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ABSTRACT 
Objective: The application of Natural Language Processing (NLP) in the clinical domain is important due to the 
rich unstructured information in clinical documents, which often remains inaccessible in structured data. When 
applying NLP methods to a certain domain, the role of benchmark datasets is crucial as benchmark datasets not only 
guide the selection of best-performing models but also enable the assessment of the reliability of the generated 
outputs. Despite the recent availability of language models (LMs) capable of longer context, benchmark datasets 
targeting long clinical document classification tasks are absent.  
Materials and Methods: To address this issue, we propose LCD benchmark, a benchmark for the task of predicting 
30-day out-of-hospital mortality using discharge notes of MIMIC-IV and statewide death data. We evaluated this 
benchmark dataset using baseline models, from bag-of-words and CNN to instruction-tuned large language models. 
Additionally, we provide a comprehensive analysis of the model outputs, including manual review and visualization 
of model weights, to offer insights into their predictive capabilities and limitations. 
Results and Discussion: Baseline models showed 28.9% for best-performing supervised models and 32.2% for 
GPT-4 in F1-metrics. Notes in our dataset have a median word count of 1687. Our analysis of the model outputs 
showed that our dataset is challenging for both models and human experts, but the models can find meaningful 
signals from the text.   
Conclusion: We expect our LCD benchmark to be a resource for the development of advanced supervised models, 
or prompting methods, tailored for clinical text. 
The benchmark dataset is available at https://github.com/Machine-Learning-for-Medical-Language/long-clinical-doc 
 
 

INTRODUCTION 

With the recent emergence of transformer-based Language Models (LMs), research on clinical natural language 

processing (NLP) has achieved remarkable improvements1–3. However, due to the architectural characteristics of 

transformer models, most available LMs have constraints on the maximum length of the input sequence that a model 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 2, 2024. ; https://doi.org/10.1101/2024.03.26.24304920doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.03.26.24304920


 

 
 

2 

can process at once, and therefore the majority of available benchmark datasets targets processing of short 

documents. In the clinical NLP domain, this can be a major technical hurdle for translational applications as the 

clinical notes can be longer than what most transformer models can process. For example, BERT4 and 

PubMedBERT5 models can handle up to 512 tokens at one time, but the discharge summaries in MIMIC-IV have 

1,600 words on average, which in token is about six times longer than the 512 token limit.  

 

Recently, LMs capable of longer documents6,7 have become available, yet few benchmark datasets to target their 

ability to process clinical documents are available. These constraints raise the need for long document benchmark 

datasets to test the ability of developed models and to facilitate the development of models capable of processing 

longer clinical documents as well. 

 

In this paper, we describe work in developing a benchmark for clinical long document processing models, based on 

the out-of-hospital mortality prediction task. The source of the dataset is MIMIC-IV v2.28 corpus, specifically 

discharge notes for patients who were admitted to the ICU and discharged to locations other than hospice facilities. 

Along with the benchmark dataset, we explore multiple machine learning models for the task, including traditional 

Support Vector Machine using Bag-of-Words, Convolutional Neural Networks (CNN), a hierarchical transformer 

encoder9, and zero-shot large language models (LLMs) (open-source models and GPT46 via Azure). In the results 

section, we select three models, the best-performing CNN model, hierarchical transformer, and an open-source 

instruction-tuned LLM (Mixtral-8x7B-instruct-v0.17) and analyze the outputs. Based on expert physician review, we 

discovered that the dataset is challenging and at the same time the models can find meaningful signals. We 

additionally leverage the architecture of the hierarchical transformer model to visualize and quantify the extent to 

which they jointly consider information from different sections of the discharge summary.  

 

We anticipate that the proposed dataset will serve as a solid foundation for model development and, moreover, as a 

forum for evaluating LLMs on long clinical document classification tasks1. Second, the utilization of predictive 

models for 30-day mortality at the time of discharge is anticipated to facilitate timely end-of-life discussions with 

 
1 The benchmark dataset and leaderboard are available at https://github.com/Machine-Learning-for-Medical-
Language/long-clinical-doc  and https://www.codabench.org/competitions/2064/   
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patients and their families. Such conversations are crucial for enhancing the quality of life for patients nearing the 

end of life, by ensuring that care decisions align with their values and preferences10–13. 

 

MATERIALS AND METHODS  

Medical Information Mart for Intensive Care IV (MIMIC-IV)  

The Medical Information Mart for Intensive Care (MIMIC) is a series of publicly available electronic health record 

(EHR) databases collected from Beth Israel Deaconess Medical Center (BIDMC)14. MIMIC databases contain 

multi-modal data such as text data, structured data (including laboratory data, admission records, and demographic 

data), and radiograph images for some versions. All the records and text data are de-identified.  

 

MIMIC-IV8 is the latest release that encompasses admissions between 2009 and 2019, focused on structured data 

and text data of ICU patients. We used MIMIC-IV v2.2 data2 with discharge summaries and multiple structured 

records, including out-of-hospital mortality records from Massachusetts State Registry of Vital Records and 

Statistics8.  

 

Preprocessing  

Preprocessing of our benchmark dataset is composed of three steps. First, following the criteria of Harutyunyan et 

al.15, we collected admission records with an ICU stay. In the second step,  we merged date of death data using the 

admission records identifier (hadm_id). The third step filtered out records with task-specific restrictions. For our 

proposed 30-day out-of-hospital mortality prediction dataset, we excluded admissions with in-hospital deaths and 

admissions where a patient had a discharge disposition of “hospice” in structured data because these patients are 

expected to die shortly after discharge. The training, validation, and testing datasets were partitioned according to 

patient ID to guarantee that all admissions from the same patient are allocated to the same dataset subset. For the 

note data, we only utilized discharge notes and not radiology reports. Full details are available in Appendix A, and 

python implementation of the exact algorithm is available on GitHub repository.  

 
2 Published: Jan. 6, 2023. https://physionet.org/content/mimiciv/2.2/ 
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Figure 1. Diagram of the data preprocessing steps. The number of the notes is denoted in the parenthesis.  

Table 1.  Statistics of the datapoints during pre-processing steps. Admission-level data composes a minimum 
unit of data (often referred as example) and each admission has at most one discharge note. Some patients may have 
multiple admissions, resulting in several records. These patients might be represented in both the “positive” and 
“negative” notes categories (asterisked cells).  

   # of admissions   # of notes # of patients 

Raw data 431,231 331,794     180,733 
Data associated with ICU stays 65,330 65,330 50,253 
Final dataset 49,832 49,832 39,705 

-> Positive notes 1,830 1,830 1,772 * 
-> Negative notes 48,002 48,002 38,408 * 

 
Figure 1 shows the processing flow and Table 1 shows the number of datapoints after processing steps. As shown on 

the last two rows, our dataset is highly imbalanced; the negative-label notes, which means the patient survived, are 

about 26 times more abundant than positive-label notes. Of note, the number of admissions in the raw dataset 

exceeds the number of discharge notes because  99,437 admissions do not have discharge notes. 
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Figure 2 displays a histogram of the number of tokens in discharge notes. Each note is tokenized with 

microsoft/xtremedistil-l6-h256-uncased tokenizer and the Hugging Face Transformers library. As this model 

employs a word-piece tokenizer, a single word can be broken down into subwords and tokenized into multiple 

tokens depending on the frequency of the word. The median value for the token length were: 3978 (Interquartile 

range (IQR) 3085 - 5091) for train; 3991 (IQR 3080 - 5103) for development; and 3952 (IQR 3072 - 5072) for test 

set. 

  

 
Figure 2. Histogram of the number of tokens in datapoints. Each note in datapoints is tokenized using 
microsoft/xtremedistil-l6-h256-uncased tokenizer and Huggingface Transformers library. Datapoints in sub-datasets 
are sorted into 30 bins. Longtail samples that have more than 15,000 tokens are excluded when plotting these 
graphs.  

 
Baseline model  

Bag-of-words (BoW) model: BoW model is a widely used baseline model for NLP where a given text sequence 

is represented with the frequency of words or word chunks in the sequence. BoW is a strong baseline for document 

classification tasks with limited training data16. 

  

Convolutional Neural Networks: Kim et al.17 proposed Convolutional Neural Network (CNN) as a feature 

extractor for the sentence classification task. Our CNN model followed the structure of Kim et al. 

For complete information about implementation details and hyperparameter settings, please see Appendix B. 
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Pretrained transformer models  

The transformer is a model architecture that relies on the self-attention mechanism, which is effective at capturing 

global dependencies within an input sequence. BERT4 and GPT18 models are some of the early proposed 

transformer LMs. These models are pre-trained on large-scale corpora and further finetuned to task-specific datasets 

for supervised learning. Empowered by the pretrained LMs, models tackling clinical NLP tasks have shown 

remarkable progress.   

 

The self-attention mechanism of early transformer models is implemented by fully connecting each unit of 

sequence. This requires memory and computational costs that are quadratic with respect to the length of the input 

sequence, making it a challenge to use transformer models for longer sequences.  

 

Longformers: To mitigate this computational limitation for processing long documents, a handful of methods such 

as blend of local window and global attention approach and sliding window attention 19–22  have been proposed. 

Longformer19 and Clinical-Longformer20 are examples of such methods. Clinical-Longformer model was initialized 

from the pre-trained weights provided by the original authors3 and fine-tuned on our dataset.  

  

Hierarchical Transformers: Su et al.9 introduced a hierarchical transformer, which stack two levels of 

transformer encoders (Figure 3 - (a)). The hierarchical transformer splits input sequences into smaller chunks and 

first encodes chunks with a word-level encoder to output chunk representations. The latter part of the structure, 

chunk-level encoder, works as a feature extractor given the chunk representations of the former part and predicts 

classes for an input document. Hierarchical transformer models were experimented with two settings, xtremedistil 

model and PubMedBERT model as initial weights for the word-level encoder. The chunk-level encoder of the 

hierarchical transformer model was randomly initialized. Chunk size of hierarchical transformers were tested with 

two settings, 256 tokens and 512 tokens. In this paper we refer the letter setting as “Bigchunk” setting. 

 

 
3 https://huggingface.co/yikuan8/Clinical-Longformer 
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LLMs: We explored the ability of zero-shot mortality prediction using LLMs, Mistral (7B-v0.3)22, Mixtral 

(8x7B4)7, Llama 3 (8B)23, Qwen2 (7B, 72B)24, Meerkat (7B)25, and GPT4-32k6 (GPT-4). For the GPT4-32k, we 

used the HIPAA-compliant version that is provided through Mass General Brigham Azure version 0613. For zero-

shot experiments, we used the Hugging Face library to load and inference open-source models and Azure API for 

the GPT-4 model. These models were selected as they are able to handle context with 32k tokens. Due to hardware 

limits, a Activation-aware Weight quantized (AWQ)26 version was used for the Qwen2 72B model and a maximum 

token length of 8,192 were applied to all open-sourced models. Figure 3 - (b) shows our prompting template for 

LLMs. The model is asked to choose the answer between 0:alive, 1:death and we used a regular expression that 

looks for the first incidence of “0” or “1” to extract answers from them. 

  

 
4 Mixtral-8x7B-Instruct-v0.1 
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(a)

 
 

(b) 

 

Figure 3. Details about pretrained transformer models, structure and prompts  
(a) Structure of hierarchical transformer model. White boxes represent data and orange boxes represent transformer 
architecture. Green boxes represent dimensionalities of vectors for the step. All Encoder Transformers share 
weights. The figure shows [CLS] extraction as an example of the “pooling” methods.  
(b) Our prompt template for LLM experiments. $DISCHARGE_NOTE should be replaced with the actual discharge 
notes. GPT-4 outputs were generated using this template. Other LLMs utilized the same sentences but with model 
specific special tokens and templates. 

 

 

<s>[INST] <<SYS>> 
Below is a clinical document, please remember the following 
clinical context and answer how likely is the given patient's 
out hospital mortality in 30 days? 
<</SYS>> 
Here is the clinical document:  
<text> 
$DISCHARGE_NOTE 
</text> [INST] How likely is the given patient\'s out 
hospital mortality in 30 days? Please only use to answer with 
one word: 0:alive, 1:death [/INST] 
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Experiment details  

Our primary metric is F-1 score for the positive labels and we used Receiver Operating Characteristic/Area Under 

the Curve (ROC AUC) as supplementary metric. Note that we used hinge loss for BoW models, which does not 

produce probability estimates for the calculation of ROC score. For BoW, CNN and Hierarchical Transformers, we 

experimented with five or ten runs with identical settings except for the random seeds and averaged the performance 

to minimize the effect of random initialization of the model.    

 

Model attention analysis 

One of the benefits of the hierarchical transformer model is that it can provide a window into interpretability by 

highlighting the saliency of each input segment into the model prediction. This becomes possible because the model 

splits the input into several chunks, each chunk is encoded through an encoder layer, and each encoded chunk 

representation works as an input unit of the chunk attention layers. By analyzing attention values and the vector 

norm27 of each chunk, we can infer the model's prioritization of information across various chunks.  

 

Kobayashi et al.27 proposed vector norm based analysis, noting that the output vector of each attention layer is a 

weighted sum of vectors. Following the expression of Kobayashi et al., we denote vector representation of input 

unit, which is a chunk as we look into chunk-level encoder, at !-th position as "!,  and attention weight for !-th input 

to #-th output unit is denoted as !",!. Then, the output vector ( $" 	) can be expressed as Equation (1) where a function 

&(") is a simplified notation of value transformation given input unit vector ".  

 $" 	= 	∑ +",! 	&("!)$
!%1    (1) 

As the equation explains, the output is affected by not only attention weights, !",!, but also transformed input vector, 

&("). Norm-based analysis measures the norm of the weighted vector ( "|!&(")|" ) to figure out which input 

segments are highlighted for a given input sequence. Unlike machine translation tasks where this analysis is first 

presented, looking into input unit  alignment (i.e. finding an input unit that resonates with another word) does not 

teach us meaningful insights. Rather,  we focused on norm of output vector of attention layer, $" , or$"∑ ,&,'&("'' )"$, 

which will directly show the degree of importance of each input unit in the model’s decision.  
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To investigate the importance of aggregating information across a discharge summary, we use the vector norm 

method to analyze section importance for this task. We do this by aggregating the two highest vector norm chunks 

for each instance in the test dataset. Since all inputs have different length, the content in a chunk with a given index 

can have a different meaning across each sample. Hence, instead of using chunk locations alone, we use section 

names from chunks for the analysis. The section names were extracted using a rule-based approach.  

  

Qualitative analysis 

For the post-experiment exploratory analysis, we conduct two-step investigations. The first step is dictionary-based 

detection (i.e. exact match of synonyms list) of mentions about palliative and comfort care measures5 and Do Not 

Resuscitate and Do Not Intubate (DNR/DNI) status. These mentions can be a strong signal for poor prognosis and 

can be a first filter for data investigation. The second step is to manually review the discharge notes for the left-over 

samples that do not have such terms. For the manual review, we provide notes, model predictions, true labels, and 

three questionnaires. Regarding model predictions, predicted binary labels and order of chunk highlights are 

provided. Labels are set to be hidden by default, and need to click unhide to see the labels. Three questionnaires 

were “Does this patient label seem valid?”, “Was chunk information useful?”, and “Was this case difficult to 

predict?” 

 

For comparative analysis, we compare outputs of three models, CNN, Hierarchical Transformer, and Mixtral and 

manually inspect samples of the benchmark dataset. For this analysis, we focus on open-sourced models for this 

section as we have more control over the prediction process and the results of these models are more likely to be 

reproducible.  

 

 

 

 
5 Comfort care term list: “hospice”, “comfort measures”, “comfort care”, “palliative care” 
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RESULTS  

Table 2 shows our experimental results for the machine learning models. BoW and CNN models showed strong 

performance against the fine-tuned transformer models: BoW showed 27.2% F1, CNN showed 28.9% F1. Except 

for GPT-4, among transformer-based models, hierarchical transformers showed the best performance, which is near 

the BoW or CNN models. Bigchunk model of Hierarchical Transformer models, which refers to chunk size of 512 

tokens setting as opposed to normal 256 tokens, showed the best performance of 27.8% F1. Clinical-Longformer 

showed lower performance when compared with BoW, CNN and hierarchical transformers models regardless of 

whether the text was truncated from the bottom (right truncated) or top (left truncated) of the document. Mixtral-

8x7B-instruct-v0.1 model with zero-shot methods showed performance of 20.5% F1, which is 8% lower than the 

best performing supervised fine-tuning approach. Our results with GPT-4 showed the best performance of 32.4% 

F1.   
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Table 2. Performance of models in out-of-hospital mortality prediction task. Our primary metric is the F1 score 
for positive labels, which are highlighted in bold. Bag-of-words models and LLMs do not generate probability 
estimates that are necessary for calculating the ROC AUC score. Note that the Max Token column (marked with an 
asterisk) shows the token settings used in our experiments and does not represent the models' maximum token 
settings. 

   Max  Negative Label Positive Label ROC  
Method  Model  # Params  Tokens * P  R  F1  P  R  F1  AUC  
Sparse 

vector  
Bag-of-Words + SVM   - 0.9720 0.9904 0.9811 0.4431  0.2011  0.2721  NA  

Training  

from scratch 

Convolutional Neural 

Network 
3 M  8,192 0.9726 0.9899 0.9812 0.4431  0.2188  0.2899  0.8468  

Fine-tuning 
Hierarchical Transformers   

(xdistill)  
31 M  8,192 0.9734 0.9724 0.9729 0.2519  0.2567  0.2526  0.8023  

Fine-tuning 
Hierarchical Transformers   

(xdistill - bigchunk)  
31 M  8,192 0.9731 0.9828 0.9779 0.3341  0.2401  0.2788  0.8380  

Fine-tuning 
Hierarchical Transformers   

(PubMedBERT)  
 135 M 8,192 0.9713 0.9920 0.9816 0.4496  0.1800  0.2566  0.8602  

Fine-tuning 
Hierarchical Transformers   

(PubMedBERT - bigchunk)  
 135 M 8,192 0.9710 0.9920 0.9814 0.4478  0.1698  0.2418  0.8653  

Fine-tuning 
Clinical Longformer   

(Right truncate)  
 149 M 4,096 0.9694 0.9799 0.9746 0.1923  0.1340  0.1580  0.7362  

Fine-tuning 
Clinical Longformer   

(Left truncate)  
 149 M 4,096 0.9679 0.9767 0.9723 0.1237  0.0919  0.1054  0.6828  

Zero-shot Qwen2-7B-Instruct 7B 8,192 * 0.9961 0.1749 0.2976 0.0407 0.9808 0.0782 NA 

Zero-shot Mistral-7B-Instruct-v0.3 7B 8,192 * 0.9847 0.7760 0.8680 0.0956 0.6628 0.1671 NA 

Zero-shot Meerkat-7B-v1.0 7B 8,192 * 0.9741 0.937 0.9552 0.1466 0.3027 0.1975 NA 

Zero-shot Meta-Llama-3-8B-Instruct 8B 8,192 * 0.9839 0.8303 0.9006 0.1155 0.6207 0.1948 NA 

Zero-shot Mixtral-8x7B-Instruct-v0.1 45B 8,192 * 0.9851 0.8326 0.9025 0.1214 0.6475 0.2045 NA 

Zero-shot Qwen2-72B-Instruct-AWQ 72B 8,192 * 0.9948 0.6059 0.7531 0.0763 0.9119 0.1409 NA 

Zero-shot GPT-4 (window - 32k) Unknown - (32k) 0.9745 0.9839 0.9792 0.3842 0.2797 0.3237 NA 

BOW = bag-of-words; CNN = convolutional neural network; Params = parameters; P = precision, R = recall, 
ROC AUC= receiver operating characteristic/area under the curve; SFT = supervised fine-tuned 

 

 

Comparative analysis on model predictions  

Figure 4 shows a Venn diagram of the true positive and false positive samples from three models: CNN, 

Hierarchical Transformer, and Mixtral. The two supervised models have different characteristics when compared to 
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those from zero-shot Mixtral, a LLM. This is unsurprising, as these supervised models are strongly influenced by the 

dataset models are trained on, whereas the LLMs have presumably never seen the dataset.  

 

Sixteen samples were reviewed by a board-certified critical care physician and clinical informatics expert (MA) to 

understand the face validity of the label and difficulty of the task. The samples were selected across the various 

categories: three were common true positives, seven were common false positives where three among them were 

samples without date of death records (For complete information, please see Appendix C).  Overall, the physician 

commented that predicting a specific time window such as 30 or 60 days was difficult. This finding agreed with 

multiple prior studies showing that prognostication is clinically challenging in patients with serious illness, and even 

experienced physicians tend to overestimate survival 28–31. Incorrect prognostication can hinder end-of-life 

discussions, lead to more aggressive and potentially over-treatment, and lead to interventions that are not in line with 

patients’ goals-of-care. In the outpatient oncology setting, machine learning-guided prognostication has been found 

to improve advanced care planning documentation and serious illness conversations, which could improve end-of-

life care. In the inpatient intensive care setting, models such as those developed here could be used to identify 

patients who may have lower probability of survival to improve end-of-life planning and care. 

 

 

  
Figure 4. Venn diagram of three model predictions. Numbers in the diagram denote the number of instances in 
each category. Left diagram (a) shows true positives and the right diagram (b) shows false positive cases.  
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Common predictions: All three models have true positive predictions on 29 instances, which can be considered 

as easy-to-predict examples. Among 29 instances, 26 are identified as having comfort care mentions in the note and 

another partition of 26 are identified as having DNR/DNI mentions. All of the 29 instances have at least one of those 

two keyword sets. Note that patients identifiable as discharged to hospice through structured data were excluded 

from the dataset during pre-processing steps. Some of the 26 patients had discussion for discharge to hospice facility 

but were not actually discharged to there according to the structured data (cf. they were discharged to home with 

hospice care or alternative facilities like SKILLED NURSING FACILITY or CHRONIC/LONG TERM ACUTE 

CARE). The remaining three samples were manually examined. From the structured data, they passed away in 7, 10, 

and 22 days. Physician analysis was that the labels for these three patient cases had face validity. Based on our 

analysis, we did not find any anomalies in the labels of all 29 instances. 

 

For false positive predictions, three models have 18 instances in common. Since all machine-learning models 

predicted these negative instances as positives, instances in this category can be treated as difficult instances. These 

false positive predictions can be interpreted in multiple ways: the patient’s condition is severely bad but the patient 

survived, or the prediction is correct but the label is erroneous (please see Limitation section for the further 

discussion). Our dictionary-based detection found comfort care terms from 13 notes and we manually reviewed the 

rest of five notes where it cannot find the term. Three cases survived less than 1 year and among them, two passed 

away after 61 and 106 days. One of the other two patients survived about 1 year and 9 months. The last patient did 

not have a date of death record but our reviewing physician commented that this patient has a high possibility of 

death in a short period (MIMIC-IV censors death dates at one year after last discharge, so the patient may have 

survived over one year, or may have been lost to follow-up and died in another state). In summary, some of our data 

instances raise challenging points to the models, which we believe are important for the discriminative ability of a 

benchmark dataset. The model predictions were also reasonable and the errors are likely to happen even for a well 

trained model or domain experts. 

 

Distinct predictions: Hierarchical transformer (xdistill-bigchunk) had six distinct true positive predictions that 

other models failed to predict correctly (Green area in Figure 4 - (a)). These examples can be interpreted as difficult 

instances as two other models recognized other signals of survival from the text even though they were not correct 
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predictions. This also agrees with the manual analysis, the physician commented that five out of six cases were 

difficult to predict whether they can survive more than 30 days.  

 

Attention of Hierarchical Transformer Model 

We looked into the vector norm values of the hierarchical transformer to see which chunks, input units of the chunk 

attention layers, are highlighted during the prediction. Table 3 shows the results of the population-level chunk 

highlight pairs analysis. The table shows the section combinations and their aggregated frequencies, which shows 

the summation of section pair weights, normalized by the highest weight. Sections like “Brief Hospital Course” and 

“Pertinent Results” frequently are in the two most-attended sections.  

 

For an in-depth analysis, we looked into prediction of an instance. During prediction of one of the notes without 

comfort care mentions, the model had highlights on the 5th chunk that has # icu course part of brief hospital 

course : and the last chunk, which has discharge information where a part of discharge medications:, discharge 

disposition :,  discharge diagnosis :, discharge condition :, and discharge instructions :, and discharge 

instructions : sections are written (Figure 5). The brief hospital course provides informative background about the 

clinical findings pertaining to a patient's brain injury, while the discharge information provides complementary, non-

overlapping information indicating the level of severity of the injury and mental status at the time of discharge. 

 

(a) of Table 4 is a part of the 5th chunk. In this chunk, we note the patient has evidence of hypoxic brain injury and 

remained in a non-cognitive state that required dependence on breathing and feeding life support. 

 

(b) of Table 4 is a part of the last chunk. In this chunk, we could again confirm that the patient had hypoxic ischemic 

brain injury and low blood sugars, while gaining new information about her mental status and clinical condition at 

the time she was discharged. While it is reasonably clear from the latter section that the patient’s condition has a 

poor prognosis, the earlier section contains detailed information of their problems that could give the model more 

fine-grained information that could modulate the model’s estimation of their condition’s severity and neurologic 

function.  
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Table 3. Population level section pairs of the most highlighted sections when using hierarchical transformers.  

Section 1 Section 2 Adjusted frequency 

brief hospital course history of present illness 1 

brief hospital course admission date : discharge date 0.882317 

brief hospital course major surgical or invasive procedure 0.882317 

brief hospital course allergies 0.882317 

brief hospital course followup instructions 0.871126 

brief hospital course chief complaint 0.864856 

brief hospital course name : unit no 0.819268 

history of present illness pertinent results 0.74036 

brief hospital course past medical history 0.714455 

history of present illness followup instructions 0.711694 

major surgical or invasive procedure pertinent results 0.691837 

allergies pertinent results 0.691236 

admission date : discharge date pertinent results 0.691236 

chief complaint pertinent results 0.674251 

admission date : discharge date followup instructions 0.657774 

allergies followup instructions 0.657774 

followup instructions major surgical or invasive procedure 0.657774 

name : unit no pertinent results 0.643258 

chief complaint followup instructions 0.636643 

followup instructions name : unit no 0.609727 
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Table 4. The 5th chunk (a) and the last chunk (b) of the example analyzed in the main text.  

(a) # icu course  
on admission , patient was monitored on cveeg with no seizures 
captured . some left temporal epileptiform discharges were seen in a 
semirhythmic pattern ( pleds ) , but they were not frequent or 
concerning for seizure . she was continued on keppra 1500mg bid with no 
seizures seen . she had a cth , which was suspicious for large left mca 
stroke . mri was obtained which was concerning for hypoglycemia related 
damage vs hypoxic ischemic encephalopathy with cortical necrosis vs post 
- ictal changes . cta did not show vessel abnormalities . repeat mri was 
performed on , and showed stable changed . etiology of her exam was felt 
to be a combination of hypoglycemia and hypoxia . 
 
she remained intubated and off sedation for her entire stay . during her 
icu stay , she began to have more spontaneous movement of her lower 
extremities , and would intermittently open her eyes , and maintained 
her brainstem reflexes on minimal ventilator settings . she did not 
regard , track , or follow any commands . an mri was repeated on , which 
showed persistent cortical slow diffusion within left greater than right 
cerebral hemispheres with parietal / temporal predominance , and new 
gyriform contrast enhancement , including a new discrete t2 hyperintense 
and enhancing focus in the medial left temporal lobe . 
<Omitted> 

(b)  discharge medications :  
 1 . acetaminophen 650 mg 
… 
<Omitted>  
  
 discharge diagnosis :  
 hypoglycemic encephalopathy  
 hypoxic ischemic brain injury  
 urinary tract infection  
  
  
 discharge condition :  
 mental status : confused - always .  
 level of consciousness : lethargic but arousable .  
 activity status : bedbound .  
  
  
 discharge instructions :  
 dear ms . ,   
 you were hospitalized after severely low blood sugars and brain  
 injury caused by insulin overdose . you were started on  
 medication to prevent seizures . you will need to go to a nursing  
 facility to help you take care of yourself .  
  
 it was a pleasure taking care of you ,  
 your neurologists  
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Figure 5. Model highlights during the prediction of an example instance. The position of the chunk is 
represented on the X-axis, and the vector norm of the layers is shown on the Y-axis. The left graph shows all layers 
and the right graph shows the average of all layers. Value of “is_input” denotes whether the chunk is composed of 
actual inputs versus padding tokens. In this graph, chunks in the first to 7th position have real input values but from 
the 8th chunk, chunks are filled with padding tokens. 
 
  
Discussion   

During our experiment, significant discrepancies between precision and recall scores were observed for open-

sourced large language models (LLMs), suggesting that the label distribution of the predictions does not align well 

with that of the benchmark dataset. We examined the predictions of open-source LLMs and found that the 

proportion of positive labels severely differed from the true labels. In other words, only 3.45% of the notes in the 

test dataset were positively labeled. However, predictions by open-source LLMs varied widely, ranging from 7.12% 

by Meerkat to 83% by Qwen2 (More details available in Appendix D). The performance and the difference in ratios 

exhibited a strong negative correlation. We interpret these observations as reasonable, given the inherent difficulties 

of a zero-shot setting where, unlike in supervised approaches, the model cannot learn the distribution from the 

original dataset. 

 

MIMIC-IV v2.2 dataset utilized the Massachusetts Registry of Vital Records (cf. Death Certificate is public record 

in the state of Massachusetts) to enrich the date of death record. According to the MIMIC-IV paper, the state registry 

was selected instead of the Social Security Death Master File due to data quality concerns32. However using the state 

registry cannot fully resolve the data concerns as patients who moved out of the state cannot be traced with this 
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method. For example, among 18 instances of common false positive cases (i.e. union of three models used in the 

Comparative analysis section), three patients do not have date of death (DoD) records. We requested the physician 

expert to review these instances and found out that all of these patients are severely ill and less likely to survive long 

enough after discharge, meaning that these three labels may be erroneous. Despite this intrinsic limitation, we 

believe the state registry is still one of the most viable options when creating a database. 

 

Clinical Impacts and Ethical Considerations 

Our study proposes a benchmark dataset that can facilitate development of  Language Models to predict 30-day 

mortality risks using discharge notes. Developing accurate AI models for prognostic prediction offers several 

potential benefits such as patients’ emotional well-being and proper care planning. For example, for low-risk 

patients, it could reduce unnecessary care, while providing doctors with valuable references to improve health 

outcomes for high-risk patients. Additionally, it aids in preparing extremely high-risk patients and their families for 

end-of-life care and assists hospitals and policymakers in prioritizing resources during health crises.  

 

Despite the importance of having accurate estimates of patient outcomes, studies have shown that such predictions 

are difficult for both clinicians33 and patients34, which can lead to disparity between end-of-life (EOL) preferences 

and actual EOL treatment35. A study on AI-based prediction predictions36 shows that both patients and physicians 

answered positively in the interview about an option of AI prognosis model provided. According to the study, both 

parties supported use of AI models in clinics. 

 

However, no predictive model of mortality will ever be perfect, and classifier errors have the  potential to cause 

significant ethical concerns36. Misuse without a thorough understanding of its limitations could lead to, for example, 

undertreatment by physicians, or negative impact to patient decision-making. While mitigating these concerns is 

largely a social effort, our future work will also investigate technical approaches, including  developing agent-based 

models that simulate decision-making. This model would simulate interactions between patients, doctors, and 

policymakers to study how their understanding and interpretation of the mortality prediction model affects health 

outcomes. Analyzing these dynamics can contribute empirical results to the societal discussion about predictive 
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models, and ensure the responsible incorporation of predictive models into healthcare, balancing innovation with 

ethical considerations and patient safety. 

 

CONCLUSION  

In this paper, we present a benchmark for evaluating long clinical document processing, entitled LCD benchmark. 

We tested our benchmark dataset using baseline methods, ranging from Bag-of-words to zero-shot prediction with 

LLMs. As a result of these methods along with further analysis, we showed that the LCD benchmark presents 

challenges and the potential for improvement in current neural network-based approaches. During our experiments 

with LLMs, we further explored the importance of their capability to process longer sequences. Our benchmark 

dataset is publicly available for the researchers who gained access to the MIMIC-IV datasets and the results can be 

shared with the CodaBench platform37. 
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AUTHOR NOTE 
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APPENDIX for LCD Benchmark: Long Clinical Document Benchmark on Mortality Prediction for 
Language Models 
 

A. Preprocessing details 
a. Data selection 

In our dataset, each admission record, uniquely identified by the key “hadm_id”, 
serves as a datapoint. Although MIMIC-IV includes both discharge notes and 
radiology reports, our study only focuses on discharge notes. Hence, any 
reference to “notes” throughout this paper denotes discharge notes. 
Following the criteria of Harutyunyan et al.1, we collected admission records with 
an ICU stay. Original MIMIV-IV dataset v2.2 has 431,231 admission records and 
331,794 discharge notes from 180,733 patients. Among the admissions, only 
65,330 have ICU stay records. Some admissions may not have associated 
discharge notes (Table 1). However, when an admission does have a note, it is 
always just one discharge note per admission. For admissions that include an 
ICU stay, each one has an associated discharge note. This means that for the 
final benchmark dataset, a unit of datapoint is about an admission record with a 
discharge note and a label.  
After the initial data selection, we applied additional task-specific restrictions, 
resulting in 49,832 notes forming the final dataset. During this phase, we 
excluded admissions that ended in in-hospital deaths and those with a discharge 
disposition of “hospice” noted in the structured data. The rationale for these 
exclusions is that these patients are expected to die shortly after discharge.  

b. Label creation 
Our label for the out-of-hospital mortality task is calculated based on the 
dischtime record in admissions.csv and dod (abbreviation for date of death) in 
patients.csv of MIMIC-IV dataset (note that we used dod instead of deathtime in 
admissions.csv as deathtime only includes in-hospital-death). Our threshold for 
the label is 30 days (inclusive) and the positive label means the patient died 
within 30 days from the discharge date. We do not count the specific time of day 
in this calculation. For example, if a patient passes away the next day, we count 
the time delta as one full day regardless of the time of day. This is due to the 
nature of dod records, which records date of death only.  

c. Text cleaning 
For the note data, we only utilized discharge notes and not radiology reports. 
New line characters and horizontal tabulation (\t) in the note were replaced with 
<cr> and a space, respectively.  
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Table 1. Statistics by MIMIC-IV admission types. Numbers represent the admissions for each 
types. 

 Raw data Associated 
with icu  No note Not stayed 

in icu 

URGENT 44691 12453 15110 18758 

EW EMER. 149413 38672 6735 108203 

EU OBSERVATION 94776 377 62969 31441 

OBSERVATION ADMIT 52668 8974 694 43931 

SURGICAL SAME DAY ADMISSION 34231 7373 3622 23783 

AMBULATORY OBSERVATION 6626 23 1964 4641 

DIRECT EMER. 19554 2704 861 16322 

DIRECT OBSERVATION 18707 183 6847 11683 

ELECTIVE 10565 2422 635 7702 

 
 
 

B. Implementation details and Hyperparameter settings 
a. Bag-of-words models were implemented using scikit-learn1. CNN, Hierarchical 

transformers, and Clinical-Longformer models were trained and tested on the 
CNLPT library 2 (available on GitHub: https://github.com/Machine-Learning-for-
Medical-Language/cnlp_transformers ). The models were evaluated against the 
dev set during the training time, and the best performing checkpoints were 
selected based on the average of Accuracy and the F-1 score.  
CNN model and hierarchical transformer models have flexibility in selecting the 
maximum sequence length (max_seq_length), as unlike most language models, 
these models can expand the window without pre-training again from scratch. 
We selected max_seq_length to be 8192 tokens, which can cover 97% of the 
notes in the train and development set without truncation (based on xtremedistil 
model tokenizer).   
Since the open-sourced Clinical-Longformer only supports maximum sequence 
length of 4096, we tested both right-truncation and left-truncation settings, i.e. 
truncating the ending part and the beginning part of the input sequence 
respectively.   

b. Bag-of-Words (BoW): 
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i. Backgrounds: BoW models learn vocabulary occurrence information but 
do not utilize the information of the order of word chunks in an input. 
Hence, they have a very limited ability to use syntactic information. The 
size of the word chunk, which could be one or a few words depending on 
the window size, can add the ability to represent local syntactic 
information, but it can also make vocabularies sparse and very large. 
Despite these limitations, BoW is a strong baseline for document 
classification tasks with limited training dataset.  

ii. Hyperparameter search for the BoW model was only performed on the n-
gram window of the vectorizer, and we selected best performing settings 
based on experiments on the development dataset, which was using 
unigram and bigram. 
CountVectorizer module with monogram and bigram and SGDClassifier 
with default settings were used (hinge loss, max_iter=1000, tol=1e-3).  

c. CNN: 
i. Our CNN model implementation followed the structure of Kim et al.3 with 

minor differences on embedding layer and hyperparameter settings: Kim 
et al. used word vectors pre-trained with continuous bag-of-words 
architecture namely word2vec (Mikolov et al.4), whereas our model used 
a randomly initialized embedding layer of 100 dimensions.  

ii. Learning rate: 2e-6 
Batch_size: 4 
CNN_num_filters: 500 
Warmup steps:5000 
Max epochs: 100 
Max_seq_len: 8192 

d. Hierarchical transformers: 
i. xdistill: 

Chunk_len: 256 
Number of chunks: 32 
Learning rate: 2e-6 
Batch_size: 4 
Layer (Chunk encoder): 12 
Warmup steps:5000 
Max epochs: 100 
Max_seq_len: 8192 

ii. xdistill-bigchunk: 
Chunk_len: 512 
Number of chunks: 16 
Learning rate: 2e-6 
Batch_size: 4 
Layer (Chunk encoder): 12 
Warmup steps:5000 
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Max epochs: 100 
Max_seq_len: 8192 

e. Longformer: 
Learning rate: 2e-5 
Batch_size: 4 (1*4 Gradient accumulation) 
Warmup steps:5000 
Max epochs: 100 
Max_seq_len: 4096 
 

C. Error analysis selection 
a. Following are the characteristics of the 16 samples we reviewed. 

TP refers to True Positive;  FP refers to False Positive;  ComfortPos means 
comfort care mentions are found; ComfortNeg means comfort care mentions are 
not found; DOD_Nan means do not have ‘dod’ records; Unique-hier means that 
among three models, only hierarchical transformer predicted correctly 
 

TP, ComfortNeg 
TP, ComfortNeg 
TP, ComfortNeg 
FP, ComfortNeg 
FP, ComfortNeg 
FP, ComfortNeg 
FP, ComfortNeg 
FP, DOD_Nan, ComfortNeg 
FP, DOD_Nan 
FP, DOD_Nan 
Unique-hier, ComfortPos 
Unique-hier, ComfortPos 
Unique-hier, ComfortPos 
Unique-hier, ComfortNeg 
Unique-hier, ComfortNeg 
Unique-hier, ComfortNeg 

 
 
 

D. Label distribution of the LLM predictions 
a. Table 2 illustrates the distribution of positive and negative labels in the 

predictions made by the Large Language Model (LLM). We visualized the 
“Positive F1” column from the table (y-axis) and the difference between the 
actual distribution of “Pos/Total” in true labels (3.45%) and model predictions (x-
axis) in Figure 1. From the figure, we can observe that these two variables have 
a negative correlation. 
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Figure 1. Scatter plot of Positive label F1 score (y-axis) and the difference 
between the actual distribution of “Pos/Total” in true labels (3.45%) and model 
predictions (x-axis) 
 

 
Table 2. The distribution of positive and negative labels in the predictions made by the Large 
Language Model. Performances of the zero-shot predictions are given as a reference.  
 

 Negative label Positive label Number of labels  
in predictions 

Model Name Prec. Recall F1 Prec. Recall F1 Pos. Neg. Pos/Total 

Qwen2-7b 0.9961 0.1749 0.2976 0.0407 0.9808 0.0782 6285 1283 83.05% 

Qwen2-72b 0.9948 0.6059 0.7531 0.0763 0.9119 0.1409 3118 4450 41.20% 

Mistral-7b-v0.3 0.9847 0.776 0.868 0.0956 0.6628 0.1671 1810 5758 23.92% 

Llama3-8b 0.9839 0.8303 0.9006 0.1155 0.6207 0.1948 1402 6166 18.53% 

Meerkat-7b 0.9741 0.937 0.9552 0.1466 0.3027 0.1975 539 7029 7.12% 

Mixtral-8x7b 0.9851 0.8326 0.9025 0.1214 0.6475 0.2045 1392 6176 18.39% 
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E. Limitation: Post-hoc experiments - different settings in baseline models 
a. Models inherently have different settings due to the nature of their architectures. 

One of the notable setting differences is the variance in maximum token length 
for input instance across the models.  
Max token length can be more impactful for large LMs. Prompts for large LMs 
include system prompts, questions, and the input sequences.  
Post-hoc experiments on Mixtral showed that when the maximum token length is 
limited to 2048, the performance dropped by 11 percent in absolute difference, 
which is about half of the performance of the full-length model (Table 3).  

b. For the zero-shot setting with large LMs, the performance of the models relies on 
how the prompt is formulated. Sometimes the model cannot produce answers 
that comply with the suggested answer format. For example, our prompt requires 
the model to answer only between 0:alive or 1:death but sometimes answers 
were started with “Based on the information provided,” not matching the 
requested format. 165 predictions from Mixtral 8*7B included the above 
mentioned phrase. To alleviate this problem, Gao et al.5 proposed an alternative 
prompt method for zero-shot evaluation named harness. However, this approach 
can only be applied to models that support output of probability, meaning that 
most cloud-based models like GPT-4 cannot be evaluated using this method.   

F. Note: The Mixtral outputs used in analysis in Section C and E were generated using the 
exact prompt provided in the main manuscript. Unlike the results presented in the 
performance table in the main article, these outputs were not produced using the 
apply_chat_template function. 

 
 
Table 3. Performance of Mixtral* model by the length of input text 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Performance 
 

 
Predictions 

 

Length Prec Rec F1 Positive Negative Pos/Neg 

2048 0.08 0.17 0.11 560 7008 7.40% 

8196 0.16 0.38 0.22 618 6950 8.17% 
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