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Abstract

The reproduction number, the mean number of secondary cases infected
by each primary case, is a central metric in infectious disease epidemiology,
and played a key role in the COVID-19 pandemic response. This is because
it gives an indication of the effort required to control the disease. Beyond
the well-known basic reproduction number, there are two natural versions,
namely the control and effective reproduction numbers. As behaviour, pop-
ulation immunity and viral characteristics can change with time, these re-
production numbers can vary over time and in different regions.

Real world data can be complex, for example with daily variation in
numbers due to weekend surveillance biases as well as natural stochastic
noise. As such, in this work we consider a Generalised Additive Model to
smooth real data through the explicit incorporation of day-of-the-week ef-
fects, to provide a simple measure of the time-varying growth rate associated
with the data.

Converting the resulting spline into an estimator for both the control and
effective reproduction numbers requires assumptions on a model structure,
which we here assume to be a compartmental model. The reproduction
numbers calculated are based on both simulated and real world data, and
are compared with estimates from an already existing tool.

The derived method for estimating the time-varying reproduction num-
ber is effective, efficient and comparable to other methods. It provides a
useful alternative approach, which can be included as part of a toolbox of
models, that is particularly apt at smoothing out day-of-the-week effects in
surveillance.
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1 Background and introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the etiolog-
ical agent of the Coronavirus Disease 2019 (COVID-19). The infection was first
identified in China in late 2019, and only a few months later cases were found
all around the world and a global pandemic was declared [1]. Due to the high
transmission, rapid mutation and changing human behaviour, many countries and
regions have experienced multiple outbreaks: for instance, the United Kingdom
(UK) experienced a second wave in the winter of 2020 driven by Alpha variant;
the first case of the Delta variant in the UK was found in mid-April of 2021 [2]
and generated a new wave that summer; and in December 2021 the Omicron wave
began [3]. In such situations, a method for estimation of the transmission rate over
time is needed because time-varying factors influencing transmission will impact
the effectiveness of the mitigation deployed. Therefore, such estimates can inform
if stronger or weaker interventions may be required.

There are two commonly used indicators to assess the transmission impact of an
epidemic, namely growth rate and reproduction number. The former describes the
rate of change of the observed cases, which provides a statistical measure indicating
if the infectious disease risk is increasing (positive) or decreasing (negative) [4,
5]. A method using Bayesian modelling with Gaussian processes to estimate the
growth rate of SARS-CoV-2 in England has been developed [6]. Meanwhile, the
reproduction number can be a more useful metric for decision makers as it can
inform the extent of public interventions against the disease. For instance, if a
proposed intervention was to reduce the infection rate by a factor equalling the
reciprocal of reproduction number then this may be expected to be sufficient for
an effective mitigation. Hence, obtaining the real-time reproduction number is
also helpful to flexibly adjust the intervention policy [4].

The basic reproduction number is defined as the mean number of secondary
cases infected by a primary case in an otherwise wholly susceptible population.
For the simple compartmental SIR model it is defined as R0 = β/γ, where β is the
infection rate (a composite of the average number of contacts and the probability
of infection given a contact) and γ is the removal rate [7]. A systematic review
[8] has done a full-text assessment of 23 studies estimating the basic reproduc-
tion number of SARS-CoV-2 early in the pandemic, obtaining an overall mean of
3.38± 1.40, which is consistent with the challenges in controlling its rapid spread
[5]. The fact that such a range of different estimates exist is not surprising: R0 can
virtually never be measured directly, but rather needs to be estimated through the
use of a model, and different assumptions on model structure and parameter values
might lead to different estimates; R0 is not only a property of the virus, but also of
the population characteristics and mixing patterns, and so it might naturally vary
between different settings, geographical regions and populations; and finally, as it
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became evident during the COVID-19 pandemic, the intrinsic transmissibility of
the virus is also not immutable, as variants might evolve which are more efficient
at spreading and can outcompete the previous ones. Even when restricting to a
setting and time where it is reasonable to assume a single value of R0, individual
and societal behavioral responses may change when faced with a disease [9]. Fol-
lowing Pellis et al [4], the effective reproduction number RE(t) (often denoted by
Rt) describes the expected number of secondary infections under the current condi-
tions of population mixing, transmission and immunity. The control reproduction
number (or reproduction number excluding immunity), RC(t), describes the ex-
pected number of secondary infections under the current contact and transmission
patterns in an otherwise fully susceptible population [4]. The control and effective
reproduction numbers can vary with time and are context-specific so driven by the
data used in the inference.

Previous work has considered methods to estimate time varying reproduction
numbers. For example, before the COVID-19 pandemic studies modelled the re-
productive rate by multiplicative random walk and used in stochastic SIR model
to explore the Ebola outbreak [10]. Cori et al [11] give an approach to inferring the
effective reproduction number over time from case data and information of serial
interval (time difference of symptom onset between the infector and the infected
individual), and the corresponding R package EpiEstim [12] has made inference
of such a time-varying reproduction number accessible to wider user community.
Subsequent studies work out the distribution of time-varying reproduction num-
ber conditional on serial interval, and surmises the reasons why the reproduction
number is time-dependent, including but not necessarily disease control interven-
tions [13], and EpiEstim has been updated to account for imported cases in the
reproduction number estimation. Here we use R estimates from EpiEstim as a
comparator for the method developed in this study. However, measuring the serial
interval is not always straightforward, as evidenced for example by the variability
observable in a systematic review [14].

Whilst this work had begun in 2020 (arising from ideas posited in [5]), we
conducted a scoping literature search in December 2023 on PUBMED for recent
similar articles. Searching (“Time varying” AND “Reproduction Number”) yielded
236 returns. Exclusion on title, abstract and full text (not respiratory disease, no
explicit mention of time varying infection rate) gave 38 studies explicitly consider-
ing time varying reproduction number estimates. After a full read, we concluded
that the majority of studies (31) had been cited above, directly used EpiEstim (or
a variant of this method) or were applying alternative analyses based on renewal
equations [15]. The developers of EpiEstim have conducted a literature review of
recent applications [16]. In general these studies hinge on direct measurement of
either the generation time or serial interval.
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Another issue for modelling the SARS-CoV-2 outbreak is parametrisation of
the effectiveness of pandemic interventions, because natural and mandated human
behaviour change can influence disease transmission, so improper assumptions
for behaviour change in the epidemic modelling will yield biases [17]. Modelling
with a (semi-parametric) smoothing process can be an alternative option when
mechanistic assumptions are unclear or unknown. Two studies from the literature
search [18, 19] fuse deep learning techniques and Kalman filters, respectively, to
compartmental models.

A generalised additive model (GAM) [20, 21] is an established statistical tool
that can be applied on case data. In this study we propose a novel technique
for inferring the reproduction number using GAMs to derive growth rates and,
with structural assumptions on the mechanisms of transmission, to translate them
to reproduction number estimates. The remaining 5 studies from the literature
review have performed similar analyses. To infer a time-varying reproduction
number Hong and Li apply cubic B-splines with Poisson Noise [22], Gressani et
al extend this with a Negative Binomial noise model [23], whilst Eales et al use
Bayesian P-splines and verify the result by comparing it with a simple exponential
epidemic model [24]. Wood and Wit use adaptive smoothing splines [25] with
Negative Binomial noise with a highly structured model. Gleeson et al employs a
negative binomial noise term with a GAM using thin plate splines integrated with
a compartmental model [26]. This study in similar in concept to ours, though our
compartmental model has a different structure, as we are applying method to two
different datasets from care home surveillance, and using the mgcv package [27] we
can switch flexibly between splines (details below). Our approach also permits the
use of day-of-the-week terms in regression to account for structured surveillance
bias.

2 Materials and methods

Generalised additive models (GAMs) [28] have been used for rapid estimation of
the instantaneous growth rates in support of policy decisions in the United King-
dom [29, 5]. However, reproduction number estimates can offer an insight on the
amount of transmission that needs to be prevented to control spread, thus offering
additional context to the calculated growth rate, but requires additional structural
assumptions to be made. In this study new estimators of time-varying reproduc-
tion numbers are developed by combining GAMs (with time as the argument of the
smoothing function) and compartmental transmission models based on ordinary
differential equations.
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2.1 Modelling the daily incidence time series

The daily case incidence data Ct is fitted by application of a generalised additive
model (GAM) with log link assuming Negative Binomial error structure,

C̄t = exp (c+ s(t)) (1)

where t denotes time (throughout, we use day as the time unit), C̄t = E[Ct] denotes
the mean at time t while c and s(t) are the ‘intercept’ (constant over time) and
the smooth function (spline) over time, respectively [20]. The expected value of
the spline over time is zero (E[s(t)] = 0 over the length of the time series) and so
c = E[ln C̄t]. For a generic function f , we use the ft subscript notation to denote
surveillance data on day t and f(t) to denote the continuous function we want to
fit to such data.

Splines have been commonly used to apply a smoothing process to data. Here
we use penalised splines, which involve the use of a roughness penalty, say

∫ b

a
f ′′(z)dz,

instead of the number of basis functions, to control the smoothness of the fitted
curve [30]. However, other spline options available in the mgcv package (e.g. cu-
bic spline and Gaussian Process) have been tested without dramatic influence on
results (not shown).

Beyond the choice of which splines to use, the choice of knots has important
repercussion on the resulting fitted function and problems may arise if they are
too many or too few. In this paper we will use a spline with k = floor(K/20) knots
where K is the total number of data points being fitted. The number of knots
is chosen so that there is a knot for 20 days of data, which roughly corresponds
to 3-4 generations of infection in the case of SARS-CoV-2. The rationale for this
is that shorter gaps between knots may over-fit data and interact with the day
of week terms whilst longer gaps between knots would over-smooth the data and
inhibit detection of changes in trend due to variants and interventions.

Fitting a continuous function C(t) to discrete data Ct allows us to define an
instantaneous growth rate at any time point t, usually denoted by r(t), which can
be computed as the per-capita variation in the number of cases (i.e. Ċ(t)/C(t)).
In terms of the elements of the GAM (see also [5]), this is given by

r(t) =
Ċ(t)

C(t)
=

ṡ(t) exp (c+ s(t))

exp (c+ s(t))
= ṡ(t). (2)

The intercept c may contain non-temporal fixed effects or random effects. Regular
spikes in surveillance data (periodic every seven days) (Figures 5, top panel, and 6,
top panel) are likely due to operational constraints in data reporting and collecting
pattern or other systematic lags. Hence the generalised additive model, when fitted
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to care home data sets, should include a parametric component to account for day-
of-the-week effects:

ln(C̄t) = c+ weekdayt + s(t). (3)

The estimation process will produce the mean and standard deviation given the
data to generate confidence intervals. However, here a Bayesian credible interval
(CrI) for the GAM predictions is used, following [28]. Initially the coefficients are
simulated from the asymptotic multi-normal distribution, and this is multiplied
with the design matrix. Though the asymptotic multi-normal distribution’s mean
and covariance matrix can be simply extracted from model output, it is actually
conditional on a fixed smoothing parameter, which has been determined in the
model fitting. To investigate this issue, a Bayesian parametric simulation approach
is used to generate unconditional credible interval [28]. In simulation and testing,
the conditional and unconditional CrIs were not very different but the latter is more
computationally expensive, so the results presented are based on the conditional
method.

2.2 Modelling a time varying infection rate

The force of infection to a susceptible individual in a compartmental model is often
denoted βI/N , where β is the constant infection rate per capita and I the total
number of infectious people (at time t) in a population of size N . Rather than
assuming β is constant we redefine this infection rate as β(t) = νρ(t), such that
the time dependency is encoded in the dimensionless function ρ whilst ν is a time
invariant rate defined such that ρ is a measure of average total infectivity spread
by a single individual and that in the early epidemic phase with unconstrained
exponential growth it would be equal to the usual threshold parameter R0 of an
SIR-type compartmental model [4].

As such ρ(t) may be considered as a measure of the control reproduction num-
ber. Of course, the disease specific natural history such as infectious period may
vary over time, particularly for extended pandemic periods over years with differ-
ent variants emerging and different interventions being deployed. Thus ν is better
thought of as simply a characteristic scaling factor and ρ gives insights into viro-
logical, behaviour and intervention impacts that will potentially require specific
interpretation once calculated.

The infection rate β is a function itself of the probability of infection given
contact and contact rate [7]. An intervention may appear to act to reduce the
infectious period by some fraction – say isolating someone after 2 days – while
in the model this effect might be rendered by keeping the infectious period the
same but reducing the number of contacts. A variant may change presentation of
disease and modify the infectious period (or probability of infection). The impact
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of variants, therefore, needs caution on interpretation of results but using a single
value of ν allows stable interpretation of the derived ρ values across time.

The function ρ is then unknown a priori and our aim is to infer it from the
available data, which in this work we consider being either incidence data Ct (new
observed cases per day) or mortality data Dt (new deaths per day). Although
the discrete data are technically the integral of the rates at which cases or deaths
are observed, for simplicity we assume that the continuous functions fitted are
sufficiently smoothly changing that discrete data are well approximated by the
rates themselves.

2.2.1 Modelling outbreak declarations in care homes

The SIS model [7] is a simple yet useful model of disease spread, and here is
used to model the infectious status of entire care homes, rather than of each
of the residents in them. Therefore, a care home with no reported COVID-19
positive residents is considered as a susceptible ‘individual’, which will move to
the infected state when the care home detects their first case, and shall shift
back to the ‘S’ stage after the outbreak is declared closed [31]. Clearly a care
home cannot move to physically infect another settings but in the early stages of
the pandemic staff worked in multiple care homes [32], and even without direct
connection staff, visitors and residents interact with the wider community on a
daily basis. Therefore the SIS structure is feasible for data showing the number of
care homes currently in outbreak status, denoted by I, and those not in outbreak
status, denoted by S. Then, given S = N − I, where N is the total number of
English care homes (assumed constant on the timescale of a pandemic), a single
equation describes the system

İ(t) = β(t)
S(t)I(t)

N
− γI(t) = β(t)

I(t)(N − I(t))

N
− γI(t), (4)

where β(t) and γ are, respectively, the time-varying infection rate and the removal
rate. Equation (4) can also be rewritten as

İ(t) = γ

(
ρ(t)

ν(N − I(t))

γN
− 1

)
I(t).

Given R0 = β/γ in a standard SIS model then we set ν = γ and equate the
incidence measure from the GAM with the incidence predicted from the SIS model,
namely

ec+s(t) = γρ(t)
I(t)(N − I(t))

N
.

Therefore

ρ(t) =
N exp (c+ s(t))

γ(N − I(t))I(t)
=

exp (c+ s(t))

γI(t)

N

N − I(t)
, (5)
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which is a measure of spread between care home, for example through sharing
of staff or less direct transmission routes like chain of infection in members of
the community. Note that, in the rightmost expression, we have factorised the
control reproduction number in a term that represents the effective reproduction
number and the term N/S(t), which accounts for the depletion of susceptibles in
the population. Replacing the incidence βSI/N in (4) with ec+s(t) and treating it
as the external source term when applying the variation of parameters method,
we obtain

I(t) = e−γt

[
I(0) +

∫ t

0

exp (c+ s(u) + γu)du

]
(6)

and substitution into (5) gives the following estimator of the control reproduction
number directly from the time-varying growth rate s(t):

ρ(t) =
ec+s(t)+γt

γ
[
I(0) +

∫ t

0
ec+s(u)+γudu

] × N

N − e−γt
[
I(0) +

∫ t

0
ec+s(u)+γudu

] . (7)

Hence, we may create an estimator of the control reproduction number ρ(t) as-
suming independent constant estimate values of I(0), γ and N . Thus, whilst there
are 3 parameter values required for evaluation of the control reproduction number,
we may expect I(0) to only be critical on short time series of data relative to the
duration of a within-care-home outbreak (note that in (7) I(0) is scaled by a factor
e−γt coming from the numerator, so as t → ∞ the contribution of I(0) becomes
increasingly small – as long as s(t) is not negative and too large in absolute value;
see further comments on this in Appendix A.1). The parameter N is fixed as the
observed number of care homes in England and is derived from the Care Quality
Commission. Hence the parameter γ is likely the most critical and sensitive one.
We can take γ = 1/T where T is the average duration of an outbreak. In this
case, for a point estimate of ρ(t) at a fixed time t we may sample estimates of c
and s(t) from surveillance data and include uncertainty on T by sampling from the
distribution on mean outbreak duration assuming N is fixed and I(0) has burnt
off. For simplicity, however, in this work we fix T so credible intervals reflect only
the uncertainty from the GAM fit to surveillance data.

The effective reproduction number, denoted RE(t), in this case is

RE(t) = γ−1

[
I(0)e−(c+s(t)+γt) +

∫ t

0

es(u)−s(t)+γ(u−t)du

]−1

,

which is obtained from (7) by simply writing the first term in an alternative
form and disregarding the second term, which captures the depletion of suscepti-
bles. Note that, in a large population with low initial prevalence, the depletion
of susceptible is negligible for some time, so control and effective reproduction
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numbers are approximately equal, i.e. ρ(t) ≈ RE(t). In Appendix A.1 we show
that, in this case, an even simpler approximation to both reproduction numbers
ρ∗(t) = R∗

E(t) = 1 + ṡ(t)/γ can be derived when assuming any transients arising
from the initial conditions have passed and s(t) is approximately linear, i.e. the
incidence is growing or declining approximately exponentially, for some time.

2.2.2 Modelling individual cases across care home settings

For data measuring case incidence, an SEIR model structure is assumed as a repre-
sentative approximation to the disease dynamics. The standard SEIR model might
need some adaptation for application to a residential setting (such as care home
or prison) as some of the residents might pass away or leave due to non-COVID
reasons, and then the arising vacated rooms would be filled by new residents. For
simplicity, we modelled this replacement as instantaneous (though in reality there
may be a period of vacancy), but we allow new individuals to be either susceptible
or immune (e.g. both due to natural infection or vaccination). Therefore, we have

Ṡ(t) = −β(t)
S(t)I(t)

N
− µS(t) + (1− θ)(µN + δγI(t))

Ė(t) = β(t)
S(t)I(t)

N
− αE(t)− µE(t)

İ(t) = αE(t)− γI(t)− µI(t)

Ṙ(t) = (1− δ)γI(t)− µR(t) + θ(µN + δγI(t))

Ḋ(t) = δγI(t),

where disease states S, E, I, R and D denote the numbers of susceptible, exposed,
infected, recovered and deceased, respectively, β(t) and γ are (as before), the
infection and removal rate, respectively, α is the rate of becoming infectious, δ is
the COVID-19-specific case fatality ratio, µ is the rate at which residents leave the
care home (natural mortality rate) and θ is the proportion of new entries that have
immunity to the infection (this is not necessarily the same as conferred immunity
in residents and staff from past outbreaks). An individual leaving the population is
assumed to be immediately replaced by new individual (immune with probability
θ or otherwise susceptible), so the total population N = S+E+I+R (i.e. the sum
of those in living state) is constant, and D is effectively only used to keep track of
the number of COVID-19 deaths. In the use case that the surveillance data does
not permit tracking the population turnover due to natural mortality, µ may be
set to zero. Note that θ will in general vary with time due to vaccination policy
or community epidemics, but at the start of a new pandemic we expect θ = 0.

To derive an estimator for the time varying reproduction number ρ(t) we sub-
stitute β(t) = νρ(t). In this model disease incidence (new entrants to I state) is

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.26.24304928doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.26.24304928
http://creativecommons.org/licenses/by-nc-nd/4.0/


given by αE(t) = ec+s(t). Solving for E, I and R means that

E(t) =
1

α
ec+s(t)

I(t) = e−(γ+µ)t

(
I(0) +

∫ t

0

exp (c+ s(u) + (γ + µ)u)du

)
R(t) = e−µt

(
R(0) + θN(eµt − 1) + (1− δ + δθ)γ

∫ t

0

I(u)eµudu

)
.

(8)

We are thus assuming that E(0) = ec+s(0)/α; other initial conditions (I(0) and
R(0)) are discussed below.

Because individuals can leave the care homes due to natural mortality, the
average time length of any infected individual being infectious is 1

γ+µ
rather than

1
γ
, and individuals leave the E stage at the rate of α + µ but the rate of entering

the I stage is α. Therefore, only a fraction α
α+µ

of the infected individuals can
become infectious, with the opposite fraction dying while in the E state. Thus, in
this model the critical scaling timescale on the reproduction number is

ν =
(γ + µ)(α + µ)

α
. (9)

The control reproduction number estimator is given by

ρ(t) =
(ṡ(t) + α + µ)

(α + µ)(γ + µ)
× exp (c+ s(t) + (γ + µ)t)

I(0) +
∫ t

0
exp (c+ s(u) + (γ + µ)u)du

× N

N − E(t)− I(t)−R(t)
,

(10)

where E(t), I(t) and R(t) are as in (8). The estimator ρ(t) may then be inferred
from surveillance data for independent estimates of parameters γ, α, µ, δ, θ, I(0),
R(0) and N . As in the previous section, the initial conditions (I(0) and R(0)) have
only transient effects and population size N can be learnt from the surveillance
data being used. In this study we assume for simplicity low community immunity
and limited community vaccination, and hence θ = 0. However, future work
will consider the impact of vaccination (community and setting specific) and a
time-varying θ on calculation of the control reproduction number. In the main
application in Section 3.3 we will also further assume for simplicity no natural or
disease-induced mortality (µ = δ = 0 – for a case where δ > 0, see Appendix
A.2). The disease natural history parameters are then likely the most sensitive
parameters to estimate independently.

The effective reproduction number is then obtained when the last factor N/S
in (10) is removed:

RE(t) =
ṡ(t) + α + µ

(α + µ)(γ + µ)
× exp (c+ s(t) + (γ + µ)t)

I(0) +
∫ t

0
exp (c+ s(u) + (γ + µ)u)du

.
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When the population is almost entirely susceptible (prevalence, incidence and
θ are small), the effective and control reproduction numbers are approximately
the same. In this case, with similar arguments as in Appendix A.1, assuming the
transient has burnt out, that replenishment is slower relative to disease transit rates
(µ is negligible compared to γ), and that the incidence is growing approximately
exponentially for a while, we may derive a similar approximation to that for the
SIS model (compare with [15]),

ρ∗(t) = R∗
E(t) =

(
ṡ(t) + α

α

)(
ṡ(t) + γ

γ

)
=

(
1 +

ṡ(t)

α

)(
1 +

ṡ(t)

γ

)
.

The methods presented here can be adapted to consider mortality data rather
than case data: an application of this model version to simulated data is provided
in Appendix A.2.

2.3 Calibration on simulated data

To check if the estimators derived above are appropriate and useful, a first test is
to apply them to stochastically simulated data from the epidemic models described
above. Keeling and Rohani [33] illustrate the application of the Gillespie algorithm
to such epidemic models [34]. Event-based algorithms are typically slow and so a
‘τ -leap’ method [35] is used here instead.

The SIS simulation (Figure 1, top panel, showing the arising incidence from
the SIS model) is initiated with population N = 104 and I(0) = 100, γ = 0.05
(20 days for recovery on average), both chosen as indicative of the number of
care homes and duration of outbreaks, with a time step of ∆t = 0.1 days. The
transmission rate is taken to be β = 0.5 for t < 12 and is assumed to drop to
β = 0.25 for t ≥ 12 to simulate the impact of an intervention at time t = 12. This
gives RC = R0 = 10 before the intervention, with a control reproduction number
that drops post intervention to RC = 5. We note that R0 = 10 is large and so
spread is rapid, but the value is not excessive given the interpretation is that this
represents the average number of care homes infected by a single care home over
its entire outbreak. An SIS model should have an endemic equilibrium predicted
by 1− 1/R0 and hence we expect the incidence in this simulation to approach 400
care homes in outbreak state as seen by end of the simulation. Figure 1 top panel
also shows the central estimate from the GAM fitted to this data.

The SEIR model (Figure 2, top panel, showing the arising incidence from the
SEIR model) is simulated similarly and initialised with 50 infected and 50 exposed
individuals among a total population of 104. The average incubation period is 7
days (α = 0.143), the average infectious period is 10 days (γ = 0.1), and the time
step used in the simulation is ∆t = 0.15 days. For simplicity, we set the rate at
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Figure 1: Top: Stochastic simulation (τ -leap) for the SIS model. Parameter values
are: N = 104, I(0) = 100, β = 0.5 → 0.25 at day 12, γ = 0.05, ∆t = 0.1.
Purple crosses represent the simulated incidence data (number of new individuals
entering state I per day) and the green line the resulting GAM fit, assuming
family=quasipoisson. Bottom: Estimated reproduction number ρ(t) (black solid
line) from the simulated data from the SIS model. The Bayesian sample (light gray
lines) is generated using the conditional simulation method in [28] and from the
sample the 95% CrI (black dashed lines) is obtained. The intervention β = 0.5 →
0.25 at day 12 is depicted by the blue vertical line. There is no transient time,
while the adjustment time is presented by the blue shaded band.
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which residents leave to care home µ = 0, the community immunity θ = 0 and the
case fatality ratio δ = 0. To model an intervention at time t = 90, the infection
rate is defined as β = 0.143 for t < 90, and β = 0.1 afterwards. The uncontrolled
outbreak will thus have R0 = 1.43 whilst, post-intervention, RC = 1 (see dashed-
dotted and dotted lines in bottom panel of Figure 2, respectively). There is no
assumed reporting bias by weekday. The incidence peaks close to time of the
intervention that reduces RC to 1, but with the built-up residual immunity the
effective reproduction number is below 1 and hence the epidemic declines. Figure
2, top panel, also shows the derived GAM central estimate.

2.4 Data

Having tested that the method is able to recover known parameters from simulated
data, the method is the applied to real world data sets.

All positive COVID-19 tests were asked for the residential address, though
when not available the GP-registered address was used. Within UKHSA, address
information was provided by the Second Generation Surveillance System (SGSS)
[36] and the UKHSA Geospatial Team then matched addresses to the Ordnance
Survey database to obtain a Unique Property Reference Number (UPRN) and
Basic Land Property Unit (BLPU) class information.

Addresses with BLPU classes of RI01 were identified as care homes. Care Qual-
ity Commission (CQC) IDs for care homes and their accompanying UPRN infor-
mation were also linked to the cases line list to identify registered care providers
not identified through the address matching process. Finally, properties with ‘care
home’, ‘rest home’, ‘senior living’, ‘elderly’, ‘retirement’ were also searched to de-
termine whether there were any additional addresses that might have been care
homes [37, 38]. The total number of care homes for older people is about 14,500,
with a total of about 450,000 beds associated with these settings [39]. We use
the number of beds as a proxy for the population size. We expect this to be an
overestimate as care homes typically operate at 90% capacity, but a precise value
of the number of residents is hard to specify and likely fluctuates significantly over
time.

This linked dataset was used to create two aggregated and non-identifiable
samples, namely:

1. Outbreak declaration data: the number of care homes in England that de-
clared an outbreak on given days from 01/04/2020 to 06/10/2021.

2. Test-Positive data: all cases attributed to adult social care settings were
aggregated by day of positive test to give the number of new confirmed cases
among care home residents in England from 15/03/2020 to 09/10/2021.
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Figure 2: Top: Stochastic simulation (τ -leap) for the SEIR model. Parameter
values are: N = 104, E(0) = I(0) = 50, β = 1/7 → 0.1 at day 90, α = 1/7, γ =
0.1,∆t = 0.15. Purple crosses represent the simulated incidence data (number of
new individuals entering state I per day) and the green line the resulting GAM
fit, assuming family=quasipoisson. Note that, compared to Figure 1, the much
more pronounced natural stochastic variability in the data is purely due to the
much longer epidemic and the much lower daily incidence (i.e. no observational
error has been added to the simulation output). Bottom: Estimated reproduction
number ρ(t) (black solid line) from the simulated data from the SEIR model. The
Bayesian sample (light grey lines) is generated using the conditional simulation
method in [28] and from the sample the 95% CrI (black dashed lines) is obtained.
The intervention β = 1/7 → 0.1 at day 90 is depicted with the blue vertical line.
The transient and adjustment time are depicted by pink and blue shaded bands,
respectively.
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The estimated time-varying reproduction numbers inferred are relevant to the
data set (and underlying population) in question and may differ from published
national estimates for other settings or communities. Furthermore we do not con-
sider different risk group reproduction numbers, as this would require, for example,
separate data on residents and staff in homes. Such structured analysis is not pos-
sible with current data and is subject to future research. As such, the estimated
reproduction number can be considered indicative of the (additional) control ef-
fort required at that time but may not formally translate to point estimates of
transmission from specific settings.

3 Results

3.1 Simulation results

In the numerical result shown in Figure 1, bottom panel, the estimation of repro-
duction number is roughly 10 before day 11, and 5 after day 14. Remember that
in the simulation we set the infection rate to drop on day 12 (blue line), so the
estimator ρ appears to decrease before the intervention, likely because of interplay
between the stochastic noise and the number of knots used in model, as the GAM
tries to smooth through the data points.

For clarity, it is worth defining the concepts of transient and adjustment times
in simulation results as follows:

• Transient time: the period, at the beginning of the simulation, during which
the credible interval does not include the pre-intervention reproduction num-
ber.

• Adjustment time: the period from the time the upper credible interval stops
including the pre-intervention R0 to the time when the lower bound firstly
includes the post intervention R0.

It may be possible for either or both time periods to have length 0 in some simu-
lations.

There is no transient time evident for the SIS simulations (see Figure 1, bot-
tom panel, and 3), but the adjustment time is present regardless of the choice of
parameters. In Figure 3, (top left panel, when N = 103, I(0) = 100), the ad-
justment time is very short (the window is effectively compressed to a single day,
which occurs after the simulated change event), likely because of the relatively
small population and large initial case numbers; when N = 104 and I(0) = 10
(top right), the adjustment is slower and includes the actual time when the pa-
rameter changed in the simulation; a similar situation occurs when N = 105 and
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I(0) = 100 (bottom), with an adjustment time that appears very similar in the
cases of an early (bottom left) or late (bottom right) change time. The top left
results suggests that caution may be needed in applications with very high initial
case numbers and high transmission.

The estimation results for the SEIR simulations (Figure 2, bottom panel) follow
a similar pattern to the results obtained from the SIS cases, except that there
appears to be a transient phase (likely due to the characteristic polynomial being
quadratic – unlike in the SIS model case – and therefore the proportions of cases in
E and I taking some time to converge to the dominant eigenvector of the matrix
describing the linearised system). As for the SIS model, the estimated reproduction
number decreases around the sudden change in transmission, although this time
more gradually (Figure 2, bottom panel). The E and I compartment numbers
drop to relatively low levels (similar to that of the epidemic initial conditions), from
about day 150 onwards (not shown), and keep going down afterwards, resulting in
decreasing size of daily new cases and hence increasing estimation uncertainty as
shown by the widening credible interval at late times.

In Figure 4, the transient time is usually 7 to 12 days while the adjustment
time is mostly around 30 days. The transient time is short relatively to the whole
time span of epidemic wave. The adjustment time started 20 to 30 days ahead of
the intervention day, and includes the actual intervention time. When interpret-
ing the results of this method in a real world application, this adjustment phase
may require consideration (though in the real world an intervention is unlikely
to have a step function impact, instead rather exhibiting variation in uptake and
effectiveness both in time and space).

3.2 SIS: outbreak data

Stable reporting of outbreaks started in April 2020. According to the outbreak
data, about 150 to 200 care homes per day started experiencing an outbreak during
April of 2020, although this number then dropped in the following three months.
After the summer holidays in July and August 2020, the outbreak counts climbed
up again until the second national lockdown in November 2020. However, a higher
peak at 250 was reached during the Christmas break, followed by a dramatic
decrease during the period of the third lock down and the start of the vaccine
campaign from January to March of 2021. The spread of SARS-CoV-2 in the
English care homes then apparently eased for two month until June of 2021. After
that, a new wave of infection then took place again when the ‘Delta’ variant started
to spread around the country, although the daily counts stayed mostly under 100
(Figure 5, top panel, black line).

The outbreak data shows periodic weekly fluctuations, indicating the presence
of day-of-week effects in the reporting mechanism. Therefore, the generalised
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Figure 3: Estimated reproduction number for the stochastic SIS model for other
parameter choices. Top left: N = 103, I(0) = 100; top right: N = 104, I(0) = 10;
bottom left: N = 105, I(0) = 100; bottom right: N = 105, I(0) = 100 and
intervention at day 18. In all plots, γ = 0.05. The Bayesian sample (light gray
lines) is generated using the conditional simulation method in [28] and from the
sample the 95% CrI (black dashed lines) is obtained. The intervention β = 0.5 →
0.25 is depicted by the blue vertical line. The transient period does not occur,
while the adjustment time is depicted by a vertical dashed line (top left) and blue
shaded bands (other panels).
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Figure 4: Estimated reproduction number for the stochastic SEIR model for other
parameter choices. Top left: N = 105, E(0) = 50, I(0) = 50; top right: N = 105,
E(0) = 500, I(0) = 500; bottom left: N = 106, E(0) = 50, I(0) = 50; bottom
right: N = 106, E(0) = 50, I(0) = 50, intervention at day 180. In all plots,
γ = 0.05. The Bayesian sample (light grey lines) is generated using the conditional
simulation method in [28] and from the sample the 95% CrI (black dashed lines) is
obtained, and the intervention β = 1/7 → 0.1 is depicted by the blue vertical line.
The transient and adjustment time are depicted by pink and blue shaded bands,
respectively.
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additive model (GAM) fitted to outbreak data should include a parametric term
for day-of-week effects (see (3)). The smoother uses the penalised spline and the
number of knots is set to 27 for 554 days in total (bs=‘ps’, k=27).

The coefficients of intercept and factors (weekdays) are summarised in Table
1, referring to ‘Monday’ as the baseline. Overall, Monday usually sees the most
reported outbreaks, while Tuesday and Wednesday’s amount are decreased by
1/6 and 1/8 on average, respectively, compared to Monday. Thursday and Friday
(with p-value being not significant at a 5% level), both expect numbers of reported
outbreaks closer to those of Monday. At the weekend, the average count of reported
outbreaks are roughly half of Monday’s. Therefore taking arithmetic mean of the
coefficients of ‘weekday’, with ‘Monday’ as 0, can help remove the ‘weekly noise’
and produce a smooth representative average curve (Figure 5, top panel, blue line)
for integration with the compartmental model.

Care home outbreaks (SIS) † Cases in care homes (SEIR) ‡
Coef (SE) p exp (·) Coef (SE) p exp (·)

Intercept (c) 4.058 (0.032) ∗∗∗ 57.842 5.104 (0.032) ∗∗∗ 164.727
Monday 0 (Reference) 1 0 (Reference) 1
Tuesday -0.170 (0.046) ∗∗∗ 0.843 0.047 (0.045) 0.290 1.049

Wednesday -0.133 (0.045) 0.004 0.876 -0.066 (0.045) 0.140 0.936
Thursday -0.080 (0.045) 0.077 0.923 -0.186 (0.045) ∗∗∗ 0.831
Friday -0.083 (0.045) 0.069 0.921 -0.236 (0.045) ∗∗∗ 0.790

Saturday -0.554 (0.047) ∗∗∗ 0.575 -0.896 (0.046) ∗∗∗ 0.408
Sunday -0.698 (0.048) ∗∗∗ 0.498 -0.925 (0.046) ∗∗∗ 0.396

Table 1: Parametric Coefficients of GAMs based on care homes experiencing out-
breaks (SIS model) and individuals’ case data (SEIR model). SE is the standard
error of the associated coefficient estimate (denoted Coef), the p column shows the
resulting p-value and exp (·) shows the coefficient estimate on the original scale of
the data. The Intercept row shows the estimate for a Monday and then the other
rows show the relative difference for each day. In the p-value column, ‘∗∗∗’ rep-
resents coefficients with p < 0.001 (and so are highly significantly factors in the
model).
† Outbreak model: Adjusted R-squared=0.854, deviance explained=87.6%, 554
observations, smoothing parameter=14.0241 estimated by restricted maximum
likelihood (REML=-2286.3).
‡Case model: Adjusted R-squared=0.92, deviance explained=95.5%, 574 observa-
tions, smoothing parameter=6.7798 estimated by restricted maximum likelihood
(REML=-2937.3).
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Figure 5: Top: GAM results with options family=nb(link=log), bs=’ps’

and k=27 knots for data on English care home experiencing an outbreak from
01/04/2020 to 06/10/2021. The data (black line) shows small spikes every 7 days,
which are captured as day-of-the-week (DW) effects and interpreted by paramet-
ric coefficients (see Table 1 for estimates) of the GAM fit (red line). The DW
effects can be removed (blue line) by taking an average of the 7 values (using 0
for Monday as reference day). Bottom: Mean estimate (line) and 95% conditional
credible interval (shaded band) for ρ(t) (black) and RE(t) (pink) for the English
care home outbreak data (SIS, N = 14, 500, I(0) = 2, 000, γ = 1/26). The control
reproduction number ρ(t) and the effective reproduction number RE(t) are gen-
erally observed to decreases during lockdowns (grey shaded bands) and increase
during the holidays (green shaded bands), at least before widespread vaccination
in care homes at the start of 2021. A dotted horizontal line is added to highlight
when the estimated reproduction numbers cross the unity threshold.
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In Figure 5, bottom panel, green shaded bands identify the Christmas break,
Easter break, summer holiday and half terms, times during which most adults
and students are on holiday, and care homes may have more visitors than usual.
The grey shaded bands stands for the three main lockdowns that aimed at re-
ducing the disease transmission nationally and therefore reduced the interaction
between different care homes and between care homes and the community. Before
March 2021, ρ decreased during the lockdown periods and then increased during
the summer period when restrictions relaxed, indicating that the governmental
intervention of reducing social community contacts has likely been helpful for care
homes’ epidemic prevention. We note that testing became more widespread from
late Summer 2020, so the increase from August may be an artefact of historical
cases being detected from Polymerase Chain Reaction (PCR, which tests for RNA
rather than live virus) and hence may result in an apparent boosting the number
of outbreaks.

3.3 SEIR: case incidence data

The case incidence data (technically, the number of new individuals testing positive
to infection) is taken as a proxy for the number of daily new residents becoming
infectious in care homes throughout England. The timeline for these case data
is 15/3/2020 to 09/10/2021 (Figure 6, top panel), with a similar curve trend as
that observed for the outbreak data above (Figure 5, top panel). Although this
time series covers about a year and a half of data, which is roughly the same as
the average lifespan in care homes due to natural mortality, for simplicity and
to highlight the difference between control and effective reproduction number, we
assume negligible population turnover due to both natural and disease induced
mortality and negligible immunity in the population in the model in Section 2.2.2
(i.e. µ = δ = θ = 0 – see instead Appendix A.2 for a model with δ > 0), thus
effectively turning it into a standard SEIR model. The first epidemic peak of care
home cases happens at the end of April, with over 1000 diagnoses on some days,
and a double peak between October 2020 and February 2021 reaching values of
about 1400 and 2500, respectively. After the release of the third lockdown, a much
smaller sized epidemic is seen when the new variant ‘Delta’ appeared in mid-2021
(Figure 6, top panel, black line).

As for the outbreak data, the case data also displays day-of-the-week effects.
The case data is fitted with a GAM (3) with penalised spline as smooth term and
28 knots for 574 days in total (bs=’ps’, k=28), and the fitting results are pre-
sented as red and blue lines in Figure 6 (top panel). The parametric coefficients
are summarised in Table 1, with Monday as baseline for the day-of-the-week effect.
During the week, the numbers of cases for Tuesday and Wednesday are not signif-
icantly different from those on Monday, while the newly positive case counts for
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Thursday and Friday are about 80% of those observed on Monday. Weekends are
expected to have fewer positive testing results, with both Saturday and Sunday
having about 40% of Monday’s cases. This likely reflects the average operational
timing of regular testing in such settings.

Figure 6 (bottom panel) shows the reproduction number and its credible inter-
val after averaging the day-of-the-week effects. The results have a similar pattern
as seen in Figure 5 (bottom panel), with the three national lockdowns correspond-
ing to periods of reducing values of the reproduction numbers. The control re-
production number (black line and dark grey shaded band) reaches values higher
than 2.5 in March 2020, increases from 1 to 1.5 during summer of 2020, and peaks
at a value close to 2 in October and December 2020. From December 2020 care
homes received the vaccine and so the fast change from ρ = 2 to ρ = 0.5 is likely
a combination of community lockdown and vaccine protection within settings. In
2021, the reproduction number peaks between June and July, when the ‘Delta’
variant was the dominant variant in England [40].

3.4 Comparing with EpiEstim

The EpiEstim R package has been developed to compute the effective reproduction
number by combining the incidence data with information from the serial interval,
which can either be assumed to follow a plausible prior or be directly obtained from
some surveillance system [11, 13]. We compare EpiEstim to the results obtained
with the method presented here when both are applied to the case data from
English care homes (Figure 6, bottom panel, purple and pink lines and shaded
bands). In the parametrisation of the SEIR model the average incubation period
is set to 3 days and the average infectious period to 5 days. These are plausible
values for SARS-CoV-2 (e.g. in line with [41]) and are taken at face value (i.e.
in particular, without any uncertainty) given we are only seeking an indicative
parametrisation to illustrate the methodology rather than focusing on a precise
characterisation of the timing of disease progression. For this choice of parameters,
the generation time distribution is right-skewed, with mean 8 days and standard
deviation of 5.83, and with probability density function [15, 42]

αγ

α− γ
(e−γt − e−αt),

which is close to a Gamma distribution with the same mean and standard devia-
tion. We input this Gamma as the serial interval in EpiEstim, implicitly assuming
that the generation time is equivalent to the serial interval, and use a sliding win-
dow of 14 days. The comparison between EpiEstim and the estimate obtained
with the methodology proposed here for the SEIR model is presented in the bot-
tom panel of Figure 6 (purple and pink lines and shaded bands). Although the
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Figure 6: Top: GAM results with options family=nb(link=log),bs=’ps’ and
k=28 for the case data recorded in English care homes from 15/03/2020 to
09/10/2021. The data (black line) shows small spikes every 7 days, which are
captured as day-of-the-week (DW) effects and interpreted by the parametric coef-
ficients (see Table 1 for estimates) of the GAM fit (red line). The DW effects can
be removed (blue line) by taking an average of the 7 values (using 0 for Monday as
reference day). Bottom: Mean estimate (line) and 95% conditional credible inter-
val (shaded band) for ρ(t) (black) and RE(t) (pink) for the case data from English
care homes (SEIR, N = 450000, I(0) = 500, R(0) = 0, γ = 1/5, α = 1/3). The
control reproduction number ρ(t) and the effective reproduction number RE(t) are
generally observed to decrease during lockdowns (grey shaded bands) and increase
during the holidays (green shaded bands), at least before widespread vaccination
in care homes at the start of 2021. The mean estimate (purple line) and 95% cred-
ible interval (purple shaded band) from EpiEstim (with serial interval following a
Gamma distribution with mean 8 and standard deviation 5.83 days) follows the
general scale and trend of the effective reproduction number estimated with the
method proposed here. A dotted horizontal line is added to highlight when the
estimated reproduction numbers cross the unity threshold.
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results of the two methods show some differences, which is to be expected given
that the approaches are substantially different (e.g., EpiEstim does not account
for a day-of-the-week effect, which likely leads to the shorter time-scale oscillations
compared to our method), the results show a similar general scale and trend.

4 Discussion

This work brings together semi-parameteric generalised additive modelling (GAM)
with traditional structured compartmental epidemic models. The GAM can be
used to calculate an instantaneous growth rate of time series data and has an ad-
vantage that it can parameterically incorporate day-of-the-week effects to avoid un-
necessary aggregation (e.g. to weekly numbers or rolling averages) to work around
reporting effects. Layering on top of the GAM mechanistic assumptions about
disease epidemiology, we have shown we can generate an estimate for the control
reproduction number – the number of people infected per case in wholly susceptible
population, but with mixing patterns modified by a control policy or spontaneous
response to an outbreak – and the effective reproduction number – the number
of people infected per case given current mixing patters and, importantly, partial
susceptibility in the population.

This method for calculating time-varying control and effective reproduction
numbers compares well with the alternative approach given by EpiEstim and is
verified by simulation studies. Application to real world data is promising. How-
ever, care homes are home to elderly people with strong staff contacts and it is
not clear what impact age has on the mechanics of disease progression. Therefore,
these estimates are mainly illustrative of the methodology and further work is
needed to compare them with the transmission estimates from community surveil-
lance. The method shown here is applied to data about active outbreaks and case
data, but it can be adapted to mortality data (see Appendix A.2).

Limitations include not incorporating time-varying case fatality ratio δ and
community immunity θ that in reality is known to have changed during the pan-
demic. However, all methods are sensitive to these changes and by parametrically
including these effects one can be explicit in the assumptions for future interro-
gation. A second limitation is that single type compartmental models assume
homogeneous mixing in the population which means the method may be biased if
the outbreak had core groups sustaining transmission. This is also true of other
established tools such as EpiEstim.

At present, the uncertainty reflects only the inherent uncertainty from the
GAM rather than uncertainty associated to the compartmental model parameter
estimates. Furthermore, the SEIR model used assumes Markovian transitions be-
tween stages. This is a simplification but, as stated above, the intention is to get a
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representative metric for instantaneous transmission to aid decision makers’ think-
ing. Other model structures may be included at the cost of increased complexity
in computation and understanding.

The method requires the specification of an initial condition I(0). The choice
of I(0) affects the estimate of ρ towards the beginning of the time series, though
its impact wanes on the timescale of a generation time. However, during this
transient phase, the estimate of ρ may need careful interpretation. The robustness
of the results could be improved by incorporating uncertainty in I(0) as part of
the inference scheme developed here or allowing the estimate of ρ to be presented
only after a time period comparable to the generation time has elapsed (as is the
case with EpiEstim).

Similarly to I(0), results also depend on the choice of the initial condition for
the immune population R(0). The impact of this choice also wanes over time,
but affects ρ during these transients. However, given the pandemic context, it
is reasonable to set R(0) = 0 and let the immunity build up as more cases get
infected. For simplicity, we are accepting the data as an accurate reflection of the
number of individuals infected in care homes over entire time series. However,
we acknowledge that, due to low case ascertainment in the first wave, there may
have been a larger depletion of susceptible population than we have accounted
for here. Estimates of the effective reproduction number are not affected, but an
underestimation of the immune population translates into an underestimation of
the control reproduction number. Therefore, more careful considerations would be
needed for quantitatively robust estimates, but we refrain from expanding on this
issue here, given the main purpose of this work is to illustrate the methodology.

Case ascertainment may be an issue more generally. Transmission may not be
identifiable if ascertainment rates were to vary over time independently of transmis-
sion changes. Moreover, Appendix A.3 shows via simulation that under-reporting
of cases, even when constant over duration of reporting, can be an issue, as it
appears to dilute the signal of transmission given it leads to smaller case numbers
with larger relative intrinsic stochastic noise, and hence rates of changes in the
data that are more uncertain. Work will continue to investigate the issues result-
ing from under-reporting, although again this is likely to be a problem also for the
other methods available.

Diseases such as COVID-19 exhibit asymptomatic infection (cases who manifest
no symptoms can still infect – or, in case testing is available, cases might infect
even prior to being detectable). In this study we have assumed that all infections
are detectable for simplicity in illustrating the methodology but in Appendix A.4
we relax this assumption to consider an infectious state prior to potential detection.

Application of EpiEstim to real world datasets prior to the COVID-19 pan-
demic has focussed on shorter time series. Whilst we have not considered the
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length of the time series in detail, the GAM will require a certain amount of data
to ascertain a valid fit and so caution maybe needed in applications to shorter
outbreaks than the ones analysed here.

The promising results from this method will be extended to consider simulta-
neous estimation of parameters across different datasets (i.e. calibrating to death
data and case data, or to settings with nested populations, to infer subpopulation-
specific reproduction numbers).

This method for estimating the time-varying reproduction number is effective
and comparable to other methods. With appropriate handling the method is flexi-
ble to the type of epidemic impact measure provided (e.g. mortality or incidence),
and it provides an alternative approach to smoothing out surveillance day-of-the-
week effects to develop a measure of transmission that can enable action.

A Supplementary material

A.1 Approximate Outbreak and Case Estimators

Note that, in the SIS model discussed in Section 2.2.1, when I(t) ≪ N (number of
care homes currently experiencing an outbreak small relative to the total number
of care homes), then S(t)/N ≈ 1 (i.e. the second term in (7) is approximately 1 and
can be ignored) and hence ρ(t) ≈ RE(t), i.e. the control and effective reproduction
numbers are approximately the same. In this case, we may derive an approximation
ρ∗(t) = R∗

E(t) to both. If we additionally assume that enough time has passed
so that the contribution of the initial condition I(0) can be ignored, (7) further
simplifies to

ρ(t) ≈ exp (c+ s(t) + γt)

γ
[∫ t

0
exp (c+ s(u) + γu)du

] =
exp (c+ s(t))∫ t

0
exp (c+ s(t− v))γe−γvdv

, (11)

where on the right we have highlighted how the integral at the denominator can be
viewed as a convolution of the incidence from the GAM going back into the past
(we applied the change of variable v = t−u) with the generation time distribution,
which in our model is simply an exponential distribution.

If the generation time distribution had finite support [0, T ], the integral would
be zero outside of it, i.e. between T and t (assuming T < t). This is not the case
for an exponential distribution, but we can still choose T large enough that [0, T ]
contains the the bulk of mass of the generation time distribution. We can then
split the integral a more “relevant” part concerning the recent past (v ∈ [0, T ])
and the rest (v ∈ [T, t]). With the change of variable z = v − T and using the
fact the the incidence exp (c+ s) is bounded by a certain maximum M , as it fits

26

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.26.24304928doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.26.24304928
http://creativecommons.org/licenses/by-nc-nd/4.0/


observed data, the contribution of the more distant past to the integral is∫ t

T

exp (c+ s(t− v))γe−γvdv = e−γT

∫ t−T

0

exp (c+ s(t− z − T ))γe−γzdz ≤ Me−γT ,

which is small for sufficiently large T . Therefore, from (11),

ρ(t) ≈ exp (c+ s(t))∫ T

0
exp (c+ s(t− v))γe−γvdv

=

(∫ T

0

es(t−v)−s(t)γe−γvdv

)−1

.

If we Taylor expand s(t − v) − s(t) = −ṡ(t)v + s̈(t)v2/2 + o(v) and assume s is
approximately linear in [0, T ] (i.e. s̈(t)T 2/2 + o(T ) ≪ 1), we find

ρ(t) ≈ γ + ṡ(t)

γ (1− e−(γ+ṡ(t))T )
. (12)

Assuming ṡ(t) > −γ, for T sufficiently large, the parenthesis at the denominator
is approximately 1, and hence

ρ∗(t) = R∗
E(t) = 1 +

ṡ(t)

γ
. (13)

Note that the condition ṡ(t) > −γ has a natural interpretation, based on the
model assumed: if suddenly no transmission occurred (β(t) = 0), then the cur-
rently infected cases would recover at rate γ so both prevalence and incidence
would decrease exponentially at rate γ (i.e. grow at rate −γ); therefore, the model
would not be able to meaningfully fit a decline in the data with a slope steeper
than −γ, and in fact if ṡ(t) < −γ both (12) and (13) yield a negative reproduc-
tion number, which is biologically meaningless. This, however, is not a limitation
of the estimator per se, but rather a problem of model misspecification, i.e. the
assumption of an exponentially distributed duration of the infectious period in-
trinsic in the model formulation would be incompatible with the observed data.
In other words, by choosing an SIS Markovian model we are implicitly assuming
ṡ(t) ≥ −γ. The choice of how large T (and similarly t) needs to be to control the
approximation then depends on how quickly the exponential decay of the genera-
tion time distribution makes the incidence going back in the past negligible, which
may happen very slowly even for ṡ(t) ≥ −γ when ṡ is sufficiently close to −γ.

Finally, note that the Taylor expansion used is predicated on the fact s should
not oscillate too quickly in [t − T, t]. However, one can strengthen the argument
to include cases in which the incidence oscillates quickly around a broadly stable
exponential growth at some rate r. Then the approximation (13) still applies,
but with ṡ replaced by r. However, given s is a spline and our goal is to fit the
incidence with a relatively “smooth” curve, such cases are less relevant.

An approximation for the estimator used in the SEIRS model of Section 2.2.2
can be obtained following a similar argument to the one described above.
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A.2 Deaths

If only deaths are observed, we can fit the GAM to these data as done in (1) for
cases, obtaining

D̄t = exp (cD + sD(t)),

where cD incorporates (potential) day-of-the-week effects for notation brevity. Sub-
stitution into the increment of D in the compartment model in Section 2.2.2 gives

I(t) =
ecD+sD(t)

δγ
. (14)

Recalling the definition of ρ(t) = β(t)/ν, with ν from (9) and β(t) from the
equation for Ė(t) in the ODE system, we obtain Substitution of (14) and its
derivative with respect to time into the equation for İ(t) gives

E(t) =
İ(t) + (γ + µ)I(t)

α
=

ṡD(t) + γ + µ

δγα
ecD+sD(t) (15)

and hence

Ė(t) =
ṡD(t) [ṡD(t) + γ + µ] + s̈D(t)

δγα
ecD+sD(t) (16)

so that

Ė(t) + (α + µ)E(t)

νI(t)
=

(
[ṡD(t) + (α + µ)] [ṡD(t) + γ + µ] + s̈D(t)

(α + µ)(γ + µ)

)
which is also an estimate of the effective reproduction number. Observe that

D(t) =

∫ t

0

ecD+sD(u)du (17)

and

R(t) = e−µt

∫ t

0

(
(1− δ + δθ)

ecD+sD(u)

δ
+ θµN

)
eµudu

= θN(1− e−µt) +
1− (1− θ)δ

δ
e−µt

∫ t

0

ecD+sD(u)+µudu,

(18)

so that finally

ρ(t) =

(
[ṡD(t) + (α + µ)] [ṡD(t) + γ + µ] + s̈D(t)

(α + µ)(γ + µ)

)(
1− E(t) + I(t)

N
− R(t)

N

)−1

=
(α + µ)−1(γ + µ)−1 ([ṡD(t) + α + µ] [ṡD(t) + γ + µ] + s̈D(t))(

[1− θ(1− e−µt)]− ṡD(t)+α+γ+µ
δγαN

ecD+sD(t) − 1−(1−θ)δ
δN

e−µt
∫ t

0
ecD+sD(u)+µudu

) .
(19)
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A.3 Under-reporting in case reporting.

The surveillance systems associated with COVID-19 may be expected to almost
fully ascertain cases, given testing strategies in place in long-term care facilities
from September 2020 when regular whole home testing was implemented. However,
not all surveillance systems in place are certain to successfully detect all cases (say
due to weak symptoms or mild illness). Hence, data may only reflect a subset of
the total epidemic curve.

To investigate under-ascertainment with this framework a binomial sample is
used to simulate the daily reported cases with some probability of detection of
actual cases. To introduce further noise, a Beta distribution will be used to model
the detection probability because the actual detected rate for disease is usually
uncertain and likely variable. Therefore we simulate imperfect surveillance using
the Beta-Binomial distribution.

Figure 7 shows the reproduction number estimation result of sampling from
‘true’ case numbers (Figure 2 top panel) with different mean detection proba-
bilities. The beta distribution parameters, denoted by a and b, give a mean
π = a/(a + b) so that in Figure 7 the range is from π = 7/9 (pink line) down
to 1/3 (red line) with the b = 2 held constant. The central estimator appears to
be weaker as the detection probability drops.

However, the factors that cause under-reporting are complex so we have little
information on the shape of the distribution of detection probability. We may then
fix the mean detection to π = 1/3 but consider different shapes around this mean.
For very large values of b then the sampled values of p are very close to the mean,
when a = 1 the distribution is triangular (mode at zero) and then for b < 1 the
distribution becomes ‘U’ shaped with modes at zero and one. In the latter case
the probability of detection is very polarised.

An alternative SEIR simulation is shown in Figure 8, but with no transmission-
switching intervention in order to ensure a clearer visualisation of the impact of
under-reporting. The crosses represent the simulated observations of daily new
cases and the curves are GAM fits. In Figure 9, the reproduction number and
its credible interval for the full data (black line) provides a reasonably accurate
estimate only when simulated case numbers are above 20 (day 50-150). The sim-
ulated sampling with mean of 1/3 is good enough only when the Beta parameters
are greater than 1, and even in these cases estimates are reliable only up to peak,
tending to lower values than those expected afterwards. We note however, that
the early phase of the outbreak is most likely the period of greatest interest. A
very polarised ascertainment (i.e. red lines) suggests the poorest estimate. In con-
clusion, these simulations suggest that low case ascertainment may lead to biased
estimates. We deemed this somewhat surprising, as under-reported case incidence
is generally not expected to result in underestimation of the reproduction number
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Figure 7: Estimated reproduction numbers ρ(t) of daily new case from simulated
SEIR epidemic (Figure 2 top panel) and seven corresponding Beta-Binomial sam-
ples. The black line is estimated from fully-detected daily new cases, while the
other lines (coloured lines) are estimated from incompletely detected cases. The
predictions of ρ(t) appear to have been underestimated accordingly (i.e. they are
all below the black line, and roughly gradually decrease as the fraction of detected
cases decreases).
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Figure 8: GAM fits, with option family = quasipoisson, on simulated case
data (black) and four Beta-Binomial samples with detected probability mean
π = 1/3 (red: Beta(0.1, 0.2); green: Beta(1, 2); cyan: Beta(10, 20); and pur-
ple: Beta(100, 200)). The daily new case data are generated from the simulated
stochastic SEIR model without intervention, with parameters N = 104, E(0) =
I(0) = 50, α = 1/7, γ = 0.1,∆t = 0.15.
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Figure 9: 95% Credible Interval for the reproduction number estimated from the
data generated with a Beta-distributed detection probability with mean π = 1/3
(Figure 8). The black solid line is estimated from the fully-detected daily new
cases (black GAM fit in Figure 8), with black dashed lines denoting the CrI,
while the coloured lines are estimated from incompletely-detected cases (red lines:
Beta(0.1, 0.2); green: Beta(1, 2); cyan: Beta(10, 20); and purple: Beta(100, 200)).
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[12], although this expectation might likely be a consequence of assumed stable
ascertainment and relatively high incidence. The simulations above, instead, are
stochastic and based on fairly small populations (10,000 people in total) and there-
fore produce low-count cases as well as ‘exaggerated’ missingness to deliberately
stress the method. The GAM fitting has imposed a smoothing process on this low
case incidence data for a given noise model, so the loss of information (or rather
than signal-to-noise ratio) requires further investigation.

A.4 A model with pre-symptomatic infectivity

In the COVID-19 pandemic, many cases started being infectious before showing
symptoms. To capture this, an additional state of infection can be added (P for
pre-symptomatic, or prodromal) to the disease spread model, leading to the system

Ṡ = −β
S(I + P )

N
(20)

Ė = β
S(I + P )

N
− αE (21)

Ṗ = αE − ηP (22)

İ = ηP − γI (23)

Ṙ = γI (24)

This model assumes that S are those susceptible, E are those infected but not
infectious, P are those infected and infectious but not yet detectable, I are those
infected, infectious and detectable and R are those recovered and immune. Cru-
cially it assumes that the disease states P and I are equally infectious. Here, we
have phrased the motivation in terms of symptoms but the logic remains for situ-
ations of widespread availability of rapid diagnostic testing and diseases (such as
COVID-19) where cases are infectious prior to detectability by test: in this case,
then, the interpretation can be changed to P being undetectable infectious cases
and I detectable infectious ones.

The new disease incidence is given by those entering I state, i.e. ηP in (23),
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and we may write disease states in terms of the GAM estimators c and s(t):

P (t) =
1

η
ec+s(t) (25)

E(t) =
1

α

(
Ṗ + ηP

)
=

1

α

(
ṡ(t)

η
+ 1

)
ec+s(t) (26)

I(t) = e−γt

[
I(0) +

∫ t

0

ec+s(u)+γudu

]
(27)

R(t) = I(0)− I(t) +

∫ t

0

ec+s(u)du, (28)

where the last equation was derived by replacing γI(t) with Ṙ(t) in the equation for
İ(t) above and solving for R(t) and assuming for simplicity R(0) = 0. The control
reproduction number for such a system (e.g. compare with the basic reproduction
number in [43]) is

ρ(t) = β(t)(
1

η
+

1

γ
).

Defining the timescale parameter ν = γ+η
γη

so that, as usual, ρ(t) = β(t)/ν, and

expressing β(t) from the equation for Ė(t) above, we obtain

ρ(t) =
γη(Ė + αE)

(γ + η)(I + P )

N

S

=
γη(s̈(t) + (ṡ(t) + α) (ṡ(t) + η))

α(γ + η)
(
ηe−s(t)−γt

[
I(0)e−c +

∫ t

0
es(u)+γudu

]
+ 1

)
× N

R(0) + I(0)− P (0)
ṡ(0)

+
(

1
ṡ(t)

+ ṡ(t)
α

+ α+η
α

)
P (t)

and dropping the N/S factor we obtain the effective reproduction number. This
proof-of-principle shows that it is possible to derive estimators for more complex
transmission model structures, although we do not expand in this direction here
but rather leave this derivation as a basis for further analysis and development of
the tools.
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