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Abstract 

Background: Proteome-wide association study (PWAS) integrating proteomic data with 

genome-wide association study (GWAS) summary data is a powerful tool for studying 

Alzheimer’s disease (AD) dementia. Existing PWAS analyses of AD often rely on the 

availability of individual-level proteomic and genetic data of a reference panel. Leveraging 

summary protein quantitative trait loci (pQTL) reference data of multiple AD-relevant tissues is 

expected to improve PWAS findings of AD dementia. 

Methods: We conducted PWAS of AD dementia by integrating publicly available summary 

pQTL data of brain, cerebrospinal fluid (CSF), and plasma tissues, with the latest GWAS 

summary data of AD dementia. For each target protein per tissue, we employed our recently 

published OTTERS tool to obtain omnibus PWAS p-value, to test whether the genetically 

regulated protein abundance in the corresponding tissue is associated with AD dementia. Protein-

protein interactions and enriched pathways of identified significant PWAS risk genes were 

analyzed by STRING. The potential causal effects of these PWAS risk genes were assessed by 

probabilistic Mendelian randomization analyses.   

Results: We identified 30 unique significant PWAS risk genes for AD dementia, including 11 

for brain, 9 for CSF, and 16 for plasma tissues. Four of these were shared by at least two tissues, 

and gene MAPK3 was found in all three tissues. We found that 11 of these PWAS risk genes 

were associated with AD or AD pathological hall marks as shown in GWAS Catalog; 18 of these 

were detected by transcriptome-wide association studies (TWAS); and 25 of these, including 8 

out of 9 novel genes, were interconnected within a protein-protein interaction network involving 

the well-known AD risk gene APOE. Especially, these PWAS risk genes were enriched in 

immune response, glial cell proliferation, and high-density lipoprotein particle clearance 

pathways. Mediated causal effects were validated for 13 PWAS risk genes (43.3%). 

Conclusions: Our findings provide novel insights into the genetic mechanisms of AD dementia 

in brain, CSF, and plasma tissues, and targets for developing therapeutic interventions. We also 

demonstrated the effectiveness of integrating summary pQTL and GWAS data for mapping risk 

genes of complex human diseases. 

Keywords: PWAS; pQTL; GWAS; Alzheimer’s disease; AD dementia; OTTERS.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.03.28.24305044doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.28.24305044
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Background 

Large-scale genome-wide association studies (GWAS) have successfully identified 

dozens of genetic risk loci related to Alzheimer’s disease (AD) dementia1-3. However, the 

underlying molecular mechanisms of these GWAS risk genes of AD are still largely unknown. 

To gain biological insights into how associated risk genes might contribute to AD dementia, 

researchers have performed proteome-wide association studies (PWAS) that integrates reference 

proteomic data from an AD-related tissue with GWAS summary data of AD dementia to identify 

risk genes whose effects are mediated via genetically regulated protein abundance4,5.  

PWAS typically employs a two-stage framework: Stage I uses the genetic and proteomic 

data of the same reference cohort to train a protein abundance prediction model for each target 

protein, taking the protein abundance quantitative trait as the response variable and the cis- 

genetic variants proximal to the protein-coding gene as predictors. The estimated genetic 

coefficients from Stage I can be viewed as effect sizes of “protein quantitative trait loci (pQTL)” 

in a broad sense, as most genetic variants with non-zero effect sizes will not be statistically 

significant pQTL. Stage II proceeds by using the estimated pQTL effect sizes as variant weights 

to predict genetically regulated protein abundance in a GWAS cohort, and subsequently conducts 

a gene-based association test (of the corresponding protein-coding gene) relating the predicted 

abundance of the target protein to phenotype.  

Existing analytic tools derived for the analogous transcriptome-wide association studies 

(TWAS) have been used for PWAS. Existing tools such as TIGAR6, PrediXcan7, and FUSION8, 

utilize different statistical methods in Stage I to estimate the pQTL weights, requiring individual-

level genetic and proteomic data of the reference cohort. For example, by PWAS analyses of AD 

dementia with the individual-level reference proteomic data of dorsolateral prefrontal cortex 

(DLPFC) tissue and whole genome sequencing (WGS) genotype data from samples in the 

Religious Orders Study and Rush Memory and Aging Project (ROS/MAP)9, Wingo et al.4 

detected 11 risk genes by using the FUSION8 tool alone and Hu et al.10 identified 43 risk genes 

by aggregating results obtained from three tools of TIGAR6, PrediXcan7, and FUSION8.  

In this work, we utilized our newly developed OTTERS11 tool to extend the PWAS 

analyses of AD dementia, by leveraging the summary pQTL data that was recently released and 

publicly available. This data includes not only brain (parietal lobe cortex, n=380) but also 

cerebrospinal fluid (CSF, n=835) and plasma (n=529) tissues12. Recent studies have shown that 
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amyloid beta (A𝛽)1-42/A𝛽1-40 and phosphorylated tau/A𝛽1-42 ratios in CSF13,14 and 

plasma15,16 could be used as biomarkers for early diagnosis of AD. Both CSF and plasma tissues 

are AD-relevant and important for studying genetic mechanisms of AD dementia. Thus, 

conducting PWAS with the recent GWAS summary data of AD dementia (n=~789K)3 in all 

three tissues (brain, CSF, and plasma) is expected to identify additional risk genes of AD whose 

genetic effects are potentially mediated through the genetically regulated protein abundances.  

 

Methods 

OTTERS framework 

 In a two-stage PWAS framework with individual-level genetic and proteomic data from a 

reference panel, Stage I involves fitting a multiple linear regression model (Equation 1) with 

protein abundance (𝐄𝑝) of a protein 𝑝 as the outcome, genotype data (𝐗) of cis- genetic variants 

of the corresponding protein-coding gene (i.e., genetic variants located within the ±1Mb region 

around gene transcription start/termination sites) as predictors, and 𝒘 denoting the pQTL 

weights to be estimated:  

𝑬𝑝 = 𝑿𝒘 + 𝝐;                𝛜 ∼ 𝑁(0, 𝜎𝜖
2𝐈).      (Equation 1) 

Potential confounding covariates are assumed to be adjusted from the original protein abundance 

measures, resulting in the residuals 𝑬𝑝. Both 𝑬𝑝 and columns of 𝐗 are standardized with mean 0 

and variance 1.  

When individual-level genetic and proteomic data from a reference panel are not 

available, OTTERS11 can still estimate 𝐰 in Equation 1 by using only the summary pQTL 

reference data that are generated based on the following single-variant linear regression models 

with standardized genotype vectors 𝐱𝑗 for genetic variants 𝑗 = 1, … , 𝑚:  

      𝑬𝑝 = 𝒙𝑗𝑤𝑗 + 𝝐𝑗,        𝝐𝑗 ∼ 𝑁(0, 𝜎𝜖𝑗
2 𝑰).                                       (Equation 2) 

Summary pQTL reference data include the marginal least squared effect estimates (𝑤̃𝑗 , 𝑗 =

1, … , 𝑚), sample size, and linkage disequilibrium coefficients in the reference pQTL cohort 

(which can also be approximated by using an external reference panel with the same ancestry). 

OTTERS employs five representative PRS models, including the P-value Thresholding with 

linkage disequilibrium (LD) clumping (P+T)17 with p-value thresholds of 0.05 (P+T_0.05) and 

0.001 (P+T_0.001), frequentist LASSO regression model (lassosum)18,19, nonparametric 
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Bayesian Dirichlet process regression model (SDPR)20,21, and Bayesian multiple linear 

regression model with continuous shrinkage prior (PRS-CS)22. These PRS models will estimate 

five sets of pQTL weights (𝒘̂) for each protein-coding gene per tissue type.    

In Stage II, OTTERS first uses these five sets of pQTL weights (𝒘̂) from Stage I as 

variant weights (Equation 3) to test gene-based association with respect to the phenotype in the 

summary-level GWAS test data. The test statistic can be written as  

𝑍𝑝 =  
∑ (𝑤̂𝑗𝑍𝑗)𝑚

𝑗=1

√𝒘̂′𝑽𝒘̂
 ,     (Equation 3) 

where 𝑍𝑗 denotes the single-variant Z-score test statistic in GWAS summary data for the 𝑗𝑡ℎ 

genetic variant, and 𝑽 denotes the genotype correlation matrix that could be obtained from an 

external reference panel of the same ancestry as the test GWAS data8. Such gene-based 

association test has been shown to be equivalent as testing the association between predicted 

genetically regulated protein abundances and the phenotype in the GWAS test data7,8,23.  

Since the performance of a PRS model depends on the unknown genetic architecture of 

protein abundances, OTTERS aggregates the PWAS p-values based on all five PRS models by 

using the aggregated Cauchy association test (ACAT)24. An omnibus test p-value is derived for 

each protein-coding gene, which is then used to identify significant PWAS risk genes11.  

 

Applying OTTERS to conduct PWAS of AD dementia 

 We first applied OTTERS11 to estimate pQTL weights from the recently released 

summary pQTL data of brain (n=380), CSF (n=835), and plasma (n=529)12. These summary 

pQTL data were generated by using proteomic data of individuals with AD and cognitively 

normal individuals of European ancestry profiled from an aptamer-based platform25. These 

summary pQTL data were generated for 1079 proteins in brain, 731 proteins in CSF, and 931 

proteins in plasma, and ~14M genetic variants with minor allele frequency (MAF) ≥ 2%. Linear 

regression models with protein abundances as the response variable, genotype of a single genetic 

variant as the test covariate, and additional adjusting covariates of age, sex, first two genotype 

principal components factors, and genotype platform, were used to generate the summary pQTL 

data. Since the summary pQTL data of these three tissues were generated by using samples of 

European ancestry, the LD information obtained from the whole genome sequencing data of 
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European samples from the ROS/MAP study9 was used to estimate pQTL weights, along with 

standardized marginal pQTL effect sizes and sample sizes. 

For each protein in these three tissue types, we obtained five sets of estimated pQTL 

weights by five PRS models as implemented by OTTERS, which were used to conduct PWAS 

analyses with the recent GWAS summary data (n=~789K) of AD dementia3. The GWAS 

summary data of AD dementia3 were generated by meta-analysis, including clinically diagnosed 

AD cases and proxy AD and related dementia (proxy-ADD) cases from the UK Biobank 

(UKBB), resulting in a total of approximately 39,106 clinically diagnosed AD cases, 46,828 

proxy-ADD cases, and 401,577 controls. By combining PWAS p-values based on five PRS 

models, the omnibus OTTERS p-values were obtained for each available protein in each of the 

three tissues. We corrected the omnibus OTTERS p-values per tissue by using the genomic 

control factor26 to ensure that the median observed OTTERS p-value was adjusted to the 

expected value of 0.5 under the null hypothesis. We then used the adjusted nominal OTTERS p-

values to calculate the false discovery rates (FDR, i.e., q-values) per tissue. Genes with q-values 

< 0.05 were identified as significant PWAS risk genes for AD dementia in the corresponding 

tissue. 

 

Causal effects of PWAS risk genes by PMR-Egger 

The two-stage PWAS framework does not distinguish genetic effects on phenotype that 

are mediated through genetically regulated protein abundances (i.e., causal effects or vertical 

pleiotropy effects), from shared genetic effects on protein abundances and phenotypes that are 

not mediated through protein abundances (i.e., horizontal pleiotropy effects). We further 

assessed the mediated causal effects of our identified significant PWAS risk genes by using the 

probabilistic Mendelian randomization (PMR-Egger) tool27. PMR-Egger can assess causal 

mediated genetic effects while controlling for horizontal pleiotropy effects by using summary 

pQTL and GWAS data. The reference LD derived from the ROS/MAP WGS data was also used 

for implementing PMR-Egger. 

 

PPI network and enrichment analyses by STRING 

The STRING28-30 webtool integrates public data sources of protein interaction and 

analyzes the protein-protein interaction (PPI) network connectivity of proteins. Protein-protein 
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edges represent the functional association, colored with six different connections –– curated 

databases, experiments, text mining, co-expression, gene co-occurrence and protein homology. 

Gene co-occurrence association predictions are based on whole-genome comparisons. The 

STRING28 webtool also provides gene enrichment analysis with respect to Gene Ontologies 

(GO)31 annotations. Enrichment analysis aims to detect GO terms and pathways that are 

significantly enriched with genes in the network versus random genes. The enrichment strength 

is provided along with FDR, which indicates the ratio between the number of proteins in the 

network that are annotated with a term and the number of proteins that expected to be annotated 

with this term in a random network of the same size. In this study, we utilized the STRING 

webtool to conduct PPI network and enrichment analyses with the list of PWAS risk genes 

identified by OTTERS in all three tissues. 

 

TWAS of AD dementia 

 We also conducted TWAS of AD dementia by using the same GWAS summary data of 

AD dementia3 and the reference transcriptomic data of 931 DLPFC samples from the ROS/MAP 

studies9. ROS and MAP are two ongoing longitudinal studies of aging and Alzheimer’s disease. 

Both studies enroll participants without known dementia, who agree to annual clinical 

evaluations and brain donation upon death. Transcriptomic data of 931 DLPFC samples from the 

ROS/MAP studies were profiled by RNA-sequencing. Gene expression data were quantified by 

transcripts per million (TPM), log2 transformed, and adjusted for confounding covariates, 

including age, sex, postmortem interval, batch effects, and 20 PEER factors. Quality-controlled 

ROS/MAP WGS data were used for TWAS, where common genetic variants with minor allele 

frequency (MAF) > 1% and Hardy-Weinberg p-value > 10-5 were analyzed. Cis- genetic variants 

within 1Mb of each gene’s flanking regions were used in the gene expression imputation models 

as predictors. Reference LD derived from ROS/MAP WGS samples of European ancestry were 

used in the TWAS. 

For each gene, three TWAS tools including TIGAR, PrediXcan, and FUSION were 

utilized for estimating eQTL weights in Stage I. The Stage II TWAS results of AD dementia 

were obtained by using the eQTL weights estimated by each of the TWAS tool, which were 

combined by the ACAT method10. The combined omnibus TWAS p-values were adjusted for the 
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genomic control factor26, and then used to derive FDR q-values. Significant TWAS risk genes 

were identified with q-values < 0.05. 

 

Results 

PWAS results of AD dementia by OTTERS 

By applying OTTERS11 to the summary pQTL reference data of three tissues (brain, CSF 

and plasma)5 and recent large-scale GWAS summary data of AD dementia, we obtained PWAS 

p-values with pQTL weights estimated by five complimentary PRS models (see Methods). 

Moderate inflation was observed in the Quantile-Quantile (Q-Q) plots of these proteome-wide p-

values in all three tissues (Fig. S1-S3). Omnibus OTTERS p-values were obtained by combining 

the PWAS p-values across all 5 PRS methods24, and then were adjusted by the genomic control 

factor26. The adjusted OTTERS p-values were used to calculate FDR q-values to account for 

multiple testing. We identified 30 PWAS significant risk genes of AD dementia with OTTERS 

FDR q-value < 0.05, including 11, 9, and 16 genes respectively detected in brain, CSF, and 

plasma tissues (Fig. 1; Table 1), with 4 detected in at least two tissues, and gene MAPK3 

detected in all three tissues. 

As shown in Table 1, we found 11 out of 30 PWAS significant genes (labeled in Fig. 1), 

such as BCAM32, APOE33, IL1934, and IL3435, were detected by previous GWAS of AD or AD 

pathological hallmarks as shown in GWAS Catalog36. We also found 2 of these PWAS risk 

genes (labeled in Fig. 1) identified in brain (APOE, APOM), 2 in CSF (AIF1, BCAM), and 2 in 

plasma (APOM, BCAM) were identified by previous PWAS of AD dementia using individual-

level proteomic data profiled from DLPFC tissue of the ROS/MAP cohorts10.  

Additionally, our analysis identified 9 novel PWAS risk genes (labeled in Fig. 1) that are 

not previously associated with AD dementia by GWAS, TWAS or PWAS –– CSF1R, MAPK3 

and LILRB1 in brain; ALDOA and MAPK3 in CSF; PROC, MAPKAPK3, FAM3D, MAPK3, 

NTF4, and CEBPB in plasma. AD relevant biological functions were reported for these novel 

findings. Especially, CSF1R that encodes the tyrosine kinase receptor CSF1R was associated 

with microglial homeostasis and neuronal survival, implicating its dysfunction in increasing risks 

for AD37. LILRB1 that encodes a receptor for soluble β-amyloid (Aβ) oligomers was found as a 

potential contributor to synaptic loss and cognitive deficits in AD38. Alterations in ALDOA, 
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implicated in oxidative neurotoxicity, were found to contribute to the pathogenesis of 

Alzheimer’s disease39. PROC is involved in the neurodegenerative process, showing an inverse 

association with incident dementia40. The stress-responsive kinase MAPKAPK3, a downstream 

target of MAPK14, was implicated in the regulation of autophagy and might play a role in AD 

pathology by modulating the degradation of proteins involved in amyloid plaque formation41. 

FAM3D was found involved in neuroinflammatory pathways and microglial responses in early 

AD stage42. The neurotrophic factor NTF4, was shown to play a role in early neurodegenerative 

changes and cognitive decline in AD43. The transcription factor C/EBPβ, encoded by CEBPB, 

has been implicated in the regulation of APOE expression44. The gene MAPK3 detected in all 

three tissues is involved in immune system processes, which was found to be activated in AD 

brains and involved in pathogenesis of AD including tau phosphorylation and amyloid 

deposition45. 

 

Comparison of different PRS models 

 As described in the Methods section, OTTERS leverages all 5 complimentary PRS model 

(P+T_0.001, P+T_0.05, lassosum, SDPR, and PRS-CS) to account for complex genetic 

architecture underlying the protein abundance quantitative traits, thus improving the PWAS 

power for studying complex diseases. Here, we compared the omnibus OTTERS p-values to the 

PWAS p-values obtained by each individual PRS methods (Table 1). As pointed out by the 

OTTERS paper11, we found that all individual PRS models contributed to the omnibus OTTERS 

results. For example, the well-known AD risk gene APOE in brain was detected by all PRS 

models except P+T_0.001, and gene BCAM in CSF that is proximate to APOE was detected by 

P+T_0.05, PRS-CS, and SDPR. To investigate how individual PRS models contribute to the final 

OTTERS results, we plotted the pQTL weights estimated by all five PRS models for three 

example PWAS risk genes (APOE, BSG, and PROC) that were respectively detected in brain, 

CSF, and plasma tissues by OTTERS (Fig. 2). We plotted these pQTL weights with colors 

corresponding to −𝑙𝑜𝑔10 (GWAS p-values).  

 In Fig. 2A, we showed pQTL weights for APOE in brain, which was found significant by 

lassosum (p-value = 1.23e-10), P+T_0.05 (p-value = 1.23e-05), PRS_CS (p-value = 1.35e-05), 

and SDPR (p-value = 8.45e-07). We found that the significance of gene APOE was driven by 

GWAS significant SNPs located in TOMM40 and NECTIN2, with non-zero pQTL weights 
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estimated by these PRS methods. Most genetic variants with “significant” GWAS p-values were 

excluded by P+T_0.01 due to their pQTL p-values > 0.001. Interestingly, genes TOMM40 and 

NECTIN2 are proximal to APOE. TOMM40 is a known risk gene of AD dementia1 and has been 

associated with family history of AD46. NECTIN2 was previously reported as a GWAS risk gene 

for beta-amyloid 1-4235 , low-density lipoprotein cholesterol level interaction, and short total 

sleep time47. 

In Fig. 2B, we showed pQTL weights of gene BSG in CSF, which was detected by 

lassosum (p-value =1.54e-05), PRS-CS (p-value = 3.07e-04), and SDPR (p-value = 9.96e-05). 

Compared to the P+T models, these PRS methods all estimated non-zero pQTL weights for 

more GWAS significant SNPs in the test region. In Fig 2C, we showed pQTL weights of gene 

PROC in plasma, which was only detected by PRS-CS (p-value = 4.31e-05) and SDPR (p-value 

= 9.10e-04). lassosum estimated pQTL weights with higher magnitude for “non-significant” 

GWAS SNPs (GWAS p-values > 1e-5, black dots) in the test region, and most “significant” 

GWAS SNPs were filtered out by the P+T models due to their pQTL p-values >0.001.  

 Additionally, we plotted the pQTL weights of another 3 significant PWAS risk genes –– 

APOM in brain (Fig. S4), AIF1 in CSF (Fig. S5), and NCR2 in plasma (Fig. S6). APOM (p-

value=2.42e-08 in brain) and AIF1 (p-value = 1.22e-08 in CSF) were found significant only by 

lassosum, which estimated pQTL weights in relatively higher magnitude for “significant” 

GWAS SNPs. NCR2 (in plasma) were found significant by all PRS methods except P+T_0.001 

that estimated non-zero pQTL weights for “significant” GWAS SNPs.  

Overall, these plots of pQTL weights demonstrated that significant PWAS risk genes 

were mainly driven by test genetic variants that had non-zero pQTL weights with relatively large 

magnitudes and had “significant” GWAS p-values (e.g., <10e-05). These pQTL weight plots also 

showed that OTTERS leveraged the strength of all complementary PRS methods to achieve 

higher power.  

 

Mediated causal effects of PWAS risk genes 

 We employed the probabilistic Mendelian Randomization tool, PMR-Egger27, to assess if 

the genetic effects of these 30 PWAS risk genes were mediated through genetically regulated 

protein abundances and causal for AD dementia, while accounting for possible horizontal 

pleiotropy effects (Methods). As shown in Table 1, we found that 4 out of 11 (36.4%) PWAS 
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risk genes in brain, 6 out of 9 (66.7%) PWAS risk genes in CSF, 4 out of 16 (25.0%) PWAS risk 

genes in plasma tissues had significant mediated causal genetic effects with FDR < 0.05 without 

significant horizontal pleiotropy effects. Additionally, we found 3 PWAS risk genes in plasma 

with significant mediated causal genetic effects that also had significant horizontal pleiotropy 

effects with FDR < 0.05. In summary, by PMR-Egger, we validated causal genetic effects that 

were mediated through genetically regulated protein abundances for 13 (43.3%) out of these 30 

PWAS risk genes in brain, CSF, and plasma tissues by OTTERS. 

 

PPI network and enrichment analyses 

 By using the STRING28 webtool (Methods), we found 25 out of these 30 significant 

PWAS risk genes identified by OTTERS were interconnected in a network involving the well-

known AD risk gene APOE (Fig. 3). The edges of the network were colored according to the 

protein-protein interactions (PPI) based on different data sources. The STRING webtool also 

provided gene enrichment analyses results with these PWAS risk genes (Fig. 3).  

We found that our identified 30 PWAS risk genes were enriched in gene ontology (GO) 

pathways of immune response (AZU1, CSF1R, CXCL16, CEBPB, HAVCR2, LILRB1, NCR3, 

AIF1, IL34, LTA, ELANE, PRKCB, IL19) with enrichment FDR = 5.23e-07 and strength = 0.81, 

glial cell proliferation (CSF1R, CEBPB, IL34) with enrichment FDR = 0.0038 and strength = 

1.86, regulation of cell migration (APOE, MAPK3, CSF1R, CXCL16, BSG, AIF1, IL34, ELANE) 

with enrichment FDR = 0.0105 and strength = 0.75, regulation of cell-cell adhesion (CEBPB, 

HAVCR2, LILRB1, PLAUR, AIF1, ELANE) with enrichment FDR = 0.0131 and strength = 2.27, 

high-density lipoprotein particle clearance (APOE, APOM) with enrichment FDR = 0.0131 and 

strength = 0.91, as well as positive regulation of protein metabolic process (AZU1, APOE, 

MAPK3, CSF1R, PLAUR, AIF1, IL34, ELANE, NTF4) with enrichment FDR = 0.0322 and 

strength = 0.59. Also, we found that 14 of these PWAS risk genes were enriched in the Human 

Phenotype of blood protein measurement (e.g., MAPK3, APOE, PRKCB) with enrichment FDR 

= 0.0014 and strength = 0.71; and 15 of these were enriched in immune system (e.g., IL34, 

NCR3, AZU1) in the Reactome Pathway48, with enrichment FDR = 9.03e-05 and strength = 0.7. 

 Particularly, the detected PPI network showed that the novel PWAS risk genes identified 

by OTTERS were closely interconnected with known risk genes of AD dementia. For example, 

novel PWAS risk gene CEBPB was connected with the known GWAS and TWAS risk gene 
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PRKCB49 and was in the GO pathway of immune response. Novel risk genes CSF1R and NTF4 

were found connected with the known GWAS risk gene of AD dementia IL3450 and were in the 

GO pathway of positive regulation of protein metabolic process. 

 

 

Compare to TWAS results of AD dementia  

Next, we compared our PWAS findings to the TWAS findings by using individual-level 

reference transcriptomic data of DLPFC from the ROS/MAP studies and the same GWAS 

summary data of AD dementia. As described in Methods, we utilized the omnibus TWAS 

approach10 by using the ACAT method24 to combine the results obtained by individual TWAS 

tools of TIGAR/DPR, PrediXcan/Elastic-Net, and FUSION/BestModel. 

The omnibus TWAS (TWAS-O) approach identified 113 significant risk genes of AD dementia 

with FDR q-value < 0.05 (Fig. 4), including a total of 17 independent significant genes (labeled 

in Fig. 4) that do not have shared genetic variants in their test regions (±1MB around the test 

transcription starting/termination sites of the protein-coding gene). These independent significant 

genes were curated as having no overlapped test genetic variants. Importantly, 18 out of our 

identified 30 PWAS risk genes were either identified by TWAS-O or located within the shared 

(1Mb) test regions of the risk genes identified by TWAS-O, including 7 out of 11 in brain, 6 out 

of 9 in CSF, and 9 out of 16 in plasma tissues. 

For example, the PWAS risk gene IDUA in brain has shared test genetic variants as the 

TWAS-O risk gene CPLX1 (q-value = 6.31e-03), whose downregulation is likely to influence 

AD-associated neurodegeneration51. The PWAS risk gene APOE in brain has shared test genetic 

variants with 14 nearby TWAS-O risk genes on chromosome 19. PWAS risk genes AIF1 and 

CLIC1 in CSF have shared test genetic variants with the same set of 8 TWAS-O risk genes, 

which include HLA-DRB1, a known risk gene of late-onset Alzheimer’s disease (LOAD), 

particularly in APOE ε4 non-carrier population52. PWAS risk gene BCAM in both CSF and 

plasma tissues has overlapped test genetic variants with 18 TWAS-O risk genes, including 

ZNF112, ZNF 221 and ZNF 233 that are Zinc finger protein genes known with 

pathophysiological role in neuro-related diseases and disorders53. PWAS risk gene GFAP in 

plasma has shared test genetic variants with 19 TWAS-O risk genes, including MAPT that 

encodes the tau protein with a critical role in neurodegeneration54.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.03.28.24305044doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.28.24305044
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

Discussion 

We conducted PWAS of AD dementia with the recently released public data resources of 

summary pQTL data of brain, CSF, and plasma tissues12 as well as GWAS summary data of AD 

dementia, by employing our recently developed OTTERS11 tool. The distinction of our PWAS 

analyses from previous ones lies in the use of summary pQTL reference data from multiple 

tissues (brain, CSF, and plasma) related to neurodegenerative disorders. CSF and plasma are two 

bodily fluids believed to contain the richest source of biomarkers of AD and play important roles 

in research of AD pathology55. CSF surrounds the central nervous system (CNS) and is a highly 

representative and obtainable fluid for detecting brain pathologies. Blood plasma contains 

proteins that affect brain functions from the periphery, as well as proteins exported from the 

brain55. Especially, recent studies have shown that amyloid beta and phosphorylated tau 

presenting in CSF and plasma could be used as biomarkers for detecting AD dementia in early 

stages13-16. Therefore, our PWAS results leveraging proteomic data of plasma and CSF tissues in 

addition to brain tissue are expected to reveal additional important risk genes of AD, whose 

genetic effects are mediated through protein abundances in biofluids, thus providing valuable 

insights into future biomarker discovery of AD dementia. 

We identified 30 PWAS risk genes whose genetic effects were potentially mediated 

through genetically regulated protein abundances, including 11 in brain, 9 in CSF and 16 in 

plasma tissues. We found OTTERS gained power by leveraging multiple complementary PRS 

models to estimate pQTL weights and by considering reference pQTL data of multiple tissues. 

Specifically, we showed that each PRS model made distinct and considerable contributions to the 

final omnibus PWAS results by OTTERS.  

Previous studies have highlighted notable biological roles for our identified PWAS risk 

genes in three tissues, including significant enrichment in the GO biological pathways of 

immune system processes and lipoprotein metabolism. For example, PWAS risk gene APOE in 

brain is a known major risk factor for AD dementia56, which has a crucial function in the central 

nervous system57. The PWAS risk gene APOM in brain and plasma codes for an apolipoprotein 

associated with AD dementia and has been implicated in the lipid processing pathway58. The 

PWAS risk gene AIF1 in CSF has been associated with the activation of microglia (a type of 

immune cell localized throughout the central nervous system)59, which is a key player in the 

response to central nervous disorders such as AD60. 
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Besides known AD risk genes, our PWAS also identified 9 novel risk genes that are not 

detected by previous GWAS, TWAS, or PWAS. Especially, 6 out of these 9 novel PWAS risk 

genes were connected with known AD risk genes in the PPI network. Novel PWAS risk genes 

CSF1R, LILRB1, and CEBPB are enriched in the pathway of immune response, along with 

previously known AD risk genes. 

These previous findings, results from Mendelian Randomization analysis using by PMR-

Egger, and PPI network analysis results collectively demonstrate the significance of our 

identified PWAS risk genes in three tissues. Further experimental studies about the functions of 

our findings are essential but out of the scope of this work. 

PWAS analysis by the OTTERS tool still has its limitations. First, we only consider cis-

pQTL within the ±1𝑀𝑏 region around the transcription start/termination sites of the 

corresponding protein-coding gene. Second, the two-stage PWAS cannot account for possible 

horizontal pleiotropy genetic effects (those directly affecting the phenotype of interest) when 

testing if the genetic effects are mediated through genetically regulated protein abundances. 

Although the PMR-Egger tool can account for horizontal pleiotropy genetic effects, the 

computation burden of the PMR-Egger tool impedes its application to testing the protein-coding 

genes of proteome-wide proteins (average 60 vs. 2 CPU minutes per protein-coding gene by 

OTTERS). Thus, we only applied the PMR-Egger27 tool to our identified 30 PWAS risk genes.  

 

Conclusions  

In conclusion, we presented the first PWAS analysis of AD dementia utilizing the 

summary pQTL reference data of multiple tissues related to neurodegenerative disorders. Our 

identified PWAS risk genes provide candidate proteins in biofluids such as CSF and plasma and 

brain tissues for follow-up functional experiments and targeted therapeutic development of AD 

dementia. Previous studies, validation results from Mendelian Randomization analysis by PMR-

Egger, and PPI network analysis all demonstrated the significance of our identified PWAS risk 

genes in these three tissues. Further experimental studies about the functions of our findings are 

essential. Additionally, this study showed the practical usefulness of the OTTERS tool in 

leveraging publicly available summary pQTL data and GWAS data resources to conduct PWAS 

of complex diseases.  
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Figure legends 

Figure 1. Manhattan plots of PWAS results (FDR q-values) of AD dementia by OTTERS in 

Brain (A), CSF (B), and Plasma (C) tissues. The -log10(q-values) were plotted on the y-axis, 

and -log10(0.05) was plotted as the dashed horizontal line. Independent significant genes are 

labeled. Yellow triangles: genes identified by previous GWAS and TWAS; Blue triangles: genes 

identified by previous GWAS; Purple square: genes identified by previous TWAS; Red circle: 

novel findings. 

Figure 2. Scatter plots of pQTL weights of example PWAS risk genes of APOE in brain, 

BSG in CSF, and PROC in plasma that were estimated by individual PRS models. The 

pQTL weights were plotted in the y-axis for all genetic variants in the test gene region and color-

coded with respect to -log10 (GWAS p-value). Test SNPs with GWAS p-value <10−5 were 

colored. 

Figure 3. PPI network and enrichment analyses results with 25 PWAS risk genes of AD 

dementia by STRING. Edges represent physical PPI, with different colors representing 

different sources of connection evidence. Node colors represent different enriched GO terms 

with FDR < 0.05, 6 GO terms with most significant FDR q-value were colored.  

Figure 4. Manhattan plot of TWAS results of AD dementia in DLPFC tissue. The -log10(q-

value) were plotted on the y-axis, and -log10(0.05) was plotted as the dashed horizontal line. 

Plotted TWAS q-values were obtained by the ACAT method, combining TWAS p-values 

obtained by TIGAR/DPR, PrediXcan/Elastic_Net, and FUSION/BestModel. Independent 

significant genes are labeled. 
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