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Abstract  

This paper presents an open dataset of over 50 hours of near infrared 

spectroscopy (NIRS) recordings. Fifteen stroke patients completed a total of 237 

motor imagery brain–computer interface (BCI) sessions. The BCI was controlled 

by imagined hand movements; visual feedback was presented based on the real–

time data classification results. We provide the experimental records, patient 

demographic profiles, clinical scores (including ARAT and Fugl–Meyer), online 

BCI performance, and a simple analysis of hemodynamic response. We assume 

that this dataset can be useful for evaluating the effectiveness of various near–

infrared spectroscopy signal processing and analysis techniques in patients with 

cerebrovascular accidents. 

Background & Summary 

Brain–computer interfaces (BCIs) provide a technological solution to 

convert data on the brain electrical or metabolic activity into control signals for an 

external device. BCIs can be used to provide feedback during motor imagery 

training (i.e. ideomotor training), which is one of the methods for motor 

rehabilitation after stroke [1,2]. Between 2019 and 2023, at least 11 systematic 

reviews were published, 8 of which included meta–analyses, demonstrating the 

efficacy of post–stroke BCI training [3–13]. It is important to note that there is a 

target group of patients for BCI training: those with severe paresis in the early 

stages after a stroke who are unable to partake in traditional physical therapy [2]. 

BCI technology that registers the electroencephalographic (EEG) signal 
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accompanying the motor imagery process is the most studied for clinical 

application. However, EEG–BCI might not  be practical for routine clinical use, 

due to high sensitivity to motion, muscle, and eye movement induced artifacts and 

requirement to apply conductive gels or solutions. 

Near––infrared spectroscopy (NIRS) is a method of optical brain imaging 

that records changes in hemodynamics at a depth of up to 4 cm from the scalp. 

Near––infrared light (760 nm – 850 nm) is emitted through the subject’s skull, 

while the local changes in intensity of light absorption and scattering are recorded 

by a detector. The measured light intensity can be converted into estimations of 

cerebral total hemoglobin (HbT) and differentiated into its factions: oxygenated 

(HbO) and deoxygenated (HbR) hemoglobin [14]. Being much more expensive 

than EEG, NIRS is more convenient for practical use in a BCI circuit. It does not 

require electrode gel and is less sensitive to artifacts from patient movements. In 

addition, brain activity classification can rely on several simultaneously measured 

quantities, including oxy––, deoxy––, and total hemoglobin concentrations. Only a 

few articles have been published on the use of NIRS––BCI after stroke [15–17].  

Due to the limited availability of NIRS technology, open access labeled 

NIRS datasets are highly valuable for rehabilitation BCI developers, particularly 

for validating machine learning and artificial intelligence algorithms for classifying 

brain signals. Currently, there are several available open access NIRS [18,19] or 

NIRS+EEG [20,21] datasets collected from 24––30 healthy subjects and 

containing 1––3 recordings from each participant. Data from stroke patients may 
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differ due to the brain damage, potential changes in cognitive and 

neuropsychological functions, and older age.  

To the best of our knowledge, this is the first open access dataset containing 

NIRS recordings from stroke patients. The dataset comprises 15 participants, 237 

individual motor imagery BCI sessions utilizing three different mental tasks, over 

50 hours of NIRS recordings, and 5296 trials. Each patient completed 7–24 online 

BCI training sessions. On average, the dataset includes 353 trials and 3.3 hours of 

NIRS recording data per participant.  

We believe the data recorded from real stroke patients in multiple BCI 

sessions will be of particular interest to teams designing NIRS BCI systems for 

stroke rehabilitation and groups studying brain activity corresponding to motor 

imagery. The number of sessions is typical for a single hospitalization and allows 

to estimate how well cross––session transfer learning algorithms would work in 

real practice. The recordings from various patients could be utilized to develop and 

evaluate algorithms for cross–subject classification of hemodynamic activity 

related to motor imagery. Furthermore, the data could aid in studying the patients’ 

hemodynamic response to motor imagery and the response changes throughout the 

whole rehabilitation course. 
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Materials and Methods 

Participants 

This study included fifteen patients admitted to the post–stroke rehabilitation 

department: 9 males and 6 females, all right–handed, 58.8 [49.4; 70.0] years old 

(median, 25% and 75% quartiles); time since stroke onset was 7.0 [2.0; 10.0] 

months; all patients had one–sided cortical lesions, 8 in the left and 7 in the right 

hemisphere; the upper extremity Fugl–Meyer Assessment (UE–FMA) score at 

baseline was 47,0 [35,0; 54,0]; the Action Research Arm Test (ARAT) score at 

baseline was 35.0 [10.0; 44.0]. For more details refer to the Supplementary 

Information (see Table 1). All participants were informed about the experimental 

procedure and gave written consent prior to the experiment. This study was 

conducted according to the Helsinki declaration and was approved by the Local 

Ethics Committee of the Research Center of Neurology (approval number: No. 5–

4/22 dated June 1, 2022). The patients’ data were anonymized and depersonalized 

according to the local laws. 
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Table 1. Subjects characteristics and classification accuracy. 

Patient 

ID Sex 

Age 

range

, y.o. 

Stroke 

time, 

months 

Stroke side 

(hemisphere

) 

ARAT 

score 

FMA-

UE 

score 

Motor imagery 

paradigm based on the 

ARAT's task 

BCI 

training 

days 

BCI 

Sessions 

Each 

session 

duration, 

min 

Total BCI 

exposition, 

min 

Median 

classification 

recall 

Maximal 

classificati

on recall 

1 m 46-50 1 right 35 58 

Pinching 6 mm ball with 

ring finger and thumb 10 10 9.10 91 0.45 0.56 

2 m 71-75 10 left 44 47 

Pinching 6 mm ball with 

ring finger and thumb 7 7 9.10 64 0.66 0.77 

3 m 56-60 8 right 35 54 

Pinching 6 mm ball with 

ring finger and thumb 9 9 9.10 82 0.45 0.56 

4 m 56-60 10 left 39 52 

Pinching 6 mm ball with 

index finger and thumb 9 9 9.10 82 0.39 0.53 

5 f 41-45 1 left 52 62 

Pinching 1.5 sm ball with 

ring finger and thumb 10 10 9.10 91 0.49 0.65 

6 m 66-70 9 left 1 11 Grasping Block 10 sm 10 17 

9.10 or 

13.63 214 0.62 0.71 

7 m 56-60 2 right 49 52 

Pinching 6 mm ball with 

ring finger and thumb 9 18 13.63 245 0.45 0.60 

8 f 56-60 1 left 38 45 

Pinching 6 mm ball with 

ring finger and thumb 15 18 13.63 245 0.63 0.74 

9 m 76-80 19 left 42 57 

Pinching 6 mm ball with 

ring finger and thumb 8 10 13.63 136 0.50 0.56 

10 f 56-60 96 left 10 37 Grasping Block 7.5 sm 8 16 13.63 218 0.45 0.67 

11 m 66-70 5 right 6 31 Grasping Block 10 sm 12 24 13.63 327 0.43 0.66 

12 f 46-50 6 left 24 35 

Pinching 1.5 cm ball 

with ring finger and 

thumb 12 24 13.63 327 0.59 0.73 

13 m 66-70 7 right 46 54 

Grasping stone 10*2.5*1 

sm 12 23 13.63 314 0.46 0.66 

14 f 66-70 7 right 4 26 

Pinching 6 mm ball with 

ring finger and thumb 12 24 13.63 327 0.61 0.74 

15 f 31-35 2 right 19 45 

Gripping tube 2.25*10 

sm 10 18 13.63 245 0.36 0.44 
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Experimental paradigm 

The physical therapist individually selected the movement type for imaging 

for each patient. The selected movement was the most challenging among those 

included in the ARAT test (refer to Table 1). Prior to each training session, the 

physical therapist asked the patient to perform or attempt the target movement 

several times until they confirmed their readiness to mentally reproduce this 

movement – this is known as the priming step. If the target movement involved 

manipulating any ARAT subject (e.g. ball, wood block, or tube), it was provided to 

the patient during priming. 

The patient, wearing a NIRS cap, sat in an armchair in front of a computer 

monitor with their hands resting on the armrests or the table. The screen displayed 

a black background with a fixation circle and three gray arrows in the center. The 

arrows corresponded to the tasks the patient was instructed to perform: the upper 

arrow indicated relaxation, while the left and right arrows corresponded to 

imagined movement of patient`s left and right hand, respectively. Changing the 

arrow color to blue served as a cue to prepare and changing the arrow color to 

green signaled to start performing the corresponding task. Correct classification 

was indicated by a green and enlarged circle, while an incorrect classification was 

indicated by a smaller circle. No feedback was provided when the patient had to 

relax or prepare. Figure 1 shows a typical session structure (Figure 1). 
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Figure 1. Typical session structure. 

One experimental day with one patient consisted of one or two sessions. The 

study lasted from 7 to 15 days, with each patient participating in 7 to 24 sessions, 

totaling 237 sessions. A session comprised of 4 or 6 blocks and lasted 9 or 14 

minutes. Each block included 4 trials: 2 right–hand movement imagining and 2 

left–hand movement imagining, presented randomly. A single trial consisted of a 

17–second relaxation phase followed by a 17–second movement imagery phase. 

During each phase, participants were given 2 seconds to prepare and 15 seconds to 

perform the corresponding task. Both movement imagery and relaxation were 

classified with overlapping epochs of 1 second and an epoch shift of 250 

milliseconds. During the movement imagery, the feedback was updated based on 

the classification results. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.27.24304842doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.27.24304842
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

Data Acquisition 

The data were acquired using a NIRScout (NIRx Medizintechnik GmbH, 

Berlin, Germany) with 8 detectors and 16 light sources at wavelengths of 760 and 

850 nm. The sampling rate was 15.6 Hz. Fourteen sources and eight detectors were 

placed at a distance of about 3 cm from each other above the motor areas. Figure 2 

shows the locations of all sources, detectors, and channels. The sources were 

positioned at F3, FC5, FC1, C3, CP5, CP1, P3, F4, FC2, FC6, C4, CP2, CP6, P4. 

The detectors were positioned at FC3, C5, C1, CP3, FC4, C2, C6, CP4. A total of 

28 source–detector pairs were chosen to create the NIRS channels that were 

recorded. 
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Figure 2. Positions of all sources, detectors, and channels. Red and green circles indicate 

the sources and the detectors respectively, purple lines indicate the channels. 

Online Data Processing 

MATLAB R2019b (MathWorks, Natick, USA) was used for all data 

processing. The raw NIRS data were converted to oxy– and deoxyhemoglobin 

relative concentrations (HbO and HbR, respectively) using the modified Beer–

Lambert law. The classification was performed in two steps: first, the classifier 
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determined whether the epoch was related to relaxation or motor imagery. Next, if 

motor imagery was recognized, the classifier determined which hand movement 

was imagined. For the first classification step, the data were band–pass filtered 

(2nd order Chebyshev filter) with 0.022 Hz and 0.039 Hz cutoff frequencies. These 

frequencies were chosen to eliminate slow, high–amplitude signal trends and 

minimize phase shifts on the fundamental frequency (1/34 = 0.029 Hz) [22]. 

Shrinkage regularization was used to avoid the adverse effects of multicollinearity. 

For the second classification step, the data were high–pass filtered (1st order 

Chebyshev filter) with 0.005 Hz cutoff frequency. Filtered relative concentrations 

(HbO and HbR) were chosen as features. Linear discriminant analysis was used to 

classify the data in both steps. The training sample consisted of all previous blocks 

from the current and past sessions of the patient.  

Data Records 

The data were presented in MATLAB format. Each filename includes 

subject ID, day and session number. The file contains a tabulated configuration of 

the channels (source–detector pairs in the 10–10 system), the raw light intensity 

data for each channel on both wavelengths, HbO and HbR concentrations in 

mmol/l, labels of mental tasks for each time point, and a confusion matrix of online 

classification.  
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Technical Validation 

The grand median recall for online classification of all subjects was 46.0 

[44.7; 60.3]%. All subjects exceeded the random classification level. Classification 

performance varied significantly between patients and between sessions for most 

subjects (Figure 3).  

 

Figure 3. Online classification performance of all subjects. Dots indicate sessions, red 

lines indicate medians for each subject, boxes indicate 25% and 75% quartiles, dash line 

indicates random chance level. 

The median within–subject range of session recall was 29.5 [18.6; 31.8]%. 

To plot the responses during left or right imaging, the data were zero phase band–

pass filtered (4nd order Chebyshev filter) with 0.005 Hz and 0.09 Hz cutoff 

frequencies, and each response was baselined by subtracting the average value of 

the last 10 seconds before the task began. Averaging HbO and HbR responses 

separately for patients with left– and right–lesioned hemisphere shows that the 
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response is present to the imaging of both hands in both hemispheres (Figure 4). At 

the same time, the response is similar for the imaging of both the paretic and intact 

hand in the intact hemisphere. However, there is an asymmetry of the response in 

the affected hemisphere, with a greater response to the imaging of the paretic hand. 

We suppose this asymmetry of hemodynamic response is due to a greater 

interhemispheric inhibitory drive from the intact hemisphere to the lesioned one 

[23,24].  

 

Figure 4. Hemodynamic responses during rest and imaging states at channels 6 and 7 

from the left hemisphere and symmetric channels 20 and 22 from the right hemisphere for 

patients with left– and right–side strokes. The blue and red lines indicate left– and right–hand 

imaging. Semi–transparent areas show standard error and blue vertical line indicates movement 

imaging start. 
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Usage Notes 

The dataset is freely available at the Research Center of Neurology server at 

https://neurology.ru/dataset_nirs.rar.   

This dataset is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives (CC BY-NC-ND).  

One of the main disadvantages of the dataset is its unbalanced design (4 or 6 

blocks per session and a different number of sessions for patients). Unfortunately, 

this is how real rehabilitation procedures look like: for various reasons patients 

stop participating in the experiment. If one wants to analyze balanced data, one can 

simply discard the extra blocks and sessions, the experiment design allows this to 

be done. 

Funding  

The study was conducted by M.R. Isaev, O.A. Mokienko and P.D. Bobrov 

on state assignment by the Ministry of Science and Higher Education of the 

Russian Federation for the Institute of Higher Nervous Activity and 

Neurophysiology of RAS. The study was conducted by R.Kh. Lyukmanov, E.S. 

Ikonnikova, A.N. Cherkasova, N.A. Suponeva and M.A. Piradov on state 

assignment by the Ministry of Science and Higher Education of the Russian 

Federation for the Research Center of Neurology.  

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.27.24304842doi: medRxiv preprint 

https://neurology.ru/dataset_nirs.rar
https://doi.org/10.1101/2024.03.27.24304842
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

Author contributions 

M.R.I. — the BCI software development, the dataset preparation and 

technical validation, creating the illustrations, writing the manuscript draft 

O.A.M. — development of the data collection protocol, writing the 

manuscript draft 

R.Kh.L. — development of the study protocol and methods, subject 

screening 

E.S.I., A.N.Ch. — subject screening, conducting the BCI trainings 

N.A.S., P.M.A., P.D.B. — developing the methods for dataset preparation, 

justification of the study concept 

All authors participated in editing the draft of the manuscript and its final 

version approval. 

Competing interests 

The authors declare no competing interests. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.27.24304842doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.27.24304842
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

References 

[1] Sharma N., Pomeroy VM., Baron J–C. Motor imagery: a backdoor to the 

motor system after stroke? Stroke 2006; 37(7): 1941–52. Doi: 

10.1161/01.STR.0000226902.43357.fc. 

[2] Simon C., Bolton DAE., Kennedy NC., Soekadar SR., Ruddy KL. Challenges 

and Opportunities for the Future of Brain–Computer Interface in 

Neurorehabilitation. Front Neurosci 2021; 15: 699428. Doi: 

10.3389/fnins.2021.699428. 

[3] Carvalho R., Dias N., Cerqueira JJ. Brain–machine interface of upper limb 

recovery in stroke patients rehabilitation: A systematic review. Physiother Res 

Int 2019; 24(2): e1764. Doi: 10.1002/pri.1764. 

[4] Baniqued PDE., Stanyer EC., Awais M., Alazmani A., Jackson AE., Mon–

Williams MA., Mushtaq F., Holt RJ. Brain–computer interface robotics for 

hand rehabilitation after stroke: a systematic review. J Neuroeng Rehabil 

2021; 18(1): 15. Doi: 10.1186/s12984–021–00820–8. 

[5] Fu J., Chen S., Jia J. Sensorimotor Rhythm–Based Brain–Computer Interfaces 

for Motor Tasks Used in Hand Upper Extremity Rehabilitation after Stroke: A 

Systematic Review. Brain Sci 2022; 13(1). Doi: 10.3390/brainsci13010056. 

[6] Bai Z., Fong KNK., Zhang JJ., Chan J., Ting KH. Immediate and long–term 

effects of BCI–based rehabilitation of the upper extremity after stroke: a 

systematic review and meta–analysis. J Neuroeng Rehabil 2020; 17(1): 57. 

Doi: 10.1186/s12984–020–00686–2. 

[7] Kruse A., Suica Z., Taeymans J., Schuster–Amft C. Effect of brain–computer 

interface training based on non–invasive electroencephalography using motor 

imagery on functional recovery after stroke –  a systematic review and meta–

analysis. BMC Neurol 2020; 20(1): 385. Doi: 10.1186/s12883–020–01960–5. 

[8] Yang W., Zhang X., Li Z., Zhang Q., Xue C., Huai Y. The Effect of Brain–

Computer Interface Training on Rehabilitation of Upper Limb Dysfunction 

After Stroke: A Meta–Analysis of Randomized Controlled Trials. Front 

Neurosci 2021; 15: 766879. Doi: 10.3389/fnins.2021.766879. 

[9] Mansour S., Ang KK., Nair KPS., Phua KS., Arvaneh M. Efficacy of Brain–

Computer Interface and the Impact of Its Design Characteristics on Poststroke 

Upper–limb Rehabilitation: A Systematic Review and Meta–analysis of  

Randomized Controlled Trials. Clin EEG Neurosci 2022; 53(1): 79–90. Doi: 

10.1177/15500594211009065. 

[10] Peng Y., Wang J., Liu Z., Zhong L., Wen X., Wang P., Gong X., Liu H. The 

Application of Brain–Computer Interface in Upper Limb Dysfunction After 

Stroke: A Systematic Review and Meta–Analysis of Randomized Controlled 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.27.24304842doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.27.24304842
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

Trials. Front Hum Neurosci 2022; 16: 798883. Doi: 

10.3389/fnhum.2022.798883. 

[11] Nojima I., Sugata H., Takeuchi H., Mima T. Brain–Computer Interface 

Training Based on Brain Activity Can Induce Motor Recovery in Patients 

With Stroke: A Meta–Analysis. Neurorehabil Neural Repair 2022; 36(2): 83–

96. Doi: 10.1177/15459683211062895. 

[12] Xie Y–L., Yang Y–X., Jiang H., Duan X–Y., Gu L–J., Qing W., Zhang B., 

Wang Y–X. Brain–machine interface–based training for improving upper 

extremity function after stroke: A meta–analysis of randomized controlled 

trials. Front Neurosci 2022; 16: 949575. Doi: 10.3389/fnins.2022.949575. 

[13] Shou Y–Z., Wang X–H., Yang G–F. Verum versus Sham brain–computer 

interface on upper limb function recovery after stroke: A systematic review 

and meta–analysis of randomized controlled trials. Medicine (Baltimore) 

2023; 102(26): e34148. Doi: 10.1097/MD.0000000000034148. 

[14] Soekadar SR., Kohl SH., Mihara M., von Lühmann A. Optical brain imaging 

and its application to neurofeedback. Neuroimage Clin 2021; 30: 102577. Doi: 

10.1016/j.nicl.2021.102577. 

[15] Mihara M., Hattori N., Hatakenaka M., Yagura H., Kawano T., Hino T., Miyai 

I. Near–infrared spectroscopy–mediated neurofeedback enhances efficacy of 

motor imagery–based training in poststroke victims: a pilot study. Stroke 

2013; 44(4): 1091–8. Doi: 10.1161/STROKEAHA.111.674507. 

[16] Lyukmanov R.Kh., Isaev M.R., Mokienko O.A., Bobrov P.D., Ikonnikova 

E.S., Cherkasova A.N., Suponeva N.A Brain– computer interface using 

functional near–infrared spectroscopy for post–stroke motor rehabilitation: 

Case Series. Annals of Clinical and Experimental Neurology 2023; 17(4): 82–

8. Doi: https://doi.org/10.54101/ACEN.2023.4.10. 

[17] Lee Friesen C., Lawrence M., Ingram TGJ., Boe SG. Home–based portable 

fNIRS–derived cortical laterality correlates with impairment and function in 

chronic stroke. Front Hum Neurosci 2022; 16: 1023246. Doi: 

10.3389/fnhum.2022.1023246. 

[18] von Lühmann A., Li X., Gilmore N., Boas DA., Yücel MA. Open Access 

Multimodal fNIRS Resting State Dataset With and Without Synthetic 

Hemodynamic Responses. Front Neurosci 2020; 14: 579353. Doi: 

10.3389/fnins.2020.579353. 

[19] Bak S., Park J., Shin J., Jeong J. Open–Access fNIRS Dataset for 

Classification of Unilateral Finger– and Foot–Tapping. Electronics 2019; 

8(12). Doi: 10.3390/electronics8121486. 

[20] Shin J., von Lühmann A., Kim D–W., Mehnert J., Hwang H–J., Müller K–R. 

Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open 

access dataset. Scientific Data 2018; 5(1): 180003. Doi: 10.1038/sdata.2018.3. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.27.24304842doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.27.24304842
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

[21] Shin J., von Lühmann A., Blankertz B., Kim D–W., Jeong J., Hwang H–J., 

Müller K–R. Open Access Dataset for EEG+NIRS Single–Trial Classification. 

IEEE Transactions on Neural Systems and Rehabilitation Engineering 2017; 

25(10): 1735–45. Doi: 10.1109/TNSRE.2016.2628057. 

[22] Isaev MR., Bobrov PD. Effects of Selection of the Learning Set Formation 

Strategy and Filtration Method on the Effectiveness of a BCI Based on Near 

Infrared Spectrometry. Neuroscience and Behavioral Physiology 2023; 53(3): 

373–80. Doi: 10.1007/s11055–023–01436–2. 

[23] Bütefisch CM., Wessling M., Netz J., Seitz RJ., Hömberg V. Relationship 

between interhemispheric inhibition and motor cortex excitability in subacute 

stroke patients. Neurorehabil Neural Repair 2008; 22(1): 4–21. Doi: 

10.1177/1545968307301769. 

[24] Murase N., Duque J., Mazzocchio R., Cohen LG. Influence of 

interhemispheric interactions on motor function in chronic stroke. Ann Neurol 

2004; 55(3): 400–9. Doi: 10.1002/ana.10848. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.27.24304842doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.27.24304842
http://creativecommons.org/licenses/by-nc-nd/4.0/

