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Abstract  

 

The application of a lifecourse approach to genetic epidemiology is key to better understanding 

causal effects of adversities on health outcomes over time. For some time-varying phenotypes, 

it has been shown that genetic effects may have differential importance in the development 

of an exposure at different periods in the lifecourse. Mendelian randomization (MR) is a 

technique that uses genetic variation to address causal questions about how modifiable 

exposures influence health. MR studies often employ conventional instrumental variable (IV) 

methods designed to estimate lifelong effects. Recently, several extensions of MR have been 

used to investigate time-varying effects, including structural mean models (SMMs). SMMs 

exploit IVs through g-estimation and circumvent some of the parametric assumptions of other 

MR methods.  

 

In this study, we apply g-estimation of SMMs to MR. We aim to estimate the period effects of 

adiposity measured at two different life stages on cardiovascular disease (CVD), type 2 diabetes 

(T2D) and breast cancer in later life. We found persistent period effects of higher adulthood 

adiposity on increased risk of CVD and T2D. Higher childhood adiposity had a protective period 

effect on breast cancer. We compare this method to an inverse variance weighted 

multivariable MR approach: a technique also using multiple IVs to assess time-varying effects, 

however, relying on a different set of assumptions and subsequent interpretations. We discuss 

the strengths and limitations of each approach and emphasise the importance of underlying 

methodological assumptions in the application of MR to lifecourse research questions. 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.27.24304961doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.27.24304961
http://creativecommons.org/licenses/by/4.0/


3 
 

Introduction 

 

Exposures throughout life (including in utero) set in place the structures that shape future 

health outcomes (1). A lifecourse approach investigates the contribution of early and later life 

exposures to identify risk and protective mechanisms across the lifespan (2-4). Confounding, 

in particular time-modified confounding (when the causal relation between a confounder and 

the exposure or outcome changes over time), time-varying confounding (where earlier levels 

of the exposure causally affect later values of the confounder of future measures of the 

exposure) and intermediate confounding (a confounder of the mediator-outcome 

relationship), is anticipated in studies with earlier life and time-varying exposures and later life 

health outcomes. Mendelian randomization (MR) exploits the random assortment of genetic 

variants, independent of other traits, to enable analyses that largely mitigate against 

distortions resulting from confounding bias and reverse causality (6). Within a causal inference 

framework, MR builds on instrumental variable (IV) analysis, whereby specific conditions are 

required to hold (7). These are that the IV must (i) be associated with the exposure of interest 

(‘relevance’), (ii) not share common causes with the outcome (‘independence’) and (iii) not 

affect the outcome other than through the exposure (‘exclusion-restriction’) (8, 9). 

 

For some exposures, it has been shown that genetic effects may have differential importance 

in the development of an exposure at different periods in the lifecourse (10-14). MR studies, 

however, typically use a single exposure measurement to estimate the ‘total’ effect of an 

exposure on an outcome. As such, effect estimates for a single measure of a time-varying 

exposure, such as adiposity, using “standard” MR designs, may be interpreted incorrectly if the 

time-varying nature of the relationship between the genetic variants and the exposure is not 

taken into consideration (15). MR methods that rely on having multiple instruments with 

different effects on an exposure at differing times have been developed, or adapted, to address 

lifecourse research questions (11, 16-28). These include inverse variance weighted 

multivariable MR (IVW-MVMR) and MR using g-estimation of structural mean models (SMM-

MR) (11, 27). 

 

IVW-MVMR estimates the controlled effects of several potentially correlated exposures on an 

outcome, where each effect is controlled for other exposures included in the model (11, 19). 
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The method relies on three assumptions, which expand on those highlighted above: (i) the 

‘relevance’ assumption is modified to indicate that the liability (an underlying normally 

distributed latent (unmeasured) variable) to each exposure is robustly predicted by the genetic 

variants controlled for other exposures included in the estimation, (ii) the ‘independence’ 

assumption remains unchanged, and (iii) the ‘exclusion-restriction’ assumption proposes 

genetic variants are not associated with the outcome other than via liabilities to exposures 

included in the estimation (11, 29). 

  

In a lifecourse setting, the correlated exposures in IVW-MVMR correspond to repeated 

measures of the same exposure over time. For example, IVW-MVMR has been used to evaluate 

whether childhood adiposity has an effect on disease outcomes after controlling for adiposity 

in adulthood (19, 30-33). If the main exposure (i.e., genetically predicted childhood adiposity) 

has a causal influence on disease risk, IVW-MVMR allows us to decipher whether this effect is 

not acting through adulthood adiposity or partly mediated by adult adiposity. An earlier 

application of this method showed that while the total effects indicated increased childhood 

adiposity was a risk factor for coronary heart disease (CHD) and type 2 diabetes (T2D), the 

controlled ‘direct’ effect estimates for childhood adiposity after controlling for later life 

adiposity were compatible with, and close to, the null (19). This suggests that the influences of 

childhood adiposity on these outcomes are mediated by adiposity in adulthood, highlighting 

an important public health message: that adverse effects may be minimised or reversed by 

preventing obesity before adulthood (34). Findings from this study additionally indicated that 

increased adiposity in childhood had a protective controlled effect on breast cancer risk with 

less evidence of an adult effect, suggesting that the effect of childhood adiposity is unlikely to 

be mediated by adulthood adiposity. Prostate cancer was also investigated, though there was 

very little evidence of a causal effect of either early or later life measures on this outcome (19).  

 

An alternative MR approach to investigate time-specific effects has been proposed through 

the application of SMMs (27), which exploit IVs through g-estimation (35, 36). SMMs are semi-

parametric, circumventing some parametric assumptions made by other MR methods such as 

the assumption of a linear relationship with a continuous outcome when using two-stage least-

squares (2SLS) (37). SMMs comprise a wide array of models, including those with binary, 

categorical and time-to-event outcomes.   
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Three causal parameters, described previously by Shi et al. (27), can be identified using a SMM 

approach if combined with suitable IVs satisfying specific assumptions: a point effect, a period 

effect, and a lifetime effect. A point effect is the effect of raising an exposure by a unit at only 

one precise single time point on the outcome. A period effect is the effect of a unit increase in 

the exposure on the outcome over a specified period of time. This period effect can be defined 

as the difference between the mean counterfactual outcome had everyone received a 

particular exposure and the mean counterfactual outcome had everyone received an exposure 

a unit higher between times 𝑚 − 𝑝 and 𝑚 (where 𝑚 = age at end of time period and p = length 

of time period).  Finally, a lifetime effect is the effect of a unit increase across the entire 

lifecourse (defined as starting at conception and ending at the outcome recording time) (27). 

This is identical to a period effect where the beginning and end of the period have been defined 

to cover the lifetime.  

 

Depending on the plausibility of assumptions, it is not a requirement to have multiple measures 

for an exposure to estimate any of the effects defined. To estimate a point effect the genetic 

variants used as an IV needs to have a direct effect on the exposure only at the time point 

considered and not at any other time point. This is unlikely to be plausible in many settings. 

Period or lifetime effects can be estimated with one measure of the exposure if the IV has the 

same effect on the exposure throughout the whole period, and no direct effect on the 

exposure outside that period. In our data application, we consider the effect of adiposity 

measured around age 10 on a set of adulthood outcomes. To interpret this as a point effect 

we would assume that the instrument used directly effects adiposity at age 10 only. To 

interpret this as a period effect, we might assume that our measure of adiposity represents 

the preadolescent period (~9-12 years) as opposed to age 10 specifically and that our 

instrument has a constant effect on the exposure over this period and no direct effect at any 

other age. To interpret a lifetime effect when using a single exposure measurement, we would 

assume that the instrument has the same effect on the exposure across the lifecourse up to 

the point the outcome is measured. 

 

Shi et al. show that to satisfy the final instrumental condition aligned with those pertaining to 

IVW-MVMR described earlier (i.e., that genetic variants are not associated with the outcome 
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other than via liabilities to exposures included in the estimation), each component of the time-

varying exposure outside of the period considered must not be directly affected by the 

instrument or not directly affect the outcome. Under this assumption, using an example with 

an exposure measured at one time period (X2), when investigating this effect on 𝑌, there 

should be no direct pathway from genetic variants (Z) to X1	and X3	or no pathway from X1 or X3	

directly to 𝑌	(see Figure 1). Presence of such pathways would induce horizontal pleiotropy. If 

multiple time periods had been measured and included in this model, the same assumptions 

would apply.  

 

 

Figure 1. Causal diagram for instrumental variable analyses with one measured period (X2) 

(using instruments associated with three potential time periods) of an exposure. 𝑍 is a set of 

genetic variants associated with X2, 𝑌 is an outcome observed at one time only, X1	and X3	
indicate potentially relevant periods that are unmeasured. U is a set of unobserved confounders 

of the exposure at each time period and the outcome. X1, X2, X3 and 𝑌 are confounded by a set 

of unobserved confounders U. Dashed lines indicate paths via unmeasured exposures.  

 

Childhood adiposity strongly influences adulthood adiposity (38). Genetic variants with varying 

levels of association with childhood and adult adiposity may be targeting different causal 

pathways underlying the relationship between adiposity and complex outcomes, that vary in 

importance at different life stages (39). For example, there have been situations where genetic 

variants associated with adulthood adiposity may have predicted a component of adiposity in 
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early life not detected by childhood associated genetic variants (39). This can lead to deviations 

from the gene-environment equivalence assumption in MR (40), which asserts that the effect 

of germline genetic perturbations should have the same downstream consequence on 

outcomes as if they were caused by the modifiable exposures themselves (39). This is 

important to consider when selecting genetic variants to instrument period effects as 

described.   

 

An alternative interpretation that has been proposed using IVW-MVMR is that there may be a 

path from the instruments to the outcome via exposures at other periods which have not been 

included in the estimation and this path will form some of the effect estimate obtained (11, 

21). Consequently, the estimand being targeted is the effect of an increase in one unit of 

liability to the exposure. With reference to Figure 2, the instruments associated with the 

liability (L) in at least one period of the lifecourse may be associated with L in different periods. 

In addition, the degree of this association may vary across periods. The genetically predicted 

effect of increasing the exposure by a unit of liability at a particular time period will thus include 

genetic effects on the exposure at other time periods if the exposure in those periods has an 

effect on the outcome. If each genetic variant has a different trajectory for the liability, then 

the effects estimated will be an average across these.  

 

Figure 2. Causal diagram for instrumental variable analyses with two periods (using instruments 

associated with two time points assumed to represent two respective periods) of exposure 

(adapted from Sanderson et al. (11)). L1 is liability to the exposure in the earlier period, L2 is 
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liability to the exposure in the later time period, is a set of genetic variants associated with L1 

and L2.  X1 is a measure of the exposure in the early time period, X2 is a measure of the exposure 

at the second time period, 𝑌 is an outcome observed at one time only, U is a set of unobserved 

confounders of the exposure at each time period and the outcome. We have assumed that there 

is no time-varying confounding.  

 

Throughout we assume no time varying confounding, which is where earlier levels of the 

exposure causally affect later values of the confounder. Such confounding creates a feedback 

loop over time between the exposure and the confounder as later values of the exposure will 

then be affected by the confounder. When conducting MR to answer lifecourse research 

questions, these feedback loops are part of the causal pathway that we are estimating as they 

are part of the effect of that exposure on the outcome (Figure 3). 

 

Figure 3. Causal diagram depicting time-varying confounders {C1, C2,...,CT} affected by exposure 

(X), when the outcome (Y) is measured at the end of follow-up. {X1, X2,...,XT} represent the 

exposure variables of interest measured at time points 1, 2,...,T. {C1, C2,...,CT} represent the 

potential confounders measured at time points 1, 2,...,T, where it is assumed that CT occurs just 

before XT. In this diagram, Y is the outcome of interest, measured at the end of the study (at 

visit T + 1), and U is a set of unmeasured factors that influence {C1, C2,..., CT} and Y (adapted 

from Daniel et al. (41)). L	is the underlying liability to the exposure {X1, X2,...,XT}. 𝑍 is a set of 
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genetic variants associated with L. The arrows in this diagram represent the assumed direction 

of causal influence. For clarity, we have not included all arrows between U and {X1, X2,...,XT} 

and {X1, X2,...,XT} and Y.  

 

In this paper we apply MR using g-estimation of SMMs to estimate the period effects of 

measures of childhood and adult adiposity on CVD, T2D and breast cancer in later life. We use 

this application to illustrate and describe this approach and to provide a comprehensive 

interpretation of results that can be obtained. We compare results using SMM-MR to results 

using the same data in an IVW-MVMR framework. Finally, we compare these findings to those 

produced using the same instruments but different outcome data to estimate potential biases 

that may have resulted from sample overlap or selection (11, 19). We then discuss plausible 

next steps for MR methods used to address lifecourse epidemiology questions. 

 

Methods 

 

Data sources 

 

UK Biobank data were collected between 2006 and 2010 on individuals aged between 40 and 

69 years old at baseline, from clinical examinations, assays of biological samples, detailed 

information on self-reported health characteristics, and genome-wide genotyping, using a 

prospective cohort study design (48). The childhood adiposity measure applied in this study, 

used recall questionnaire data, involving responses from adult participants who were asked 

whether, compared to the average, they were ‘thinner’, ‘about average’ or ‘plumper’, when 

they were aged 10 years old. The adult adiposity variable was derived using clinically measured 

body mass index (BMI) data (mean age 56.5 years). It was then separated into a 3-tier variable 

based on the same proportions as the early life adiposity variable (i.e., thinner, plumper, and 

about average) (49, 50). This was to ensure that derived effect estimates from subsequent 

analyses were as comparable as possible. Individuals that did not have data for both childhood 

and adult adiposity were excluded from analyses. The UK Biobank study have obtained ethics 

approval from the Research Ethics Committee (REC; approval number: 11/NW/0382) and 

informed consent from all participants enrolled in UK Biobank. Estimates were derived using 

data from the UK Biobank (app #76538). 
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Genetic variants strongly associated with childhood and adult adiposity (using P < 5x10-8 and 

r2 < 0.001) were identified in a large-scale genome-wide association study (GWAS), previously 

undertaken in the UK Biobank study on 463 005 individuals, adjusting for age, sex, and 

genotyping chip (48, 51). The genetic instruments derived from these measures have been 

independently validated in two distinct cohorts, providing verification they can reliably 

measure childhood and adult adiposity (19, 52). These genetic variants were used to generate 

polygenic risk scores (PRSs) for individual-level MR analyses.  

 

Phenotypic data for outcomes under investigation: CVD, T2D, and breast cancer, were 

obtained from the UK Biobank. These outcomes were classified using International 

Classification of Diseases, Tenth Revision (ICD-10) codes. CVD was defined as cardiovascular 

disease cases (ICD-10 code I210-I229, I231-36, I238, I240, I241, I248-I256, I258, I259). T2D was 

defined as T2D mellitus (ICD-10 code E110-19). Breast cancer was defined as malignant 

neoplasm of the breast (ICD-10 code C500-06, C508-09).  

 

Genetic IVs in a MR setting are conventionally selected from an independent dataset where 

the sample does not overlap with the dataset being analysed (53). This is to avoid overfitting 

bias. Conducting MR using overlapping sets of participant samples may bias in the direction of 

the conventional observational results between the exposure and outcome (54). In our 

investigation it was not possible to avoid this. However, we compare our MVMR-IVW results 

to the same analysis using non-overlapping outcome data, replicating analyses previously 

conducted (19), to assess how using these data may have affected our results. For this analysis 

GWAS data for CHD, T2D and breast cancer were obtained from large scale consortia, which 

did not include data from the UK Biobank (55-57). Details on these datasets have been 

described previously (19). 

 

Statistical analysis  

 

First, we employed a SMM technique in a univariable framework using polygenic risk scores 

(PRSs) generated from selected genetic variants to estimate period effects of childhood and 

adulthood adiposity on CVD, T2D and breast cancer. We then applied SMMs in a multivariable 
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framework to compare with an IVW-MVMR approach used to estimate controlled period 

effects. For comparative purposes, we employed the IVW method to conduct MR analyses 

using summary statistics generated with the same full sets of genetic variants used in the SMM 

analyses. These steps are described in further detail below:  

 

Polygenic Risk Scores (PRS) 

 

We used PLINK 2.00 to calculate PRSs for each individual in the study (58). We generated the 

PRSs using different single nucleotide polymorphisms (SNPs) association stringency thresholds 

with the exposure phenotypes, childhood and adulthood adiposity. The criteria for each of the 

PRSs are outlined in Table 1. Analyses were undertaken three times: in all eligible participants 

and then for each sex separately. The lists of SNPs used for each PRS can be found in 

Supplementary 1.  

 

Table 1. Details of the SNP association thresholds used for a Mendelian randomization (MR) 

analysis. 

Exposure SNP threshold criteria Stringency rating 

Childhood 
adiposity 

The genetic variants strongly associated* with childhood 
adiposity, regardless of their association with adulthood 

adiposity 

Low 

Adulthood 
adiposity 

The genetic variants strongly associated* with adulthood 
adiposity, regardless of their association with childhood 

adiposity 

Low 

Childhood 
adiposity 

The genetic variants strongly associated* with childhood 
adiposity and exclude SNPs that are associated with adulthood 

adiposity at P ≤ 5 x 10-8 

Low-Medium 

Adulthood 
adiposity 

The genetic variants strongly associated* with adulthood 
adiposity and exclude SNPs that are associated with childhood 

adiposity at P ≤ 5 x 10-8 

Low-Medium 

Childhood 
adiposity 

The genetic variants strongly associated* with childhood and 
exclude SNPs associated with adulthood adiposity at P ≤ 0.05 

with Bonferroni correction** 

Medium-High 

Adulthood 
adiposity 

The genetic variants strongly associated* with adulthood 
adiposity and exclude SNPs associated with childhood adiposity 

at P ≤ 0.05 with Bonferroni correction** 

Medium-High 

Childhood 
adiposity 

The genetic variants strongly associated* with childhood 
adiposity and exclude SNPs associated with adulthood adiposity 

at P ≤ 0.05 

High 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.27.24304961doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.27.24304961
http://creativecommons.org/licenses/by/4.0/


12 
 

Adulthood 
adiposity 

The genetic variants strongly associated* with adulthood 
adiposity and exclude SNPs associated with childhood adiposity 

at P ≤ 0.05 

High 

* Strongly associated refers to associated at genome wide significance (P≤ 5×10-8) 
** Genetic variants strongly associated with childhood/adulthood adiposity at genome wide significance and not 
adulthood/childhood adiposity (exclude child SNPs at P ≤ 0.05) were counted. We then divided 0.05 by this 
number to generate the Bonferroni corrected P value.  
 

Mendelian randomization using structural mean modelling  

 

In this study, we used individual-level data to perform MR using SMMs. We interpret results 

obtained as period effects. The estimation of a point effect is implausible in this context as it 

assumes any genetic variants would only be associated with adiposity at a single point in the 

lifecourse only. In addition, a lifetime effect would assume the genetic variant-exposure 

relationship was the same across the lifetime, however, previous work has shown the 

specificity of genetic variants associated with adiposity to specific periods in the lifecourse (19).  

 

To highlight results obtained in most “standard” MR analyses we first employed a SMM 

technique in a univariable framework using the genetic variants strongly associated with 

childhood adiposity around age 10 (P≤ 5×10-8), regardless of their association with adulthood 

adiposity and the full set of genetic variants strongly associated with adulthood adiposity 

around 57, regardless of their association with childhood adiposity.  

 

Next, we used the genetic variants strongly associated with childhood adiposity (P≤ 5×10-8), 

excluding SNPs strongly associated with adulthood adiposity at P ≤ 5×10-8, to estimate the 

effects of childhood adiposity for a period that started in childhood and ended at some point 

between 10 and 57 years. We used the genetic variants strongly associated with adulthood 

adiposity (P≤ 5×10-8), excluding SNPs associated with childhood adiposity at P ≤ 5×10-8, to 

estimate the effects of adulthood adiposity for a period that started at some point between 10 

and 57 years up to the point the outcome is measured. This is attempting to estimate a 

childhood period effect without the effect of adulthood adiposity and an adult period effect 

without the effect of childhood adiposity. Definition of these periods is imprecise as the 

instruments and our understanding of their relationship to the phenotypic information 

available is limited.   
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To further explore the impact of instrument selection when estimating period effects as 

described above, we applied the other SNP association thresholds outlined in Table 1 and ran 

models with the PRS generated from each of these, in turn. 

 

We additionally applied SMMs in a multivariable framework to calculate the effects of 

childhood adiposity and adulthood adiposity, simultaneously, on CVD, T2D and breast cancer, 

controlling for either adulthood adiposity or childhood adiposity, respectively. This approach 

estimates the controlled period effect of an exposure at a specific period by controlling for the 

exposure at a period not considered the main exposure period at a given value.  The MR 

analyses conducted and their interpretation, along with the closest equivalent IVW estimator, 

are summarised in Table 2.  
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Table 2. Presentation of the constituent components of structural mean modelling (SMM) Mendelian randomization (MR), with the comparative 

interpretations and assumptions made when using inverse variance weighted (IVW) MR.  

 

SMM/IVW 
Effect 

Alternative 
MR estimator 

Exposure 
Variables 

controlled for 

Methodological 
assumptions being made 

using SMM-MR  

Interpretation of the 
estimand (under 

assumptions) identified 
using SMM-MR  

Methodological 
assumptions being made 

using IVW-MR 

Interpretation of the 
estimand (under 

assumptions) identified 
using IVW-MR 

Point Univariable 
MR 

Body size at a 
specific time 

point 
-- 

Genetic variants strongly 
associated with body size 

at a specific time point 
that do not have an effect 

through any other time 
point.  

The effect of body size at 
one specific time point on 

the outcome 
--* --* 

Period (varies 
depending on 
different SNP 
association 
stringency 

thresholds) / 
Total period 

Univariable 
MR 

Childhood 
body size -- 

Genetic variants strongly 
associated with childhood 
body size do not have an 
effect through another 

time period, such as 
adulthood body size.  

The effect of childhood 
body size around the period 

childhood body size was 
measured, independent of 

other time periods  

Genetic variants strongly 
associated with childhood 

body size may have an 
effect through another 

time period, such as 
adulthood body size. 
Genetic variants have 

different effects at 
different time periods 

The effect of liability to 
childhood body size at 

around the age childhood 
body size was measured 

Period (varies 
depending on 
different SNP 
association 
stringency 

thresholds) / 
Total period 

Univariable 
MR 

Adulthood 
body size -- 

Genetic variants strongly 
associated with adulthood 
body size do not have an 
effect through another 

time period, such as 
childhood body size.  

The effect of adulthood 
body size around the period 

adulthood body size was 
measured, independent of 

other time periods 

Genetic variants strongly 
associated with adulthood 

body size may have an 
effect through another 

time period, such as 
childhood body size. 

Genetic variants have 
different effects at 

different time periods 

The effect of liability to 
adulthood body size at 

around the age adulthood 
body size was measured 
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SMM/IVW 
Effect 

Alternative 
MR estimator 

Exposure Variables 
controlled for 

Methodological 
assumptions being made 

using SMM-MR  

Interpretation of the 
estimand (under 

assumptions) identified 
using SMM-MR  

Methodological 
assumptions being made 

using IVW-MR 

Interpretation of the 
estimand (under 

assumptions) 
identified using IVW-

MR 

Controlled 
period 

Multivariable 
MR 

Childhood 
body size 

Adulthood body 
size 

Genetic variants have 
different effects at the 
different time periods 

considered. 

The controlled effect of 
childhood body size 
including pathways 

comprising body size 
measures from different 

timeframes in the 
lifecourse, controlled for 
body size measures from 

other time periods included 

Genetic variants have 
different effects at 

different time periods 

The controlled period 
effect of liability to 
childhood body size 
including pathways 

comprising body size 
measures from different 

timeframes in the 
lifecourse, controlled 

for body size measures 
from other time periods 

included 

Controlled 
period 

Multivariable 
MR 

Adulthood 
body size 

Childhood body 
size 

Genetic variants have 
different effects at the 
different time periods 

considered 

The controlled effect of 
adulthood body size 
including pathways 

comprising body size 
measures from different 

timeframes in the 
lifecourse, controlled for 

considered body size 
measures from other time 

periods 

Genetic variants have 
different effects at 

different time periods 

The controlled period 
effect of liability to 

adulthood body size 
including pathways 

comprising body size 
measures from different 

timeframes in the 
lifecourse, controlled 

for considered body size 
measures from other 

time periods 

Lifetime Univariable 
MR Body size -- 

Relationship between 
genetic variants and body 
size are constant for body 

size over the lifecourse 

The effect of body size over 
the entire lifecourse on an 

outcome 
-- 

The effect of liability to 
body size over the 

entire lifecourse on an 
outcome 

 

*Estimation of the point effect IVW-MR is technically plausible; however, I do not recommend this. Assumptions and interpretation would be the same as with SMM-
MR. IVW: Inverse variance weighted; MR: Mendelian randomisation; SNP: Single-nucleotide polymorphism.
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Genome-wide Association Studies (GWAS) 

 

We used BOLT-LMM to assess the association between genetic variants across the human 

genome on the three outcomes of interest: CVD, T2D and breast cancer. The results from these 

GWAS were used to run the IVW-MR analyses (59, 60). BOLT-LMM applies a Bayesian linear 

mixed model to estimate the association between each genetic variant and each of the 

outcome measures, while accounting for both relatedness and population stratification. We 

added age at baseline, sex, and type of genotyping array as covariates in the model.  

 

Mendelian randomization using inverse variance weighting  

 

We employed the inverse variance weighted method (IVW) to conduct further MR analyses 

(61). IVW takes SNP-outcome estimates and regresses them on the SNP-exposure associations 

(62). We ran IVW-MR on outcomes from two sets of data sources. First, we used the GWAS 

generated from UK Biobank data to compare against the MR analyses using SMMs. Second, we 

used the GWAS obtained from large scale consortia, which did not include data from the UK 

Biobank (55-57) used in a previous study (19), to assess how using overlapping outcome data 

may have affected our results.  

 

For each of the sets of IVW analyses, we estimated the ‘total’ period effect estimates between 

genetically predicted childhood and adulthood adiposity separately with each of the disease 

outcomes of interest in a univariable framework. We then ran MVMR analyses to estimate the 

controlled period effect of childhood adiposity on each outcome in turn, controlling for adult 

adiposity, as well as the effect of adult adiposity on each outcome, controlling for childhood 

adiposity.  

 

The IVW-MR analyses were conducted using the TwoSampleMR R package (63). Plots in this 

paper were generated using the R package ‘ggplot2’ (64). These analyses were undertaken 

using R (version 3.5.1).  
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Results 

 

Univariable SMM-MR analyses indicated evidence of an effect of higher childhood adiposity 

(regardless of SNP association with adulthood adiposity) on increased CVD and T2D risk 

(estimated change in the effects of the probability of the outcome for a unit change in adiposity 

i.e., risk difference (RD)), 95% CI: 0.021, 0.013 to 0.029 and 0.049, 0.043 to 0.054, respectively) 

as well as of higher adult adiposity on increased risk of CVD and T2D (RD, 95% CI: 0.062, 0.056 

to 0.068 and 0.107, 0.101 to 0.113, respectively) (Figure 4 Supplementary 2A and 2B).There 

was very little evidence indicating period effects of higher childhood adiposity (excluding SNPs 

associated with adulthood adiposity at P≤5x10-8) on increased CVD risk and some evidence on 

the risk of T2D (RD, 95% CI: 0.004, -0.008 to 0.016 and 0.018, 0.008 to 0.028, respectively). 

There was strong evidence of a period effect of higher adult adiposity (excluding SNPs 

associated with childhood adiposity at P ≤5x10-8) on increased CVD and T2D risk (RD, 95% CI: 

0.067, 0.059 to 0.075 and 0.109, 0.103 to 0.115, respectively).  

 

SMM-MVMR analyses showed a period effect of higher childhood adiposity on reduced CVD 

and T2D risk, after controlling for adult adiposity (RD, 95% CI: -0.024, -0.034 to -0.014, 

and -0.024, -0.032 to -0.016, respectively). There was a period effect of higher adult adiposity 

on the CVD and T2D risk in later life, after controlling for childhood adiposity (RD, 95% CI: 0.074, 

0.066 to 0.082 and 0.118, 0.110 to 0.126, respectively).  

 

Univariable SMM-MR analyses indicated evidence of an effect of higher childhood adiposity 

(regardless of SNP association with adulthood adiposity) on reduced risk of breast cancer (RD, 

95% CI: -0.032, -0.042 to -0.022) (Figure 4, Supplementary 2C). There was evidence of a period 

effect of higher childhood adiposity (excluding SNPs associated with adulthood adiposity at 

P≤5x10-8) on reduced breast cancer risk (RD, 95% CI: -0.029, -0.043 to -0.015). There was very 

little evidence of a period effect of higher adult adiposity (excluding SNPs associated with 

childhood adiposity at P≤5x10-8) on breast cancer (RD, 95% CI: 0.006, -0.004 to 0.016). SMM-

MVMR analyses also showed evidence that higher childhood adiposity reduced the risk of 

breast cancer, after controlling for adult adiposity (RD, 95% CI: -0.040, -0.054 to -0.026) and 

that higher adult adiposity slightly increased the risk of breast cancer in later life, controlling 

for childhood adiposity (RD, 95% CI: 0.013, 0.001 to 0.025).  
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Figure 4. Causal risk difference estimates from univariable and multivariable MR using 

structural mean models (SMMs) for childhood and adulthood adiposity period effects on the 

outcome measures listed. Associated SNPs refers to strongly associated at genome wide 

significance (P≤ 5×10-8).  

 

When using different SNP association stringency thresholds with the exposures to estimate 

period effects, univariable SMM-MR analyses indicated consistently strong evidence that 

higher adulthood adiposity increased risk of CVD (Figure 5A, Supplementary Table 2A) and T2D 

(Figure 5B, Supplementary Table 2B). When we increase instrument stringency and reduce the 

number of SNPs associated with adult adiposity, we see very little evidence of an effect of 

childhood adiposity on CVD. We see some evidence of an effect remaining in the set of SNPs 
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with the lowest stringency rating (exclusion threshold of adulthood adiposity SNPs at P≤5x10-

8) on T2D.  

 

These analyses additionally indicated consistently strong evidence that higher childhood 

adiposity reduced the risk of breast cancer (Figure 5C, Supplementary Table 2C). A protective 

effect of adulthood adiposity was observed when including all SNPs regardless of association 

with childhood adiposity. However, when using a more stringent threshold for excluding 

childhood adiposity SNPs the observed protective effect of adulthood adiposity on breast 

cancer diminished or reversed direction.  

 

The IVW univariable and MVMR analyses using the outcomes generated from UK Biobank data, 

produced results indicating very similar trends (though generally slightly weaker) to those using 

the SMM approach, employing the same dataset (Figure 5A-C, Supplementary Table 3A-C) The 

IVW univariable and MVMR analyses using the outcomes generated from the large-scale 

consortia indicated the same directions of effect to those using the SMM approach 

(Supplementary Table 4A-C, Supplementary Figure 5A-C), though with much larger effects and 

confidence intervals. This may be a result of Winner’s curse since there is overlap between the 

discovery sample and the dataset used in the core analysis (42). We found evidence that an 

increase in liability to adulthood adiposity increased the risk of breast cancer (Figure 5C, 

Supplementary Table 3C) when using UK Biobank data. We found very little evidence of an 

effect of adulthood adiposity on breast cancer when using the large scale meta-analysed 

outcome consortia data (Supplementary Table 4C, Supplementary Figure 5C).  
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Figure 5. Causal risk difference estimates from univariable and multivariable MR using 

structural mean models (SMMs) and inverse variance weighted models (IVW) for childhood and 

adult adiposity and liability to childhood and adult adiposity, respectively, on the outcome 

measures listed. (A) Childhood and adult adiposity period effects on cardiovascular disease 

(CVD). (B) Childhood and adult adiposity period effects on Type 2 diabetes (T2D). (C) Childhood 

and adult adiposity period effects on breast cancer. Associated SNPs refers to strongly 

associated at genome wide significance (P≤ 5×10-8).  

 

Discussion 

 

In this investigation, we apply MR to lifecourse epidemiology using SMM and IVW approaches 

with a time-varying exposure. SMM-MR and IVW-MR target different causal estimands and key 

differences between these methods are their underlying assumptions and resulting 

interpretations of findings. In the context of this study, SMM-MR computed the effect of 

C 
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increasing adiposity by one unit of measurement and IVW-MR, the effect of an increase in one 

unit of liability to adiposity. For SMM-MR, each component of the time-varying exposure 

outside of the period considered must be unaffected by the instrument or affect the outcome 

only by affecting exposures during the time period under consideration. For IVW-MR, the 

genetically predicted effect of increasing the exposure by a unit of liability at one time period 

will include genetic effects on the exposure at other time periods if the exposure in those 

periods has an effect on the outcome.   

 

Time-varying confounding occurs when earlier measures of the exposure causally affect later 

confounders. This confounding creates a feedback loop over time between the exposure and 

the confounder as later values of the exposure will become affected by the confounder.  When 

conducting MR to answer lifecourse research questions, these feedback loops are part of the 

causal pathway being estimated, as they are part of the effect of that exposure on the 

outcome. We have assumed throughout that there is no time-varying confounding. We have 

also assumed all models are linear and that there are no interactions between the exposure at 

different time periods. 

 

We ran analyses to estimate several period effects of adiposity on CVD, T2D and breast cancer. 

First, we evaluated the period effects of childhood and adult adiposity around the age of 10 

and 57 years, respectively, using genetic variants strongly associated with adiposity at each 

period, regardless of their association with adiposity at the alternate period. We evaluated 

more stringently instrumented period effects of childhood (starting in childhood and ending at 

some point between 10 and 57 years) and adult (starting at some point between 10 and 57 

years up to 57 years) adiposity. Then, we evaluated the controlled period effects of childhood 

and adult adiposity, controlling for either adult adiposity or childhood adiposity, respectively.  

 

Overall, we identified persistent period effects of higher adulthood adiposity on increased risk 

of CVD and T2D. When instruments used more stringent SNP-association thresholds, childhood 

adiposity showed almost no effect on CVD and T2D. In addition, higher childhood adiposity had 

a protective effect on breast cancer. Higher childhood body size has been shown to be 

protective against breast cancer previously (363). Conversely, more stringently instrumented 
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period as well as controlled period effects indicated that higher adulthood adiposity may 

increase breast cancer risk. 

 

Our results highlight the importance of considering the potential association of the genetic 

variants with other time periods when estimating period effects in a SMM setting. For example, 

when we increased the stringency for SNP inclusion in childhood instruments, we see very little 

evidence of an effect of childhood adiposity on T2D. However, we see evidence of an increased 

total period effect and period effect in the set of SNPs strongly associated with childhood 

adiposity and not adulthood adiposity at P ≤ 5×10-8. This shows that SNPs being used to 

instrument adiposity at a specific period might still influence adiposity at the alternate period, 

just at a lower significance level resulting in them not being filtered out. Importantly, since we 

only have the two time periods measured in this analysis, we are not able to determine 

whether SNPs would associate with other time periods, outside of those measured.  

 

As discussed previously, childhood adiposity has a causal influence on adulthood adiposity (38). 

By imposing a SNP selection process to conduct the SMM method we are generating and using 

a non-representative sample of childhood or adulthood adiposity associated SNPs. Since 

adiposity is a heterogeneous phenotype, SNPs associated with childhood and not adult 

adiposity or contrariwise may be targeting different causal pathways that vary in importance 

depending on the lifecourse (39) which may lead to deviations from the gene-environment 

equivalence assumption in MR (40). Therefore, any selection applied to SNPs for estimation of 

period effects should only be considered with caution.  

 

The interpretation of a lifetime effect (which uses non-selected SNPs) aligns with the 

interpretation of a total effect often adopted when using IVW-MR.  However, we are not able 

to disentangle whether earlier periods affect the outcome directly, through later periods, or if 

all the effect seen is due to the influence of the genetic variants used on the later periods. 

Equally, it is not possible to tell whether later periods affect the outcome directly, or if all the 

effect seen is due to the confounding influence of the earlier periods on the later period and 

the outcome. To allow estimation of period-specific effects under specified assumptions, we 

can also use a SMM- or IVW-MVMR approach, to estimate the controlled period effect of each 

exposure on the outcome controlled for all the other exposures included in the estimation. 
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The estimated results from this method will, however, still include the effects of other periods 

that are not included in the estimation if they are influenced by the genetic variants used to 

instrument the included periods. When researchers use genetic instruments that are not 

specific to a time period, which is commonplace in MR analyses, they are implicitly targeting a 

lifetime effect of liability to a unit higher level of the exposure at the time it was measured (20). 

 

The IVW-MVMR results generated from largescale consortia indicated very little evidence of a 

controlled effect of adult adiposity on breast cancer (19). The risk increasing effect we 

observed could be due to higher adulthood adiposity influencing onset and survival from breast 

cancer differently in the UK Biobank cohort study compared to the case-control studies used 

in producing the largescale outcome data. Differences in these effects may also be partially 

due to a “healthy volunteer” selection bias. The UK Biobank is not representative of the 

sampling population - participants are a sample of volunteers with healthier lifestyles, higher 

levels of education and better health than the general UK population (43, 44). If participation 

in the UK Biobank is a consequence of either our exposure or outcome then a key MR condition 

(exchangeability) is violated, inducing an association between genetic instruments and 

unmeasured confounders of the exposure–outcome relationship (44). Another reason for 

inconsistencies could be weak instrument bias. This may push a null effect to be non-null, as 

seen in the effect between adulthood adiposity and breast cancer risk (45). In addition, when 

exposure and outcome effects are estimated in a single (i.e. fully overlapping) sample, as they 

were for our analyses, bias will be in the direction of the (confounded) observational 

association (46). 

 

Shi et al. propose two key advantages of SMMs compared to IVW-MR (27). The first is that 

SMMs can be naturally extended to many settings, including accommodating failure-time 

outcomes and estimating effects on the multiplicative scale. The second is that SMMs are 

semiparametric. They therefore avoid some 2SLS parametric assumptions. In addition, Shi et 

al. claim that SMMs are more robust to model misspecification for binary outcomes (27). There 

is no meaningful difference between results obtained using SMM and 2SLS MR in relatively 

simple models such as the one we have used, however, situations in which SMMs may provide 

more reliable estimates for MR, specifically when addressing lifecourse questions, should be 

explored in future work.  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.27.24304961doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.27.24304961
http://creativecommons.org/licenses/by/4.0/


24 
 

 

Comprehensively understanding the interpretation of results after employing these methods 

is of key public health importance. For instance, when considering the potential differences in 

mediating pathways from one period (i.e., childhood adiposity) and not another (i.e., 

adulthood adiposity) we might hypothesise that prepubertal childhood and adult adiposity 

could be distinct phenotypes; an insight gained through conducting these approaches. This 

helps us to further unpick pathways associated with disease risk. For example, there are long 

run effects of childhood adiposity on physical development shown though mammographic 

density being a strong mediator for the protective effects of childhood adiposity on breast 

cancer (47).  

 

Conclusion 

 

This study emphasises the importance of underlying methodological assumptions in the 

application of MR to lifecourse research questions and explores how output from analytical 

frameworks that rely on different conditions should be interpreted. It additionally highlights 

the careful consideration required for instrument selection when running lifecourse MR 

methods. We do not advocate for a particular strategy but encourage practitioners to 

thoroughly think through their research question, instrumental variable selection, model 

conditions and data availability before pursuing a particular MR approach within a lifecourse 

setting. 
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