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Abstract 
Objectives 
Approximately 80% of people with epilepsy live in low- and middle-income countries 
(LMICs), where limited resources and stigma hinder accurate diagnosis and treatment. 
Clinical machine learning models have demonstrated substantial promise in 
supporting the diagnostic process in LMICs without relying on specialised or trained 
personnel. How well these models generalise to naïve regions is, however, 
underexplored. Here, we use a novel approach to assess the suitability and 
applicability of such clinical tools for diagnosing active convulsive epilepsy in settings 
beyond their original training contexts. 

Methods 
We sourced data from the Study of Epidemiology of Epilepsy in Demographic Sites 
dataset, which includes demographic information and clinical variables related to 
diagnosing epilepsy across five sub-Saharan African sites. For each site, we 
developed a region-specific (single-site) predictive model for epilepsy and evaluated 
its performance on other sites. We then iteratively added sites to a multi-site model 
and evaluated its performance on the omitted regions. Model performances and 
parameters were then compared across every permutation of sites. We used a leave-
one-site-out cross-validation analysis to assess the impact of incorporating individual 
site data in the model. 

Results 
Single-site clinical models performed well within their own regions, but worse in 
general when evaluated on other regions (p<0.05). Model weights and optimal 
thresholds varied markedly across sites. When the models were trained using data 
from an increasing number of sites, mean internal performance decreased while 
external performance improved.  

Conclusions 
Clinical models for epilepsy diagnosis in LMICs demonstrate characteristic traits of ML 
models, such as limited generalisability and a trade-off between internal and external 
performance. The relationship between predictors and model outcomes also varies 
across sites, suggesting the need to update specific aspects of the model with local 
data before broader implementation. Variations are likely to be specific to the cultural 
context of diagnosis. We recommend developing models adapted to the cultures and 
contexts of their intended deployment and caution against deploying region- and 
culture-naïve models without thorough prior evaluation. 
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Key points 
 Machine learning-driven clinical tools are becoming more prevalent in low-

resource settings; however, their general performance across regions is not 
fully established. Given their potential impact, it is crucial models are robust, 
safe and appropriately deployed  

 Models perform poorly when making predictions for regions that were not 
included in their training data, as opposed to sites that were 

 Models trained on different regions can have different optimal parameters and 
thresholds for performance in practice 

 There is a trade-off between internal and external performance, where a model 
with better external performance usually has worse internal performance but is 
generally more robust overall 
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Introduction 
Epilepsy is a common neurological condition that disproportionately affects people 
from disadvantaged socio-economic groups. Studies estimate that up to 75 million 
people have epilepsy worldwide, with approximately 80% in low- and middle-income 
countries (LMICs)(1). Epilepsy accounts for over 13 million disability-adjusted life 
years annually and over 0.5% of the global burden of disease. While an estimated 
70% of people with epilepsy could live seizure-free with anti-seizure medications, over 
75% of those living with epilepsy in LMICs cannot obtain an appropriate diagnosis or 
any treatment (2)(3).  

The diagnosis of epilepsy requires training, skilled personnel, time and additional 
resources that are scarce in LMICs, for example access to specialised equipment such 
as electroencephalograms (EEGs) (4). A trained clinician’s expertise is irreplaceable, 
but training costs and retention of skilled personnel can impede access to diagnosis 
in LMICs. In such settings, diagnostic tools that require less expertise, experience or 
specialist training could empower primary healthcare workers to triage and prioritise 
people who may have epilepsy for referral (5). 

Clinical machine learning (ML) models therefore offer a practical solution for epilepsy 
diagnosis in low-resource settings. Such models have demonstrated promising 
outcomes for epilepsy diagnosis (6) and treatment (7). Thus, their application in LMICs 
could reduce the diagnostic and treatment gaps (8). Given the potential impact of such 
models, their relevance, robustness and appropriate deployment are crucial.  

ML models developed on data from one region are not inherently reliable for use 
elsewhere without prior validation. A measure of model robustness in new settings is 
termed ‘generalisability’. Failure of a model to generalise sufficiently to a novel setting 
can be due to, for example, differences in clinical phenomenology or patient self-
reporting across the regions. This is particularly applicable in epilepsy, where clinical 
diagnosis can be nuanced (9). This phenomenon can also be attributed to the model 
‘overfitting’, where the model learns to make predictions based on biases in the 
dataset rather than developing a robust method for delineating between the desired 
diagnoses of interest (or absence thereof) (10). In the case of diagnostic tools, this 
can have substantial consequences for the population on whom the model is 
deployed, resulting in missed cases, over-diagnosis, wasted resources and even 
mistrust of the technology (10). The issue of generalizability has been well described 
in other medical domains (10). 

We have previously developed a predictive model to support epilepsy diagnosis in 
LMICs (6), trained on data from five sub-Saharan African regions. This study aims to 
describe the necessity of comprehensive cross-regional validation. We investigate the 
suitability of diagnostic models for deployment in regions which do not contribute data 
to the models’ training. We also consider generalised seizures (9) separately due to 
their relatively homogeneous presentation, to investigate how incorporating seizure 
subtype in a model’s training influences the model’s performance both on sites that 
were included in training and those that were not. 
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Methods 
Data acquisition, study design and pre-processing 

We sourced data from the Study of Epidemiology of Epilepsy in Demographic 
Surveillance Sites (SEEDS), which assessed the prevalence and risk factors of active 
convulsive epilepsy (ACE) in five sites across sub-Saharan Africa: Agincourt (South 
Africa), Ifakara (Tanzania), Iganga (Uganda), Kilifi (Kenya) and Kintampo (Ghana). 
This dataset has been described in detail elsewhere. (11) The dataset comprised 
responses to an ACE-specific questionnaire. ACE was defined as two or more 
unprovoked seizures occurring at least 24 hours apart with at least one episode in the 
preceding year. Convulsive epilepsy was chosen explicitly because convulsions are 
more easily identified and are associated with higher morbidity, mortality and stigma. 
The protocol for the SEEDS study has been previously published (11). The outcome 
of this study was a clinical diagnosis of ACE (EEG supported where possible) 
confirmed by an epilepsy-specialised neurologist. Individuals with and without epilepsy 
(here considered as controls) are included in the dataset. Information on socio-
demographic variables, historical risk factors and clinical history was collected for each 
participant. The resulting dataset comprised sociodemographic information and 
approximately 170 unique variables for each individual in five domains: clinical history, 
clinical examination, seizure description and EEG interpretation (6). 

Data pre-processing 

We selected participants with either a confirmed diagnosis of ACE (cases) or absence 
of ACE (controls) following evaluation by a trained neurologist. We used predictors of 
epilepsy formatted as questions for the person with suspected epilepsy. These 
predictors have been reported and validated in previous studies from this cohort and 
were chosen for their maximally discriminative predictive ability to diagnose ACE (6). 
The predictors were: 

1. During these episodes, have you ever bitten your tongue? 
2. Have you ever wet yourself during these episodes? 
3. During these episodes, do you lose contact with your surroundings? 
4. Has anyone told you that you appear dazed during these episodes? 
5. During these episodes, does your body stiffen? 
6. Do you experience stomach-ache before these episodes? 
7. Do you see odd things (e.g. flashes or bright lights) before these episodes 

occur? 
8. Do you think anything brings on these episodes? 

We retained only participants with a confirmed diagnosis (cases) or absence of ACE 
(controls). This was termed the “complete dataset”. We also considered a smaller 
subset in which only participants with either a confirmed “generalised” seizure type or 
absence of ACE were retained (referred to as the ‘generalised dataset’). The purpose 
was to minimise inherent heterogeneity in patient symptomatology due to multiple 
seizure types within a single individual. Selecting for generalised seizures reduces 
potential confounding across sites due to the inherently heterogeneous 
symptomatology of focal seizures and non-convulsive generalised epilepsy. The 
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datasets were then separated by study site. Imputation and weighting were performed 
within each site separately. Predictors with missing values were imputed using Multiple 
Imputation by Chained Equation (12). To adjust for potential confounding between 
study sites due to participant sex, age and seizure type (general, focal, or ‘other’) we 
applied inverse propensity weighting (13).  

Study site datasets were then split into model training and testing subsets. When a 
model was trained on data from the generalised dataset, it was tested on data from 
the generalised subset. The data processing procedure and the ten seizure/type site 
subsets and data processing are summarised in Table 1 and Supplementary 
Materials, Figure 1. 

Model development 
The models trained were Logistic Regression, Support Vector Machine (SVM) using 
a linear kernel and Naive Bayes assuming a Bernoulli distribution. These models were 
selected because they are computationally efficient, well-established in clinical 
prediction modelling in epilepsy, and because they yield interpretable results (6)(14). 
They also have varied approaches to decision boundaries (15). If there were an 
observed difference in the performance of these algorithms between study sites, it 
would likely be more attributable to the data than the model, i.e. an issue with 
generalisability. 

The primary performance metric was the area under the receiver-operator 
characteristic curve (AUC) (26). AUC is independent of a classification threshold, 
eliminating the need to identify a threshold parameter and is less sensitive to data 
imbalance than other metrics, for example accuracy. 
To ensure robustness, five-fold cross-validation was used to determine the 
performance of models on the data they were trained on (internal validation). In this 
process, training data are randomly split into five balanced subsets; four subsets are 
used to train the model and the remaining subset is used to test the model and 
calculate the AUC. This is repeated a further four times (five folds total), ensuring each 
subset is used for testing. The median of the five AUC values and the interquartile 
range are then used to determine the algorithm’s average performance (16). 

Models trained on data within only one study site are ‘single-site’ models. A model for 
every permutation of the three algorithms, five sites and two seizure types was trained, 
resulting in 30 single-site models. Five-fold cross-validation AUC scores were obtained 
for each single-site model. Each single-site model was tested on each of the other four 
study sites, resulting in four external performance AUC scores. These were used to 
evaluate the performance of the models when tested on data from different regions. 
The Kolmogorov-Smirnov (K-S) test was used to assess whether there was a 
significant difference between the single-site AUC when tested on data from within the 
site (internal performance) and data from the other four study sites (external 
performance). The magnitudes, signs and ranges of the weights assigned to each 
predictor in each of the Logistic Regression models were also compared. 

For each single-site model, we compared a set of incremental thresholds (20%, 50% 
and 80%) for classifying the probability output from each algorithm into a designation 
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of ACE or control. For example, cases with a probability of less than 20% were 
assigned to controls and otherwise were assigned ACE. These thresholds were 
chosen to explore their effect on accuracy. The accuracies were calculated for the five 
study sites based on these classifications. We compared the relative change in 
accuracy between each study site from which a single-site model was developed with 
the accuracy from each separate study site. This analysis adds an additional 
dimension, as it extends the evaluation from AUC to a more clinical scenario where 
the direct classification of either ACE or control is important. 

We then developed an iteratively inclusive multi-site model to evaluate the effect of 
adding additional study sites. Beginning with one randomly chosen study site, a model 
for each of the three algorithms was developed. The performance of each model was 
assessed on the remaining study sites. Another randomly chosen site was added to 
the model and the performance then re-calculated for the remaining unincluded study 
sites. This was repeated until every site except one (four training sites; one testing 
site) was included in the multi-site model, resulting in a leave-one-site-out (LOSO) 
model. We repeated this procedure until every permutation of study site orders of 
inclusion was achieved. Lastly, we developed a multi-site model that incorporated all 
study sites and split the data 70:30% into model training and validation subsets. 

Statistical Analysis 
Continuous variables were binned. The two-sided Mann-Whitney test, with a 
significance level of 0.01, was used to evaluate for differences between internal and 
external datasets in the single-site models. The two-sample Kolmogorov-Smirnov (K-
S) test, with a significance threshold of 0.05, was used to assess the significance of 
differences in model performances resulting from training data on different sites. 
Analysis was performed using Python 3 (17). Libraries used were Pandas (18), NumPy 
(19), SciPy (20), SKLearn (21), Seaborn (22), Pyplot (23) and Plotnine (24). 

Results 
The complete dataset comprised 5,108 people with suspected epilepsy: 2,243 with 
confirmed ACE (44%) and 2,865 (56%) confirmed to not have epilepsy. Each 
participant was weighted such that there was a balance between the outcomes across 
sites and confounders. Missingness in the raw data appeared random (Supplementary 
Figure 2).  

Single-site models perform worse in new settings 
Single-site models performed worse on average when tested on new sites. The 
median AUC when each single-site model was evaluated on novel data acquired from 
same site was 0.94 (IQR 0.90–0.96). However, when these models were tested with 
data from other study sites, the median AUC decreased significantly to 0.91 (IQR 
0.89–0.93, p<0.01). Agincourt and Kilifi demonstrated the greatest difference between 
internal and external AUCs (Agincourt 0.96 internal, 0.88 external; p value <0.001, 
difference = -0.08 (7.9%); Kilifi 0.97 internal, 0.84 internal, difference = -0.13 (13%), 
p<0.001). Table 2 and Figure 1 show a comparison of the AUC values across each 
study site for internal and external validation. 
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Hypothesis tests comparing the performance scores resulting from the validation of a 
single-site model on a) the site whose data they were trained on and b) the other were 
statistically significant for eleven of thirty cases (see Table 1: ten data subsets, three 
models). There were seven significant differences for the dataset that considered all 
cases, and four for the generalised seizure dataset (Supplementary Materials, Table 
1). Each site had six tests: of these, Agincourt and Kilifi each had five significant tests, 
while the other sites had at least five insignificant tests.  

The weights assigned to the predictors of ACE in the logistic regression model differed 
between sites (Figure 2). All eight predictors’ weights had broad ranges, both when 
not accounting for seizure type (median range of weights 0.97, [IQR 0.72-1.5]) and 
when including only cases with generalised seizures (median range of weights 1.01 
[IQR 0.86-1.3]). Apart from two variables, all variable weights were negative in some 
site models and positive in others. Only one predictor of ACE had consistently negative 
weights (corresponding to the question ‘Do you think anything brings on these 
episodes?’: range 0.31 when considering all controls, 0.75 for generalised seizures), 
and only one was consistently positive (corresponding to the question ‘Have you ever 
wet yourself during these episodes?’: range 0.72 when considering all controls, 0.49 
for generalised seizures).  

Modulating the probability threshold for a positive diagnosis also resulted in variable 
accuracy. Increasing the threshold improved the performance in some sites and 
worsened performance in others. Figure 3 displays the difference in performance 
observed when models are tested outside of the development site.  In Agincourt and 
Iganga, increasing the threshold from 0.2 to 0.5 to 0.8 resulted in a decrease in relative 
accuracy (Agincourt median -0.10, -0.13, -0.17, p<0.01; Iganga median -0.06, -0.18, -
0.19, p<0.01), while the inverse was true of Kintampo and Kilifi (Kilifi median -0.38, -
0.35, -0.05, p<0.01; Kintampo median -0.01, -0.01, 0.06, p<0.05). 

Incremental site inclusion 
As additional sites were incorporated into the model, internal performance declined 
(initial median AUC 0.94, IQR 0.11; final median AUC 0.93, IQR 0.01; p=0.06), and 
external performance improved (initial median 0.90, IQR 0.04; final median 0.92, IQR 
0.02; p<0.01; Figure 5). At the initial stage of this process, when only one site was 
included in the training data, internal performance was greater than external (mean 
AUC difference 0.050, p<0.01) and all external performances were lower than all the 
internal performances. 

At the final stage, the two measures converged to a small final difference, and all the 
data points from the external validation were higher than all the internal points (Figure 
5). The mean difference between final performance scores was 0.001 (p-value 0.83).  

Leave One Site Out 
Internal performance was higher in 3 sites: Ifakara (internal median 0.93, IQR 0.00; 
external median 0.92, IQR 0.06; p=0.55), Iganga (internal median 0.94, IQR 0.02; 
external median 0.91, IQR 0.03; p<0.01) and Kintampo (internal median 0.937, IQR 
0.019; external median 0.89, IQR 0.006; p<0.01) (Figure 4). Kintampo’s external 
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scores had a smaller range (p<0.01) while the other two sites had a larger external 
range (Ifakara: p<0.01; Iganga: p=0.80).  

Agincourt (internal median 0.924, IQR 0.008; external median 0.95, IQR 0.03; p<0.05) 
and Kilifi (internal median 0.91, IQR 0.025; external median 0.97, IQR 0.02; p<0.01) 
had higher external performance, and these values displayed a larger range 
(Agincourt: p=0.08; Kilifi: p=0.65). 

Patterns emerge when comparing the one-site models with the LOSO models. For 
instance, both model types showed that Agincourt and Kilifi manifested a wider range 
of external performance scores than internal performance scores, with the inverse 
relationship evident at the other sites. Agincourt and Kilifi demonstrated superior 
external median performance in the LOSO model relative to their internal performance, 
and a trend contradicted at the remaining sites. Kintampo consistently presented the 
lowest external variability in LOSO and one-site models, further underscoring the site-
specific patterns inherent in the performance of these diagnostic tools. 
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Discussion 

We demonstrate that deploying an epilepsy diagnostic model outside the cultural and 
geographical region in which it was developed can result in highly unpredictable, 
frequently sub-optimal outcomes.  

As with other ML models, the generalisability of clinical epilepsy diagnostic tools is 
inherently constrained. Extrapolating these models beyond their original regional 
parameters necessitates a trade-off between internal and external performance. 
Performance scores within a given area consistently exhibit lower variances and 
higher medians than those obtained from cross-site applications. This is perhaps 
especially problematic given the volume of ML-driven diagnostic models for epilepsy 
that have been developed using single regions (25)(26). Incorporating data from a 
greater number of sites into the model's training set can help mitigate the risk of ML 
models making erroneous assumptions and thereby offering incorrect diagnoses. 
Whilst this approach engenders a model with enhanced robustness and improved 
external performance, it concomitantly decreases internal performance. This occurs 
as the model broadens its applicability while becoming less tailored to specific sites. 
While analysis of generalizability has been performed elsewhere (10), this study 
presents a novel and important contribution to the field of epilepsy diagnosis. 

The weight of each predictor for ACE, and the optimal thresholds for a classification 
vary significantly between sites. At the extreme, a particular symptom might correlate 
positively with ACE at one site and negatively at another. These disparities may result 
from the variance in reporting of epilepsy-related symptoms across geographies.  

Data underscore the importance of thoughtfully calibrating diagnostic procedures to 
the unique specificities of each geographic locale. The observed variability in 
thresholds also highlights that a simplistic transposition of one site's threshold for ACE 
classification to another may lead to an unpredictable number of misdiagnoses, most 
concerningly false negatives, where an individual remains undiagnosed and cannot 
access treatment. The findings emphasise the necessity of adjusting model 
parameters to ensure their suitability for application in varying settings. 

A variety of explanations may account for differences in performance between the 
sites. One reason may be that symptoms may be reported differently by those with 
epilepsy or their carers, depending on the cultural and clinical context. These cannot 
necessarily be predicted and accounted for and may differ between sites. For 
example, appearing dazed during episodes was the single most prevalent symptom 
reported by individuals with seizures in Iganga and one of the least prevalent in Ifakara 
(Supplementary Figure 3). 

Based on the results of this study, we suggest that some degree of site-specific 
validation is essential before a predictive model is deployed in practice. While 
complete re-training of all model parameters on local data would be ideal and result in 
optimal performance, this is not always feasible. Studies have shown that merely 
changing the intercept of a logistic regression model may help recontextualise a model 
for new settings (27). It may suffice to adjust only a few parameters.  
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As performance is continually assessed, iterative updating of the model throughout 
deployment can help fine-tune the model further. Such a model would generally need 
a threshold to determine who is deemed a positive case, although, as shown, optimal 
thresholds vary between sites. Validating the threshold may also effectively update the 
model to perform well in a new setting – we saw a mean change in accuracy of 10% 
following a threshold change. 

Limitations 
This work is limited by the choice of dataset and its contents. The data were acquired 
from five distinct sites from five different sub-Saharan African countries. We cannot 
necessarily draw conclusions about, for example, training a model on data from a 
specific area and deploying it in a nearby location in the same country with similar 
demographics. The dataset also featured limited accounting of seizure type. The 
results could be clouded by, for example, the effects of non-convulsive seizure 
phenomena, which we could not account for. 

We attempted to minimise this inherent heterogeneity by separating the generalised 
seizures out into a separate dataset. Generalised convulsive seizures were selected 
as they demonstrate a higher degree of homogeneity in their clinical presentation than 
focal seizures (9). Further work should explore focal seizures to identify better how ML 
models may also help in their diagnosis. 

There also may have been data collection and data entry issues: self-reporting may 
be influenced by linguistic differences in how questions were asked, cultural 
differences in how chronic conditions are perceived, or who asked the questions and 
how. The clinicians making diagnoses or the workers performing data entry may also 
vary in reliability. While the tools and questions were adapted to the local context and 
training was standardised before data collection and monitored during (11), human 
factors may still play some role. 

Conclusions 
We demonstrate that, when developing models for epilepsy diagnosis, data collected 
from one site cannot naïvely be used as representative for all other sites where a 
model could be deployed. Given the needs of LMICs, ML models can be leveraged to 
significant impact. Nonetheless, careful interrogation and a dedication to rooting tools 
in the setting of their use must be ensured to avoid such models associating with 
inadvertent harm, including missed diagnoses resulting in delayed initiation of care. 
Whilst the present analysis has focused on convulsive epilepsy, similar arguments are 
likely applicable across other seizure types and disorders of mind-brain health more 
broadly.  
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 Figure 1. Comparative Internal and External AUC Performance Across Single-Site Models.  The 
Area Under the Receiver Operating Characteristic Curve (AUC) performance of machine learning 
models trained and tested on data from single sites. Performance is compared between internal 
validations (training and testing on the same site) and external validations (training on one site and 
testing on others). Five distinct study sites in sub-Saharan Africa are evaluated: Agincourt (South 
Africa), Ifakara (Tanzania), Iganga (Uganda), Kilifi (Kenya), and Kintampo (Ghana). Boxplots 
describe the distribution of AUC values obtained through bootstrap resampling, indicating the 
variance within internal and external validations. At Agincourt, the internal AUC is 0.96 (interquartile 
range (IQR) 0.95– 0.97), while the external AUC is 0.88 (IQR 0.86–0.88), demonstrating a 
statistically significant difference with a decrease of approximately 0.08 in performance when 
models are externally validated. Similarly, Kilifi shows an internal AUC of 0.97 (IQR 0.96–0.97) 
against an external AUC of 0.84 (IQR 0.78–0.89), indicating a significant decline in external 
validation performance. Iganga's internal and external AUCs are 0.93 (0.91–0.96) and 0.88 (IQR 
0.87–0.96), displaying a smaller yet significant discrepancy. In contrast, Ifakara and Kintampo 
exhibit a converse trend, where external AUCs 0.92 (IQR 0.89–0.96) and 0.92 (IQR 0.91–0.95) 
slightly exceed their internal counterparts 0.89 (0.89–0.91) and 0.90 (0.88–0.92), although these 
differences are also statistically significant. These findings underscore the variability in model 
generalizability and the importance of external validation when assessing the robustness of 
predictive models in healthcare settings. *** = p-value <0.001. 
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 Figure 2. Variation of model weights between sites. Boxplot illustrating the values taken by the weights 
in each logistic regression model trained on a single site. Models were trained on a dataset in which 
positive cases were limited to participants with generalised epilepsy. All weights show a spread of 
values, and most change sign between sites. Only one covariate’s weights were consistently positive 
(‘Have you ever wet yourself during these episodes?’) and only one covariate’s weights were consistently 
negative (‘Do you think anything brings on these episodes?’). In this context positive weights correspond 
to a positive association with epilepsy, and negative weights to negative association. The horizontal line 
at the origin serves to clarify the threshold between positive and negative weights. Central line is median; 
lower edge of the box indicates first quartile, upper edge of the box indicates third quartile; points are 
extreme weight values. 
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 Figure 3. Effect of changing thresholds on accuracy. Heatmap showing how the accuracy of the logistic regression models was 
affected by changing the threshold from 0.2 to 0.8, for each one-site model. Models were trained on only one site’s data and tested 
on each of the other sites in turn. The performance of some site models worsened both internally and externally while the other sites’ 
performance improved. The overall mean change in accuracy was 10% (min 0.4%, max 28%, standard deviation 7.6%). 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 26, 2024. ; https://doi.org/10.1101/2024.03.25.24304872doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.25.24304872
http://creativecommons.org/licenses/by/4.0/


 

 

 

 

 Figure 4. Performance of LOSO models. Boxplot of AUC values resulting from the testing, on each 
site in turn, of models trained on all but one site. Both internal and external performance is shown. 
Internal performance was higher in 3 sites (internal median 0.93, external median 0.89). In the other two, 
AUC values displayed a larger range (internal median 0.92, range 0.04; external median 0.96, range 
0.05). AUC = area under receiver operating curve. Internal performance = performance on sites included 
in training data. External performance = performance on the site that was not included in training data. 
Central line is median; lower edge of the box indicates first quartile, upper edge of the box indicates 
third quartile; points are extreme performance scores. 
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 Figure 5. Performance of incremental models. Boxplot (with scatter graph) showing the change in 
AUC as the number of sites included in training is increased. Both internal and external performance 
is shown.  As sites were added, internal performance worsened and external performance improved. 
At the stage when only one site was included in the training data, all external performances were lower 
than all the internal performances. At the final stage, the two measures converged to a small final 
difference, and all the data points from the external validation were higher than all the internal. AUC = 
area under receiver operating curve. Internal performance = performance on sites included in training 
data. External performance = performance on the site that was not included in training data. Central 
line is median; lower edge of the box indicates first quartile, upper edge of the box indicates third 
quartile; scatter points are individual performance scores. 

 

 
 
 
  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 26, 2024. ; https://doi.org/10.1101/2024.03.25.24304872doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.25.24304872
http://creativecommons.org/licenses/by/4.0/


Table 
    Seizure types 

    Controls Confirmed ACE Confirmed ACE & only 
generalised seizures 

Site 

Agincourt 380 334 184 

Ifakara 678 465 223 

Iganga 498 259 152 

Kilifi 793 791 209 

Kintampo 516 394 233 

Total 2865 2243 1001 
Table 1. Dataset breakdown. Table showing the size of each subset of the data as 
split by diagnostic class, epilepsy type and site. The rightmost column represents a 
subset of the middle column. Participants with no clinical diagnostic information 
were excluded from the dataset. ACE = active convulsive epilepsy. 
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Site Internal External Difference P value 

Agincourt 0.96 
(0.95–0.97) 

0.88 
(0.86–0.88) 

-0.08 
(7.9%) <0.001 

Ifakara 0.89 
(0.89–0.91) 

0.92 
(0.89–0.96) 

0.02 
(2.7%) <0.001 

Iganga 0.93 
(0.91–0.96) 

0.88 
(0.87–0.96) 

-0.05 
(5.1%) <0.001 

Kilifi 0.97 
(0.96–0.97) 

0.84 
(0.78–0.89) 

-0.13 
(13.0%) <0.001 

Kintampo 0.90 
(0.88–0.92) 

0.92 
(0.91–0.95) 

0.03 
(2.8%) <0.001 

Table 2: Single-site models perform worse in new settings.  
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 Study site 

Convulsive epilepsy predictor Agincour
t Ifakara Iganga Kilifi Kintamp

o Median p-value 

Do you experience stomach ache before these 
episodes? 0.7 1.6 2.1 2.3 1.1 1.6 0.001 

Do you see odd things (e.g. flashes or bright lights) 
before these episodes occur? 1.4 1.9 1.3 1 0.8 1.3 <0.001 

Do you think anything brings on these episodes? -0.5 -4.3 -2.8 -4.3 -2 -2.8 <0.001 

During these episodes, do you lose contact with 
your surroundings? 1.5 2.3 0.4 1.2 2.6 1.5 <0.001 

During these episodes, does your body stiffen? 2.8 2.8 0.4 -0.1 1.7 1.7 <0.001 

During these episodes, have you ever bitten your 
tongue? 0.9 2.5 0.9 0.8 2.5 0.9 <0.001 

Has anyone told you that you appear dazed during 
these episodes? 0.8 1 3.2 1.3 3 1.3 <0.001 

Have you ever wet yourself during these episodes? 1.5 1.9 1.6 1.3 2.2 1.6 <0.001 
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Supplementary figures 
 

 

 

 Supplementary Figure 1. Data preparation. Flowchart showing the process of data preparation (see 
Table 1). 
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Site Dataset Significance at 0.05 
threshold 

Number of such p-
values 

Agincourt 

All Significant 3 

Generalized 
Insignificant 1 

Significant 2 

Ifakara 
All Insignificant 3 

Generalized Insignificant 3 

Iganga 
All 

Insignificant 2 

Significant 1 

Generalized Insignificant 3 

Kilifi 

All Significant 3 

Generalized 
Insignificant 1 

Significant 2 

Kintampo 
All Insignificant 3 

Generalized Insignificant 3 

Supplementary Table 1. Kolmogorov-Smirnov test p-values. Table summarizing the p-values of the 
statistical tests of the performances resulting from the testing of each one-site model on each of the 
other sites in turn. The two samples in each test were the internal performances for that site (from 5-fold 
cross validation) and the performances of that model on each other site. This was done for each possible 
combination of the three model types (Logistic Regression, SVM using a linear kernel, and Naive Bayes 
assuming a Bernoulli distribution) and the two datasets (the whole dataset, and that with the positive 
cases limited to participants with generalised epilepsy). Thus, there are 6 values for each site. The 2-
sample Kolmogorov-Smirnov test has the null hypothesis that the two samples are drawn from the same 
distribution. Statistical insignificance is taken as insufficient evidence to reject this. There were 7 
significant tests for the whole dataset and 4 for the generalised seizure dataset. Agincourt and Kilifi each 
had 5 significant tests, while the other 3 sites each had at least 5 insignificant tests.  
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Supplementary Figure 2. Missingness in the raw data. Heatmap showing where there was unexplained 
missingness in the data before cleaning. Missing values are shown in yellow, others in green. The data are 
sorted according to assessment date, in ascending order from earliest to latest. 
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 Supplementary Figure 3. Covariate values per site. Stacked bar chart showing the percentage of yes/no answers to the covariate questions. Values 
taken from the cleaned data, split by site and epilepsy diagnostic class. 
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 Supplementary Figure 4. Histogram showing propensity scores as calculated from the processed data, 
coloured by whether there was a diagnosis of epilepsy (orange) or not (blue). There is a complete overlap – 
the range of scores for the two diagnostic classes overlaps completely.  
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