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Proteome-wide association studies using summary proteomic 

data identified 23 risk genes of Alzheimer’s disease 

Tingyang Hu1,2, Qile Dai1,3, Michael P. Epstein1, Jingjing Yang1,* 

 

Abstract 

Characterizing the genetic mechanisms underlying Alzheimer’s disease (AD) dementia is crucial 

for developing new therapeutics. Proteome-wide association study (PWAS) integrating 

proteomics data with genome-wide association study (GWAS) summary data was shown as a 

powerful tool for detecting risk genes. The identified PWAS risk genes can be interpretated as 

having genetic effects mediated through the genetically regulated protein abundances. Existing 

PWAS analyses of AD often rely on the availability of individual-level proteomics and genetics 

data of a reference cohort. Leveraging summary-level protein quantitative trait loci (pQTL) 

reference data of multiple relevant tissues is expected to improve PWAS findings for studying 

AD. 

Here, we applied our recently developed OTTERS tool to conduct PWAS of AD dementia, by 

leveraging summary-level pQTL data of brain, cerebrospinal fluid (CSF), and plasma tissues, 

and multiple statistical methods. For each target protein, imputation models of the protein 

abundance with genetic predictors were trained from summary-level pQTL data, estimating a set 

of pQTL weights for considered genetic predictors. PWAS p-values were obtained by integrating 

GWAS summary data of AD dementia with estimated pQTL weights. PWAS p-values from 

multiple statistical methods were combined by the aggregated Cauchy association test to yield 

one omnibus PWAS p-value for the target protein. We identified significant PWAS risk genes 

through omnibus PWAS p-values and analyzed their protein-protein interactions using STRING. 

Their potential causal effects were assessed by the probabilistic Mendelian randomization (PMR-

Egger).   

As a result, we identified a total of 23 significant PWAS risk genes for AD dementia in brain, 

CSF, and plasma tissues, including 7 novel findings. We showed that 15 of these risk genes were 

interconnected within a protein-protein interaction network involving the well-known AD risk 

gene of APOE and 5 novel findings, and enriched in immune functions and lipids pathways 
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including positive regulation of immune system process, positive regulation of macrophage 

proliferation, humoral immune response, and high-density lipoprotein particle clearance. 

Existing biological evidence was found to relate our novel findings with AD. We validated the 

mediated causal effects of 14 risk genes (60.8%). 

In conclusion, we identified both known and novel PWAS risk genes, providing novel insights 

into the genetic mechanisms in brain, CSF, and plasma tissues, and targeted therapeutics 

development of AD dementia. Our study also demonstrated the effectiveness of integrating 

public available summary-level pQTL data with GWAS summary data for mapping risk genes of 

complex human diseases. 
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Introduction 

Large-scale genome-wide association studies (GWAS) have successfully identified 

dozens of genetic risk loci related to Alzheimer’s disease (AD) dementia1–3. However, the 

underlying molecular mechanisms of these GWAS risk genes of AD are still largely unknown. 

To gain biological insights into how associated risk genes might contribute to AD dementia, 

researchers have performed proteome-wide association studies (PWAS) that integrates reference 

proteomic data from a disease-related tissue with GWAS summary data of AD dementia to 

identify risk genes whose effects are mediated via genetically regulated protein abundance4,5.  

PWAS typically employs a two-stage framework: Stage I uses the genetics and 

proteomics data of the same reference cohort to train a protein abundance prediction model for 

each target protein, taking the protein abundance quantitative trait as the response variable and 

the cis-SNPs proximal to the protein coding gene as predictors. The estimated SNP coefficients 

from Stage I can be viewed as effect sizes of “protein quantitative trait loci (pQTL)” in a broad 

sense, as most cis-SNPs with non-zero effect sizes will not be statistically significant pQTL. 

Stage II proceeds by using the estimated pQTL effect sizes as variant weights to predict 

genetically regulated protein abundance in a GWAS cohort, and subsequently conducts a gene-

based association test (of the corresponding protein coding gene) relating the predicted 

abundance of the target protein to phenotype.  

Existing analytic tools derived for the analogous transcriptome-wide association studies 

(TWAS) have been used for PWAS. Most existing tools including TIGAR6, PrediXcan7, and 

FUSION8, which utilize different statistical methods in Stage I to estimate the pQTL weights, 

require individual-level genetics and proteomics data of the reference cohort. For example, by 

PWAS analyses of AD dementia with the individual-level reference proteomics data of 

dorsolateral prefrontal cortex (DLPFC) tissue and whole genome sequencing (WGS) genotype 

data from samples in the Religious Orders Study and Memory and Aging Project (ROS/MAP)9, 

Wingo et al.4 detected 11 risk genes using the FUSION8 tool and Hu et al.10 identified 43 risk 

genes by leveraging all three tools of TIGAR6, PrediXcan7, and FUSION8.  

In this work, we utilized our recently developed OTTERS11 tool to expand the PWAS 

analyses of AD dementia, by leveraging pQTL summary data of not only brain (parietal lobe 

cortex, n=380) but also other important tissues such as cerebrospinal fluid (CSF, n=835) and 

plasma (n=529) tissues12. Recent studies have shown that amyloid beta (A𝛽)1-42/A𝛽1-40 and 
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phosphorylated tau/A𝛽1-42 ratios in CSF13,14 and plasma15,16 could be used as biomarkers for 

early diagnosis of AD. Thus, conducting PWAS with the recent GWAS summary data of AD 

dementia (n=~762K)2 in all three tissues (brain, CSF, and plasma) is expected to identify more 

risk genes of AD whose genetic effects are potentially mediated through the genetically 

regulated protein abundances.  

 

Materials and methods 

OTTERS framework 

 In a two-stage PWAS framework with individual-level genetic and proteomic data from a 

reference dataset, Stage I involves fitting a multiple linear regression model (Equation 1) with 

protein abundance (𝐄𝑝) of a protein 𝑝 as the outcome, genotype data (𝐗) of cis-SNPs of the 

corresponding protein coding gene (i.e., SNPs located within ±1Mb region around gene 

transcription starting/termination site) as predictors, and 𝒘 denoting the pQTL weights to be 

estimated:  

𝑬𝑝 = 𝑿𝒘 + 𝝐;                𝛜 ∼ 𝑁(0, 𝜎𝜖
2𝐈).      (Equation 1) 

Potential confounding covariates are assumed to be adjusted from the original protein abundance 

measures, resulting in the residuals of 𝑬𝑝. Both 𝑬𝑝 and columns of 𝐗 are standardized with mean 

0 and variance 1.  

Whereas, OTTERS11 estimates 𝐰 from the summary-level pQTL reference data that are 

assumed to be generated based on the following single variant linear regression models with 

standardized genotype vectors 𝐱𝑗 for genetic variants 𝑗 = 1, … , 𝑚:  

𝑬𝑝 = 𝒙𝑗𝑤𝑗 + 𝝐𝑗,        𝝐𝑗 ∼ 𝑁(0, 𝜎𝜖𝑗
2 𝑰).       (Equation 2) 

Summary-level pQTL reference data include the marginal least squared effect estimates (�̃�𝑗 , 𝑗 =

1, … , 𝑚), sample sizes, and linkage disequilibrium coefficients in the pQTL cohort (which can 

also be derived from an external reference panel with the same ancestry as the pQTL cohort). 

OTTERS employs five representative PRS methods, including the P-value Thresholding with 

linkage disequilibrium (LD) clumping (P+T)17 with p-value thresholds of 0.05 and 

0.001, frequentist LASSO regression (lassosum)18,19, nonparametric Bayesian Dirichlet process 

regression (SDPR)20,21, and Bayesian multiple linear regression with continuous shrinkage prior 
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(PRS-CS)22. These PRS methods can estimate five sets of pQTL weights (�̂�) for each protein 

coding gene.    

In Stage II, OTTERS first uses these five sets of pQTL weights (�̂�) from Stage I as 

variant weights (Equation 3) to test gene-based association with respect to the phenotype in the 

summary-level GWAS test data. The test statistic can be written as  

𝑍𝑝 =  
∑ (�̂�𝑗𝑍𝑗)𝑚

𝑗=1

√�̂�′𝑽�̂�
 ,     (Equation 3) 

where 𝑍𝑗 denotes the single variant Z-score test statistic in GWAS summary data for the 𝑗𝑡ℎ 

genetic variant, and 𝑽 denotes the genotype correlation matrix that could be obtained from an 

external reference panel of the same ancestry as the test GWAS data8. Such gene-based 

association test has been shown to be equivalent as testing the association between predicted 

genetically regulated protein abundances and the phenotype in the GWAS test data7,8,23.  

Since the performance of a PRS method depends on the unknown genetic architecture of 

protein abundances, OTTERS aggregates the PWAS p-values based on all five PRS methods by 

using the aggregated Cauchy association test24. An omnibus test p-value is derived for each 

protein coding gene, which is then used to identify significant PWAS risk genes (see details in 

the Supplementary Methods of the OTTERS paper11).  

 

Apply OTTERS to conduct PWAS of AD dementia 

 We first applied OTTERS11 to estimate pQTL weights from the recently released 

summary-level pQTL data of brain (n=380), CSF (n=835), and plasma (n=529)12. These 

summary-level pQTL data were generated by using proteomics data of individuals with AD and 

cognitively normal individuals of European ancestry profiled from an aptamer-based platform25. 

These summary-level pQTL data were generated for 1079 proteins in brain, 731 proteins in CSF, 

and 931 proteins in plasma, and ~14M genetic variants with minor allele frequency (MAF) ≥

2%. Linear regression models with protein abundances as the response variable, genotype of a 

single genetic variant as the test covariate, and additional adjusting covariates of age, sex, first 

two genotype principal components factors, and genotype platform, were used to generate the 

summary-level pQTL data. Since the summary-level pQTL data of these three tissues were 

generated by using samples of European ancestry, the LD information obtained from the whole 
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genome sequencing data of European samples from the ROS/MAP study9 was used to estimate 

pQTL weights, along with standardized marginal pQTL effect sizes and sample sizes. 

For each available protein in these three tissue types, we obtained five sets of estimated 

pQTL weights by five PRS methods, which were used to conduct PWAS analyses with the 

recent GWAS summary data (n=~762K) of AD dementia2. The GWAS summary data of AD 

dementia2 were generated by meta-analysis with 12 cohorts, excluding the 23&Me cohort. About 

11.3% of the GWAS samples had clinically diagnosed AD dementia. Omnibus OTTERS p-

values were obtained for each available protein in all three tissues. We corrected the omnibus 

OTTERS p-values per tissue by using the genomic control factor26, to ensure that the median test 

p-value was adjusted to the expected value 0.5 under the null hypothesis. Then we used the 

adjusted nominal OTTERS p-values to calculate the false discovery rates (FDR, i.e., q-values) 

per tissue. We identified genes with q-values < 0.05 as significant PWAS risk genes for AD 

dementia in the corresponding tissue. 

 

PPI network and enrichment analyses by STRING 

The STRING27–29 webtool integrates public data sources of protein infarction and 

analyzes the protein-protein interaction (PPI) network connectivity of proteins. Protein-protein 

edges represent the functional association, colored with six different connections –– curated 

databases, experiments, textmining, co-expression, gene co-occurrence and protein homology. 

Gene co-occurrence association predictions are based on whole-genome comparisons. The 

STRING27 webtool also provides gene enrichment analysis with respect to Gene Ontologies 

(GO)30 annotations. Enrichment analysis aims to detect GO terms and pathways that are 

significantly enriched with genes in the network versus random genes. The enrichment strength 

is provided along with FDR, which indicates the ratio between the number of proteins in the 

network that are annotated with a term and the number of proteins that expected to be annotated 

with this term in a random network of the same size. In this study, we utilized the STRING 

webtool to conduct PPI network and enrichment analyses with the list of PWAS risk genes 

identified by OTTERS in all three tissues. 

 

Examine causal effects of PWAS risk genes by PMR-Egger 
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As the two-stage PWAS framework does not distinguish genetic effects mediated through 

genetically regulated protein abundances (i.e., causal effects or vertical pleiotropy effects) versus 

effects through other pathways (i.e., horizontal pleiotropy effects), we further assessed the 

mediated causal effects of our identified significant PWAS risk genes by using the probabilistic 

Mendelian randomization (PMR-Egger) tool31. PMR-Egger can assess causal genetic effects 

while controlling for horizontal pleiotropy effects by using summary-level pQTL and GWAS 

data. The reference LD derived from the ROS/MAP WGS data was also used for implementing 

PMR-Egger. 

 

Results 

PWAS of AD dementia by OTTERS 

By applying OTTERS11 to the summary-level pQTL reference data of three tissues 

(brain, CSF and plasma)5 and recent large-scale GWAS summary data of AD dementia, we 

obtained PWAS p-values with pQTL weights estimated by five complimentary PRS methods. 

Moderate inflation was observed in the Quantile-Quantile (Q-Q) plots of these proteome-wide p-

values in all three tissues (Fig. S1-S3). Omnibus OTTERS p-values were obtained by combining 

the PWAS p-values across all 5 PRS methods24, and then were adjusted by the genomic control 

factor26. FDR q-values were then obtained from the adjusted OTTERS p-values to account for 

multiple testing. 

 We identified 23 PWAS significant risk genes of AD dementia with FDR q-value < 0.05 

by OTTERS, including 8, 9, and 10 genes respectively detected in brain, CSF, and plasma tissues 

(Fig. 1; Table 1), 4 detected in at least two tissues, and 2 independent genes (APOM and BCAM) 

detected in all three tissues. From these 23 significant PWAS risk genes, we curated 16 

independent genes that do not have shared genetic variants in their test regions (±1MB around 

the test transcription starting/termination sites of the protein-coding gene). 

Comparing our PWAS results to previous GWAS findings in GWAS Catalog32 (Table 

1), we found 6 out of 23 PWAS significant genes (SEZ6L233, APOE34, HAVCR22, BCAM1, 

POMC35, IL343) were detected by previous GWAS of AD, or GWAS of AD pathological 

hallmarks. Comparing to previous TWAS findings, we found 10 of our identified PWAS risk 

genes (MST136, C4A36, CXCL1623, APOE23, MAPKAPK237, APOM36, BCAM23, POMC23, AIF136, 
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F237) were either known TWAS risk genes or located within the shared (1MB) test region of 

previously detected TWAS risk genes. We also found 7 out of these 23 risk genes (C4A, APOE, 

APOM, BCAM, AIF1, F2) were identified by previous PWAS of AD dementia using proteomics 

data of the DLPFC tissue10. Moreover, we identified 7 novel risk genes that were not reported in 

previous GWAS, TWAS, or PWAS of AD dementia: LTA (p-value = 1.70e-05), HSPA1A (p-

value = 1.85e-04), CLIC1 (p-value = 1.85e-04), FOLH1 (p-value = 9.51e-21), NCR3 (p-value = 

1.50e-12), CD177 (p-value = 4.36e-04), and PLAUR (p-value = 2.64e-11).  

 

Comparison of different PRS methods 

 As described in the Methods section, OTTERS leverages all 5 complimentary PRS 

methods (P+T (0.001), P+T (0.05), lassosum, SDPR, and PRS-CS) to account for complex 

genetic architecture underlying the protein abundance quantitative traits, thus improving the 

PWAS power for studying complex diseases. Here, we compared the omnibus OTTERS p-values 

to the PWAS p-values obtained by each individual PRS methods (Table 1). Similar as reported 

in the OTTERS paper, we found that all individual PRS methods contributed to the omnibus 

OTTERS results. For example, the well-known risk gene APOE in brain was only detected by 

lassosum and P+T (0.001), and gene BCAM in CSF that is proximate to APOE was detected by 

lassosum, PRS-CS, and SDPR. To investigate how individual PRS methods contribute to the 

final OTTERS results, we plotted the pQTL weights estimated by all five PRS methods for three 

example PWAS risk genes (APOE, BCAM, and CD177) that were detected in all three tissues by 

OTTERS and identified by two or three individual PRS methods (Fig. 2). We plotted these 

pQTL weights with color coded corresponding to −𝑙𝑜𝑔10 (GWAS p-values).  

 In Fig. 2A, we showed pQTL weights for gene APOE (with pQTL summary data of 

brain), which was found significant by lassosum (p-value = 3.38e-102) and P+T (0.001) (p-value 

<1e-300). We found that the significance of gene APOE was driven by this one GWAS 

significant SNP (rs157580, chr19:44892009, located in the intron region of TOMM40 and 

downstream of NECTIN2) with non-zero pQTL weights estimated by P+T (0.001) and lassosum. 

When the pQTL weights of this driving SNP were estimated as 0 or near 0 by P+T (0.001), 

SDPR, and PRS-CS, PWAS p-values by these PRS methods were less significant (1.84e-4 by 

P+T (0.05), 9.13e-2 by PRS-CS, 1.72e-4 by SDPR). Interestingly, genes TOMM40 and 

NECTIN2 are proximal to APOE. TOMM40 is a known risk gene of AD dementia1 and found to 
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be associated with family history of AD38. NECTIN2 was previously reported as a GWAS risk 

gene for beta-amyloid 1-4239 , and the interaction of low-density lipoprotein cholesterol levels 

and short total sleep time40. 

In Fig. 2B, we showed pQTL weights of gene BCAM (with pQTL summary data of CSF), 

which was detected by lassosum (p-value = 2.16e-65), PRS-CS (p-value = 8.35e-07), and SDPR 

(p-value = 2.81e-07). Compared to the P+T methods, these PRS methods all estimated non-zero 

pQTL weights for more GWAS significant SNPs in the test region. In Fig 2C, we showed pQTL 

weights of gene CD177 (with pQTL summary data of plasma), which was only detected by 

lassosum (p-value = 1.17e-05). We can see that both SDPR and PRS-CS estimated near-zero 

pQTL weights for “significant” GWAS SNPs (GWAS p-values < 1e-5, colored in the plots) in 

the test region, and most “significant” GWAS SNPs were filtered out by the P+T method due to 

their pQTL p-values >0.05. Only lassosum estimated non-zero pQTL weights for these driving 

GWAS “significant” SNPs. 

 Additionally, we plotted the pQTL weights of another 3 significant PWAS risk genes 

C4A (Fig. S4), APOM (Fig. S5), and AIF1 (Fig. S6). Genes C4A (in brain) and APOM (in 

plasma) were found significant by all PRS methods, which all estimated non-zero pQTL weights 

for “significant” GWAS SNPs. Gene AIF1 (in CSF) was found significant by P+T (0.005) (p-

value = 7.21e-08) and PRS-CS (p-value = 4.06e-06), which estimated pQTL weights in relatively 

higher magnitude for “significant” GWAS SNPs.  

Overall, these plots of pQTL weights demonstrated that significant PWAS risk genes 

were mainly driven by test genetic variants that had non-zero pQTL weights colocalized with 

“significant” GWAS p-values, and that OTTERS leverages the strength of all complement PRS 

methods to achieve higher power.  

  

PPI network and enrichment analyses 

 By using the STRING27 webtool (Methods), we found 15 proteins out of these 23 

significant protein-coding genes identified by OTTERS were interconnected in a network, 

including APOE, a well-known risk genes of AD dementia (Fig. 3). The edges of the network 

were colored according to the protein-protein interactions based on different data sources. The 

STRING webtool also provided gene enrichment analyses results (Fig. 3). We found that the 

genes in this network were enriched in GO pathways of positive regulation of immune system 
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process (CD177, HSPA1A, IL34, LTA, NCR3, AIF1, HAVCR2, C4A, MAPK3, POMC) with 

enrichment FDR = 2.78e-07 and strength = 1.1, response to stress (CD177, HSPA1A, IL34, LTA, 

NCR3, AIF1, HAVCR2, C4A, MAPK3, POMC) with enrichment FDR = 3.7e-05 and strength = 

0.64, positive regulation of macrophage proliferation (MAPK3, IL34) with enrichment FDR = 

2.9e-03 and strength = 2.64, high-density lipoprotein particle clearance (APOE, APOM) with 

enrichment FDR = 7.5e-03 and strength = 2.64, humeral immune response (POMC, F2, C4A 

LTA) with enrichment FDR = 1.2e-02 and strength = 1.2, as well as fibrinolysis (PLAUR, F2) 

with enrichment FDR = 1.8e-02 and strength = 2.04. 

 Particularly, the detected PPI network showed that the novel PWAS risk genes identified 

by OTTERS were closely interconnected with known risk genes of AD dementia. For example, 

novel PWAS risk genes LTA and NCR3 were found connected with known GWAS and TWAS 

risk genes AIF1 and HAVCR2, and were enriched in the GO pathways of positive regulation of 

immune system process and response to stress. In addition, the known PWAS risk gene of AD 

dementia MAPK3 was found connected with 3 novel risk genes HSPA1A, CD177 and PLAUR, 

and they were enriched in the pathway of positive regulation of immune system process. 

 

Assess mediated causal effects of PWAS risk genes 

 We employed the PMR-Egger31 tool to assess if the genetic effects of these 23 PWAS 

risk genes were mediated through genetically regulated protein abundances and causal for AD 

dementia, while accounting for possible horizontal pleiotropy effects (Methods). As shown in 

Table 1, we found that 5 out of 8 (62.5%) PWAS risk genes in brain, 7 out of 9 (77.8%) PWAS 

risk genes in CSF, 6 out of 10 (60%) PWAS risk genes in plasma tissues had significant 

mediated causal genetic effects with p-values <0.002 (with Bonferroni adjustment for testing 23 

genes), while no significant horizontal pleiotropy effects. Additionally, we found 3 PWAS risk 

genes in plasma with significant mediated causal genetic effects that also had significant 

horizontal pleiotropy effects with Bonferroni corrected p-values <0.002. These PMR-Egger 

analyses validated causal genetic effects that were mediated through genetically regulated 

protein abundances for 14 (60.8%) out of 23 PWAS risk genes in brain, CSF, and plasma tissues. 
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Discussion 

We utilized our recently developed OTTERS11  tool to conduct PWAS of AD dementia, 

by leveraging the recently released data resources of summary-level pQTL data of brain, CSF, 

and plasma tissues12 as well as GWAS summary data of AD dementia2. We identified 23 PWAS 

risk genes whose genetic effects were potentially mediated through genetically regulated protein 

abundances, including 8 in brain, 9 in CSF and 10 in plasma tissues. We found OTTERS gained 

power by leveraging multiple complementary PRS methods to estimate pQTL weights, and by 

considering reference pQTL data of multiple tissues. Specifically, we showed that each PRS 

method made distinct and considerable contributions to the final omnibus PWAS results by 

OTTERS. Through PPI network and enrichment analyses, we found 15 out of these 23 PWAS 

risk genes were interconnected into one community, including both known AD risk genes and 5 

novel PWAS genes. These genes were enriched in important biological pathways associated with 

AD, including pathways of response to stress, positive regulation of immune system process, 

positive regulation of macrophage proliferation, high-density lipoprotein particle clearance, and 

fibrinolysis which was revealed to be abnormal in AD mice41.  

 Comparing our PWAS results to previous ones by Wingo et al.4, which were obtained by 

using FUSION tool8 with individual-level proteomics reference data of DLPFC of ROS/MAP 

cohort9 and GWAS summary data of AD dementia released in 20191, we did not find any 

overlapped PWAS risk genes. Only ~1,000 proteins were tested by Wingo et al.4 Next, we 

compared our findings to the PWAS results by Hu et. al.10 which were aggregated from the 

PWAS results by using TIGAR6, PrediXcan7, and FUSION8 tools, with the same individual-level 

proteomics reference data of DLPFC of ROS/MAP cohort9 and the same GWAS summary data 

of AD dementia analyzed in this study. Besides statistical methods used by the FUSION8 tool, 

additional statistical methods including the penalized regression with Elastic-Net by PrediXcan7 

and DPR by TIGAR6 were also considered by Hu et. al.10 Different from FUSION tool that only 

selects one best performing statistical method, Hu et. al.10 aggregated the PWAS results by all 

three tools for a total of 6,673 proteins. We found 7 overlapped risk genes, C4A and APOE in 

brain, AIF1 and F2 in CSF, APOM in plasma, and BCAM in both CSF and plasma, which were 

also identified in DLPFC by Hu et. al.10  

The distinction of our PWAS analyses from previous ones lies in the use of summary-

level pQTL reference data from multiple tissues (brain, CSF, and plasma) related to 
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neurodegenerative disorders. CSF and plasma are two bodily fluids believed to contain the 

richest source of biomarkers of AD and play important roles in research of AD pathology42. CSF 

surrounds the central nervous system (CNS), and is a highly representative and obtainable fluid 

for detecting brain pathologies. Blood plasma contains proteins that affect brain functions from 

the periphery, as well as proteins exported from the brain42. Especially, recent studies have 

shown that amyloid beta and phosphorylated tau presenting in CSF and plasma could be used as 

biomarkers for detecting AD dementia in early stages13–16. Therefore, our PWAS results 

leveraging proteomics data of plasma and CSF tissues in addition to brain are expected to reveal 

important risk genes of AD mediated through protein abundances in biofluids, providing 

valuable insights into future biomarker discovery of AD dementia. 

In this work, we provide a list of 23 potential risk genes of AD dementia whose genetic 

effects are mediated through their protein abundances in at least one of three tissues (8 in brain, 9 

in CSF, and 10 in plasma). Previous studies have highlighted notable biological roles for these 

PWAS risk genes, including functions in the immune system processes and lipoprotein 

metabolism. For example, APOE, known as a major risk for AD dementia43 was identified by our 

PWAS, which has a crucial function in the central nervous system44. The risk gene APOM is an 

apolipoprotein associated with AD dementia and has been implicated in the lipid processing 

pathway45. The risk gene C4A, an immune gene, exhibited increased expression in the cortex of 

the mouse model as Aβ amyloidosis progressed, which suggests an association between C4A and 

AD progression46. The risk gene AIF1 has been associated with the activation of microglia (a 

type of immune cell localized throughout the central nervous system)47, which is a key player in 

the response to central nervous disorders such as AD48. The risk gene MAPK3 involved in the 

immune system process was found activated in AD brains and involved in the pathogenesis of 

AD including tau phosphorylation and amyloid deposition49.  

Importantly, our PWAS identified 7 novel genes that are not previously undetected by 

GWAS, TWAS, or PWAS –– LTA and HSPA1A in brain; CLIC1 and FOLH1 in CSF; NCR3, 

CD177, and PLAUR in plasma. The inflammatory protein TNFB encoded by the novel PWAS 

risk gene LTA has been associated with cognitive function and risks for AD dementia50. A study 

of brain proteomics data discovered that the novel PWAS risk gene HSPA1A might serve as a 

potential biomarker in monitoring the progression of mild cognitive impairment to AD51. A study 

highlighted the role of CLIC1 in the neurodegenerative process through the regulation of 
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microglial activation and oxidative stress, which are key factors in the pathogenesis of AD52. The 

PWAS risk gene FOLH1 has been associated with AD by the Summary Mendelian 

Randomization (SMR) test53. The increased expression of gene CD177 was found in mild AD 

patients, which played a role in neutrophil activation54. An inverse correlation between soluble 

PLAUR levels and AD, along with brain atrophy has been observed55. Four of these novel 

PWAS risk genes were validated by PMR-Egger (HSPA1A, CLIC1, CD177, and PLAUR), with 

casual genetic effects of AD dementia mediated through protein abundances. Five of these novel 

PWAS risk genes were identified within in the PPI network (LTA, HSPA1A, NCR3, CD177, and 

PLAUR), and were enriched in the pathway of response to stress.  

These previous findings, Mendelian Randomization analysis results by PMR-Egger, and 

PPI network analysis results demonstrated the significance of our identified PWAS risk genes in 

three tissues. Further experimental studies about the functions of our findings are essential but 

out of the scope of this work. 

The PWAS analysis by the OTTERS tool still has its limitations. First, we only consider 

cis-pQTL within the ±1𝑀𝑏 region around the transcription starting/termination sites of the 

corresponding protein-coding gene. Second, the two-stage PWAS cannot account for possible 

horizontal pleiotropy genetic effects (those directly affecting the phenotype of interest), when 

testing if the genetic effects are mediated through genetically regulated protein abundances. 

Although the PMR-Egger tool can account for horizontal pleiotropy genetic effects, the 

computation burden of the PMR-Egger tool impedes its applications to test the protein-coding 

genes of proteome-wide proteins (average 60 vs. 2 CPU minutes per protein coding gene by 

OTTERS). Thus, we only applied the PMR-Egger31 tool to our identified PWAS risk genes, and 

found that 5 out of 8 (62.5%) risk genes in brain, 7 out of 9 (77.8%) risk genes in CSF, 6 out of 

10 (60%) risk genes in plasma had significant causal genetic effects mediated through 

genetically regulated protein abundances.  

 In conclusion, we presented the first PWAS analysis of AD dementia utilizing the 

summary-level pQTL reference data of multiple tissues related to neurodegenerative disorders. 

Our identified PWAS risk genes provide candidates in biofluids such as CSF and plasma and 

brain tissues for follow-up functional experiments and targeted therapeutic developments of AD 

dementia. Additionally, this study showed the practical usefulness of the OTTERS tool for 
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leveraging publicly available summary-level pQTL data and GWAS data resources to conduct 

PWAS of complex diseases.   
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Data availability 

GWAS summary data of AD dementia is available from2. Summary-level pQTL data of brain, 

CSF, and plasma tissues can be accessed by emailing niagads@pennmedicine.upenn.edu to set 

up an FTP transfer of the data. OTTERS tool is available from 

https://github.com/daiqile96/OTTERS. PMR tool is available from 

https://github.com/yuanzhongshang/PMR. The code used in this study for conducting PWAS of 

AD dementia are available from GitHub https://github.com/tingyhu45/PWAS_OTTERS. Trained 

pQTL weights by five PRS methods and our PWAS summary data will be deposited to 

SYNAPSE once this work is accepted. 
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Figure legends 

Figure 1 Manhattan plots of PWAS results (FDR q-values) of AD dementia by OTTERS in 

Brain (A), Plasma (B), and CSF (C) tissues. The -log10(q-values) were plotted on the y-axis, 

and -log10(0.05) was plotted as the dashed horizontal line. Independent significant genes are 

labeled.  

 

Figure 2 Scatter plots of pQTL weights of example PWAS risk genes of APOE in brain, 

BCAM in CSF, and CD177 in plasma that were estimated by individual PRS methods. The 

pQTL weights were plotted in the y-axis for all test genetic variants in the test gene region, with 

color-coded with respect to -log10 (GWAS p-value). Test SNPs with GWAS p-value <10−5 

were colored. 

 

Figure 3 PPI network and enrich analyses results with 23 PWAS risk genes of AD dementia 

by STRING. Edges represent physical PPI, with different colors representing different sources 

of connection evidences. Node colors represent different enriched GO terms with FDR < 0.05.  
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 4 

Fig. 3: PPI network and enrich analyses results with 23 PWAS risk genes of AD dementia 

by STRING. Edges represent physical PPI, with different colors representing different sources 

of connection evidences. Node colors represent different enriched GO terms with FDR < 0.05.  
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