubgraphs method 21 to our multimorbidity networks to identify 

disease clusters, or "subgraphs", representing groups of diseases with high co-occurrence rates. 

The consistent structural equivalence observed across different multimorbidity networks (Figure 

2, Supplementary Figure S5) provides a strong theoretical basis for identifying clusters that are 

likely to be robust across different EHR systems and populations (see Methods and 

Supplementary A5). We identified several prominent disease condition clusters (Figure 6, 

Supplementary Tables S5-S7) that align with and refine previously reported condition clusters24. 

Examples include the cardiometabolic cluster (encompassing cardiovascular, metabolic diseases, 

and others), the mental health cluster (including mood disorders, anxiety, bipolar disorder, 

schizophrenia, substance use disorders, and others), and the musculoskeletal cluster (featuring 

conditions like back pain, fractures, sprains, and various joint disorders, and others). 

Additionally, we identified several large clusters (15+ phecodes) related to cancer, 

dermatological, reproductive, neurological, and eye disorders. Prior research links some of these 

clusters, like the mental health cluster, with poor outcomes and increased healthcare costs 25. 

Multimorbidity networks uncover disease relationships: A Hydronephrosis case study 

We used hydronephrosis as a case study to demonstrate the utility of multimorbidity networks in 

revealing known and potentially novel disease relationships. Hydronephrosis is a kidney 

condition resulting from urinary tract obstruction 26. We observed a strong conservation of 

multimorbidity patterns (conservation value: 0.852; 95% CI: 0.792 - 0.895, Figure 7A) and 

identified the strongest and most consistent comorbidities associated with hydronephrosis, 
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including established causes like obstructing stones in the ureter, vesicoureteral reflux, 

congenital defects27 (Figure 7A & B, Tables S8 & S9). Additionally, we identified uncommon 

causes of hydronephrosis, such as cancers, urethral stricture, and abnormal renal vasculature 28–30. 

Interestingly, the analysis also highlighted several mineral metabolism disorders associated with 

hydronephrosis, although the exact mechanisms linking these conditions remain unclear. These 

findings suggest the network's potential to identify novel disease associations for further 

investigation. These results can be explored interactively using our online application 

(https://prod.tbilab.org/PheMIME/). 

Discussion 

Our study demonstrates the robustness of EHR-derived multimorbidity analysis for investigating 

complex disease interrelations. We observed remarkable consistency in disease 

frequencies, comorbidity strengths, and multimorbidity network topologies across two large-

scale, geographically distinct EHR systems. These findings underscore the potential of EHR-

based phenome-wide analysis to uncover disease-disease interactions and clinically relevant 

clusters, despite variations in patient populations and healthcare practices. 

The high concordance of multimorbidity patterns, after adjustment for potential 

confounders, provides compelling evidence for the reliability of this approach. Furthermore, the 

consistent core-periphery structure observed across networks offers a strategic framework for 

analysis, suggesting disease clusters within the core may share common etiologies or risk factors, 

while peripheral diseases may represent more specific mechanisms unique to subsets of patient 

population.  

Notably, the alignment of multimorbidity patterns with genetic correlations further 

supports the potential of multimorbidity networks to unravel shared disease etiologies. 
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While multimorbidity patterns were largely conserved, we also observed nuanced 

differences that likely reflect demographic and regional variations among patient populations, as 

well as specialty differences across systems. This emphasizes the importance of contextualizing 

multimorbidity analyses within the specific framework of each EHR system, considering factors 

like demographics, age distribution, and regional health trends. 

The use of phecodes as a disease phenome warrants specific consideration. Phecodes 

provide a standardized representation by grouping related ICD codes into broader, clinically 

relevant categories. Our results demonstrate that phecode-based multimorbidity analysis 

effectively captures reproducible disease relationships, supporting their use in large-scale EHR 

studies for consistent and transferable insights into comprehensive phenome-wide disease-

disease relationships.  

This study lays the methodological groundwork for advancing multimorbidity 

research. By identifying essential properties of multimorbidity networks derived from EHR data, 

such as consistent structural equivalence and a robust core-periphery structure, we provide 

promising directions for more sophisticated modeling approaches. For instance, probabilistic 

block modeling could be an effective approach for identifying disease clusters and quantifying 

patient enrichment with greater sensitivity and specificity. Our case study on hydronephrosis 

demonstrates the potential of multimorbidity networks in uncovering causal disease 

relationships, as illustrated by the replication of established causative disease associations. 

Future studies should develop advanced causal discovery models to quantify these relationships 

in depth, elucidating underlying mechanisms such as shared genetic or environmental 

predispositions. These insights are crucial for understanding the complex etiology of 

multimorbidity. Furthermore, robust multimorbidity networks offer a promising approach to 
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identifying "controls" or "unexposed" patients with similar multimorbidity profiles to "cases" in 

observational studies, potentially improving the accuracy of traditional matching methods like 

propensity score matching. 

Several limitations and future directions warrant consideration. While our pairwise 

comorbidity analysis provides valuable insights, it is only an initial step. Incorporating temporal 

disease progression patterns and diverse data sources (e.g., laboratory results, medications) could 

refine our understanding of disease trajectories and causal relationships. Additionally, while our 

null model simulations suggest minimal impact of phecode taxonomy structure on network 

conservation (Supplementary A15), a more in-depth analysis of how phenotype grouping 

methods affect findings warrants further investigation. 

Overall, this study provides compelling evidence for the reproducibility and applicability 

of EHR-based multimorbidity network analysis, laying the groundwork for data-driven 

discoveries in precision medicine that aim to tailor prevention and treatment strategies to 

individual multimorbidity profiles. We have also introduced a knowledge base integrating multi-

source data (Supplementary A18), serving as a resource for the research community to explore 

multimorbidity these complex relationships, fostering collaborations and accelerating discoveries 

in the field. 
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Figure 1. Schematic Demonstration of Multimorbidity Networks, Connection Patterns, Similarity, and Conservation. A. Multimorbidity networks represent diseases (nodes) and their 
connections (edges), where edges represent pairwise comorbidity strengths. Analysis of multimorbidity networks can occur at the global scale where network statistics are utilized to 
characterize the overall shape and connectivity of the entire network, at the meso-scale where it describes intermediate structures such as core-periphery patterns (where diseases cluster in a 
densely connected core or a less connected periphery) or other distinct disease cluster patterns, and at the local scale where the focus is on the properties of individual diseases (nodes) and their 
connections (edges). B. A single disease’s multimorbidity pattern (e.g., Phecode A) is defined by its comorbidity strengths with other diseases (Phecode X, Y, Z). C. Multimorbidity similarity 
assesses how closely two diseases' comorbidity patterns align. Phecode A is more similar to C than B.  D. Conservation examines the consistency of multimorbidity patterns across systems. 
Phecode B's pattern is highly conserved between VUMC and MGB, while Phecode A’s shows less conservation.
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Figure 2. High Conservation of Multimorbidity Patterns Across EHR Systems. A. Scatterplot demonstrates a strong correlation between 
pairwise comorbidity strengths for all common phecode pairs in VUMC and MGB systems. This indicates that diseases exhibiting high (or low) 
comorbidity in one EHR tend to show a similar pattern in the other. B. Conservation of phecodes’ multimorbidity patterns, measured by Pearson 
correlation coefficient-based structural equivalence, assesses the consistency if a disease’s connections with others within the multimorbidity 
network aligns across EHR systems. Dots represent bootstrap means, with confidence intervals reflecting uncertainty. High conservation for most 
phecodes demonstrates that their connectivity patterns within the network are largely consistent. C. The distribution of bootstrap means skews 
towards 1, highlighting strong phecode conservation across EHR systems.
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Figure 3. Consistent Spectral Properties of Multimorbidity Networks. A. Eigenvector centrality scores, which reflect a disease's importance within the 
network, exhibit a strong correlation across the two EHR systems. This indicates that most diseases maintain similar topological positions within their 
respective multimorbidity networks. Notable differences exist in the "sense organs" category, likely reflecting dataset-specific factors. B. Similar eigengap 
values across systems suggest a consistent core-periphery structure, supporting the robust conservation of meso-scale structures of multimorbidity networks.
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Figure 4. UMAP Visualization Reveals Consistent Multimorbidity Network Structure with Dataset-specific Variation. UMAP projection of 
multimorbidity networks reveals remarkable consistency in their overall structure across EHR systems. Both networks exhibit a prominent core-periphery 
structure, and phecodes cluster by their disease categories (e.g., circulatory, musculoskeletal), with consistent sub-clustering patterns within these categories.  
Despite overall consistency, dataset-specific differences exist. For example, the "sense organs" cluster that is more prominent in VUMC, likely reflecting 
factors specific to that dataset.



Figure 5. Comorbidity Strength and Multimorbidity Similarity Aligns with Genetic Correlation. Scatterplots demonstrate significant positive 
associations between phenotypic similarity (based on multimorbidity patterns) and genetic correlations across 15 prevalent, heritable phenotypes. A. 
Pairwise comorbidity strength exhibits a significant positive correlation with genetic correlation. This suggests that diseases with higher comorbidity 
tend to share more genetic risk factors. B. Multimorbidity similarity shows a strong positive association with genetic correlation. This indicates that 
multimorbidity similarity might be a sensitive indicator of shared underlying disease mechanisms, even in cases where direct comorbidity is not as 
pronounced.
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Figure 6. Multimorbidity Network Analysis Identifies Robust Disease Clusters. AssociationSubgraphs analysis of the consensus phenome-wide 
multimorbidity network reveals several prominent disease clusters (or "condition clusters") that align with those consistently found across multiple 
studies.  Highlighted clusters include the Cardiometabolic Cluster (encompassing cardiovascular and metabolic diseases), the Mental Health Cluster 
(including mood disorders, depression, anxiety, and other mental health conditions), and the Musculoskeletal Cluster (featuring musculoskeletal 
disorders and injuries).



Figure 7. Multimorbidity Landscape of Hydronephrosis. A. Analysis reveals a largely consistent comorbidity landscape for hydronephrosis across 
both EHR systems.  A. Pairwise comorbidity strengths are highly aligned, with minor variations in the extreme end of the distribution (e.g., obstructive 
genitourinary defect being slightly more comorbid in the Vanderbilt dataset).   B. Consistent Phecode Comorbidity Strength identifies highly comorbid 
conditions, including expected associations such as obstructing stones, vesicoureteral reflux, congenital anomalies along with rarer causes and 
potentially novel conditions.
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