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 2 

ABSTRACT 34 
 35 
Randomized clinical trials (RCTs) are essential to guide medical practice; however, their 36 
generalizability to a given population is often uncertain. We developed a statistically informed 37 
Generative Adversarial Network (GAN) model, RCT-Twin-GAN, that leverages relationships 38 
between covariates and outcomes and generates a digital twin of an RCT (RCT-Twin) 39 
conditioned on covariate distributions from a second patient population. We used RCT-Twin-40 
GAN to reproduce treatment effect outcomes of the Systolic Blood Pressure Intervention Trial 41 
(SPRINT) and the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Blood 42 
Pressure Trial, which tested the same intervention but found different treatment effects. To 43 
demonstrate treatment effect estimates of each RCT conditioned on the other RCT’s patient 44 
population, we evaluated the cardiovascular event-free survival of SPRINT digital twins 45 
conditioned on the ACCORD cohort and vice versa (ACCORD twins conditioned on SPRINT). 46 
The conditioned digital twins were balanced across intervention and control arms (mean absolute 47 
standardized mean difference (MASMD) of covariates between treatment arms 0.019 (SD 48 
0.018), and the conditioned covariates of the SPRINT-Twin on ACCORD were more similar to 49 
ACCORD than SPRINT (MASMD 0.0082 SD 0.016 vs. 0.46 SD 0.20). Notably, across 50 
iterations, SPRINT conditioned ACCORD-Twin datasets reproduced the overall non-significant 51 
effect size seen in ACCORD (5-year cardiovascular outcome hazard ratio (95% confidence 52 
interval) of 0.88 (0.73-1.06) in ACCORD vs. median 0.87 (0.68-1.13) in the SPRINT 53 
conditioned ACCORD-Twin), while the ACCORD conditioned SPRINT-Twins reproduced the 54 
significant effect size seen in SPRINT (0.75 (0.64-0.89) vs. median 0.79 (0.72-0.86)) in the 55 
ACCORD conditioned SPRINT-Twin). Finally, we demonstrate the translation of this approach 56 
to real-world populations by conditioning the trials on an electronic health record population. 57 
Therefore, RCT-Twin-GAN simulates the direct translation of RCT-derived treatment effects 58 
across various patient populations.  59 
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INTRODUCTION 60 

Randomized clinical trials (RCTs) generate evidence that defines optimal clinical practices, but 61 

their generalizability to real-world patient populations is often challenging to quantify.1,2 This is 62 

a concern because RCTs often have underrepresentation from several demographic and clinical 63 

subpopulations3–7 and varying treatment effects among individuals with certain characteristics.8–64 

10 These considerations are critical to translating information from RCTs to real-world patient 65 

populations,11,12 but no strategies exist to evaluate how they may affect the applicability to 66 

patients in these settings.  67 

Variation across RCTs testing similar interventions with discrepant treatment effects is a 68 

key issue for the generalizability of interventions tested in RCTs.13–19 For example, the Systolic 69 

Blood Pressure Intervention Trial (SPRINT) was a treatment intervention RCT that showed 70 

improved cardiovascular outcomes with intensive blood pressure control.13 In contrast, the 71 

Action to Control Cardiovascular Risk in Diabetes Blood Pressure (ACCORD) trial did not find 72 

improved cardiovascular outcomes with the same intervention.14 Among the explanations posited 73 

for these discrepant findings include differences in population composition and event rates.20–23 74 

Despite experimental evidence from two trials, there is no quantitative strategy to evaluate these 75 

assertions explicitly. Therefore, while it is critical to evaluate whether the effects observed in an 76 

RCT population generalize to a second population – either a planned second RCT or a general 77 

population of patients with the condition – the challenge remains to examine these effects in the 78 

context of the complex differences across multiple population characteristics.   79 

Digital twins of RCTs introduce a strategy to create a synthetic representation of a 80 

clinical trial updated by attributes of a second population. Specifically, trial-level digital twin 81 

synthesis through deep generative models such as Generative Adversarial Networks (GANs) can 82 
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integrate multiple covariates from a patient cohort by constructing a digital twin with covariate 83 

values sampled from the second cohort while retaining relationships and correlations between 84 

variables within the original RCT. While GANs have been utilized to estimate individual 85 

treatment effects, their potential for evidence translation across patient populations has not been 86 

explored.24–27 Conditional GANs (CGAN) enable the generation of synthetic datasets that 87 

condition a model with covariates from a second population distribution.28,29 We hypothesize that 88 

applying this model to an RCT conditioned on a second population will estimate the treatment 89 

effects of the original RCT in the new patient population. 90 

We present RCT-Twin-GAN, a generative framework that combines clinical knowledge 91 

and the statistically informed architecture to create a digital twin of an RCT conditioned on the 92 

characteristics of a second patient population to assess for the generalizability of the treatment 93 

effect (Figure 1, Figure 2). To demonstrate the ability of the digital twin to replicate treatment 94 

effects in the conditioning population, we first compared two RCTs, SPRINT and ACCORD, 95 

with similar interventions but disparate treatment effects on cardiovascular outcomes. We created 96 

a digital twin of each of the 2 RCTs conditioned on covariate distributions of the other and 97 

evaluated whether the RCT-Twins reproduced the treatment effect of the conditioning cohort.  98 

Finally, we describe the cardiovascular outcomes of SPRINT and ACCORD digital twins 99 

conditioned on characteristics of patients in the electronic health record (EHR), introducing the 100 

role of RCT-Twins in estimating RCT treatment effects in real-world populations.  101 

 102 

RESULTS 103 

Study Populations 104 
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The study developed digital twins of two RCTs. The first RCT, SPRINT, was a treatment 105 

intervention study to test whether intensive blood pressure control (goal systolic blood pressure 106 

less than 120 mmHg) versus standard care (goal systolic blood pressure less than 140 mmHg) 107 

reduced major cardiovascular events. The trial consisted of 9361 participants (median age 67 (61 108 

to 76 (25-75% IQR, and 3332 (36%) women). The patients in SPRINT were followed for a 109 

median of 3.26 years for the first occurrence of any of the primary composite outcome of 110 

myocardial infarction, acute coronary syndrome, stroke, heart failure, or death from 111 

cardiovascular cause.  112 

Our study built a SPRINT digital twin with a population representation of another RCT 113 

with the same intervention, the ACCORD trial, a double factorial RCT of participants with type 114 

2 diabetes mellitus and cardiovascular disease. We specifically leveraged the blood pressure 115 

management component of the ACCORD trial, wherein half of the participants were randomized 116 

to intensive versus standard care blood pressure control, with the same treatment goals as those 117 

in the SPRINT trial. ACCORD consisted of 4733 participants (median age 62, IQR, 58-67, and 118 

2258 [48%] women). ACCORD median follow-up time was 4.7 years for the primary composite 119 

outcome of myocardial infarction, stroke, or death from cardiovascular cause.  120 

We also incorporated two cohorts from the Yale New Haven Hospital Health System 121 

Electronic Health Record (EHR), a large healthcare system including several hospitals with 122 

diverse racial and socioeconomic demographics across Connecticut and Rhode Island. Two sets 123 

of patients with hypertension, one without (N=22,132) and the other with diabetes (N=8,840) 124 

were identified to broadly represent populations included in SPRINT and ACCORD, 125 

respectively, to estimate the treatment effects found in the two RCTs on corresponding real-126 

world patient populations. The final cohorts included 3,130 patients in the SPRINT EHR cohort 127 
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and 2,731 patients in the ACCORD EHR cohort. The SPRINT EHR cohort had a median age of 128 

73 years (IQR, 61 to 84) and 2069 (52%) women), while the ACCORD EHR cohort had a 129 

median age of 71 (IQR, 61 to 80) and 2032 (51%) women).  130 

 131 

The Non-Conditioned SPRINT Digital Twin Cohort 132 

We created 10 SPRINT-Twins (the non-conditioned SPRINT twin), which had a median age of 133 

66 (IQR, 60 to 75) and 1516-1704 (32-38%) women (Table S1, S2).  The SPRINT-Twin 134 

reproduced the distributions of the original variables (covariates, outcome, and time to outcome) 135 

in SPRINT as evidenced by an absolute standardized mean difference (ASMD) of less than 0.1 136 

for each variable and a mean absolute standardized difference (MASMD) of 0.020 (SD 0.015) 137 

between the SPRINT Control (C) Arm and SPRINT-Twins C Arm and 0.021 (SD 0.014) between 138 

the SPRINT Intervention (I) Arm and SPRINT-Twins I Arm. In addition, all variables were 139 

balanced between the I and C arms in the SPRINT-Twin, as evidenced by an ASMD of less than 140 

0.1 for each variable and a MASMD of 0.011 (SD 0.016) between treatment arms across all 141 

variables. This was similar to the MASMD between treatment arms of SPRINT, 0.021 (SD 142 

0.018) and below the threshold where distributions are considered substantially dissimilar. The 143 

correlations between variables were also preserved as evidenced by 88.4% concordance between 144 

the Spearman correlations calculated between SPRINT’s variables and those calculated between 145 

the SPRINT twin’s variables (Table S3, Figure S1). 146 

 147 

The Conditioned SPRINTACCORD and ACCORDSPRINT Digital Twin Cohorts 148 

We then generated 10 SPRINTACCORD Twins, which were SPRINT twins conditioned with values 149 

from the ACCORD cohort for 10 covariates, and 10 ACCORDSPRINT Twins, which were 150 
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ACCORD twins conditioned with values from the SPRINT cohort for 10 covariates. The 151 

SPRINTACCORD Twins had a median age of 62 years (IQR 58 to 68), 1106-1178 (46-49%) women 152 

(Tables S4, S5) with mean 2345 (SD 25.9) or 49.5% in the C arm, 2388 (SD 24) or 50.5% in the 153 

I arm.  ACCORDSPRINT Twins had a median age of 67 years (IQR 61 to 76), 1545-1677 (32-34%) 154 

women with mean 4759 (SD 66) or 50.8% in the C arm and 4603 (SD 62) or 49.2% in the I arm 155 

(Tables S6, S7). Across all treatment arm covariate distributions of the SPRINTACCORD Twins and 156 

ACCORDSPRINT Twins, there was little difference between the I and C arms, suggesting balanced 157 

treatment arms as evidenced by each covariate having an ASMD between treatment arms of less 158 

than 0.1 with an MASMD between treatment arms of 0.024 (SD 0.017) for SPRINTACCORD 159 

Twins and 0.018 (SD 0.004) for ACCORDSPRINT Twins, respectively (Figure 3a).  160 

Comparing datasets, across all the conditioned covariates, the ASMD between the 161 

SPRINTACCORD-Twin and ACCORD were less than 0.1, with a MASMD of 0.008 (SD 0.016), 162 

and similarly, the ASMDs between ACCORDSPRINT Twin and SPRINT were less than 0.1 with a 163 

MASMD 0.023 (SD 0.014) compared to an MASMD of 0.46 (SD 0.20) for the same covariates 164 

between SPRINT and ACCORD (Figure 3b). Out of the six non-conditioned covariates, white 165 

race, systolic blood pressure, smoker, and LDL cholesterol level had ASMDs less than 0.1 166 

between ACCORD vs. SPRINTACCORD Twin while systolic blood pressure, smoker, and angina 167 

had ASMDs less than 0.1 between SPRINT and ACCORDSPRINT Twin (Figure 3b). Conversely, 168 

when conditioning on the opposite RCT and comparing datasets (ie. ACCORD vs 169 

ACCORDSPRINT Twin and SPRINT vs SPRINTACCORD Twin), the ASMD resembles ACCORD vs 170 

SPRINT for the conditioned covariates (Figure S2). Similar to the non-conditioned twins, the 171 

correlations between variables were also preserved, as evidenced by the 85.6% concordance of 172 

the Spearman correlations between the ACCORD variables and the correlations between the 173 
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SPRINTACCORD Twin variables, the 78.4% concordance of correlations between the SPRINT 174 

variables and the correlations between the SPRINTACCORD Twin variables, the 84.5% 175 

concordance of the correlations between the ACCORD variables and the ACCORDSPRINT twin 176 

variables, and the 85.6% concordance of the correlations between the SPRINT variables and the 177 

correlations between the ACCORDSPRINT Twin variables (Table S3, Figure S1). 178 

 179 

Digital Twin Similarity Evaluation 180 

Given the generated nature of the complementary covariates, each row of the conditioned twins 181 

does not perfectly match the original cohort patients since it is updated with the conditioning 182 

cohort data, so covariate distribution level assessments were conducted. When training a 183 

multivariate logistic regression classifier to distinguish between RCT and twin data, in which an 184 

accuracy of 0.5 is considered random chance, we found the median accuracy of the model to 185 

correctly classify the data as real or fake to be 0.50 (IQR 0.49 to 0.51) for distinguishing 186 

SPRINT from SPRINT Twins, 0.50 (IQR 0.49 to 0.51) for distinguishing SPRINT from 187 

SPRINTACCORD Twins, 0.50 (IQR 0.49 to 0.55) for distinguishing ACCORD from ACCORD 188 

Twins, and 0.50 (IQR 0.50 to 0.51) for distinguishing ACCORD from ACCORDSPRINT Twins, 189 

compatible with the SPRINT twins not being distinguishable from the original trial. When 190 

assessing differentiation capability for each covariate by training and testing single variate 191 

logistic regression models, the overall median accuracy was 0.50-0.51 across comparisons 192 

(Figure S3). 193 

 194 

Sensitivity Analyses 195 
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In a sensitivity analysis generating the SPRINTACCORD-Twin, we assessed the convergence of the 196 

models at various training sample sizes, batch sizes, and number of epochs of training. At a 197 

training size of 1% and 25% of the SPRINT data, 81% of the models converged, while 94% 198 

converged with 50% and 100% of the data. All models were balanced across the training sample 199 

sizes. The proportion of models that reproduced the non-significant hazard ratio seen in 200 

ACCORD increased with the training sample and was in a majority of the samples with a sample 201 

size >10% of the trial (Table S8). 202 

 203 

Comparison of RCT-Twin-GAN to other Synthesizer Models 204 

Our method consistently scored among the best in all statistical comparisons and correlations 205 

(Table S9, S10). It was superior to the other methods in machine learning efficacy, in which a 206 

gradient boosting classifier trained on generated digital twin values predicted original RCT 207 

values (Table S11). 208 

 209 

Estimating the Primary Composite Outcome in the Non-Conditioned Twins 210 

We confirmed the differences in the reported primary composite outcomes in the SPRINT and 211 

ACCORD trials, which included a significant reduction in cardiovascular events in SPRINT’s 212 

intervention arm compared with control (hazard ratio 0.75 [0.64-0.89 95% CI, p<0.001]) without 213 

a significant reduction in a similar primary composite outcome in ACCORD (hazard ratio 0.88 214 

[0.73 to 1.06 95% CI, p=0.20]). In the SPRINT-Twin without conditioning, the median hazard 215 

ratio across 10 generated SPRINT-Twin datasets was 0.73 (CI 0.61-0.87), with the 10 216 

replications performed to ensure the reproducibility of the findings. This was comparable to the 217 

HR of 0.75 in the SPRINT trial.13 Similarly, the ACCORD-Twin without conditioning replicated 218 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.03.25.24304868doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.25.24304868
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

the primary results of the ACCORD trial, with a median HR of 0.89 (CI 0.79-1.0) comparable to 219 

the HR of 0.88 of the ACCORD trial.14 220 

 221 

Estimating the Primary Composite Outcome in the Conditioned Twins 222 

We then demonstrated the ability of RCT-Twins to replicate the known treatment effects of a 223 

second population with the SPRINTACCORD-Twin – the SPRINT-Twin that was conditioned on 224 

ACCORD. We found the median hazard ratio of 10 SPRINTACCORD-Twin datasets was 0.87 (CI 225 

0.68-1.13), this time comparable to the HR of 0.88 of the ACCORD trial (Figure 4a). In contrast, 226 

in 10 replicated digital twins of the ACCORD cohort conditioned on covariate distributions in 227 

SPRINT (ACCORDSPRINT-Twin), reproduced the significant effect size seen in SPRINT (HR 228 

0.75) with a median hazard ratio of 0.79 (CI 0.72-0.86) (Figure 4b).  229 

 230 

Estimating the Treatment Effect of SPRINT and ACCORD in the EHR 231 

In a descriptive substudy, we demonstrated the ability to estimate SPRINT and ACCORD 232 

primary composite outcomes in patient populations reflecting a large US health system, YNHHS. 233 

The same 10 covariates used to build conditioned SPRINT and ACCORD twins were 234 

computably extracted from the YNHHS EHR by clinician experts to define covariates in the 235 

corresponding EHR cohorts and build digital twins of SPRINT and ACCORD conditioned on 236 

corresponding EHR cohorts (Tables S12-S15). In the digital twin of SPRINT conditioned on the 237 

corresponding EHR cohort (SPRINTEHR-Twin), we confirmed the replication of RCT features, 238 

including covariate balance across treatment arms (MASMD 0.03 (SD 0.03), (Figure S4). In this 239 

SPRINTEHR-Twin the median primary composite outcome HR was 0.84 (95% CI, 0.64-1.09) 240 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.03.25.24304868doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.25.24304868
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

across the 10 replications. Similarly, the ACCORDEHR-Twin replicated both RCT features and 241 

EHR covariate distributions, with a median primary composite outcome HR of 0.94 (CI 0.8-1.1). 242 

 243 

DISCUSSION 244 
 245 
We present RCT-Twin-GAN, a deep generative model that utilizes clinical knowledge of 246 

covariate relationships to synthesize a digital twin of an RCT with selected covariate 247 

distributions from a second population, such as another RCT cohort or a general patient 248 

population reflected in an EHR. RCT-Twin-GAN created digital twins that replicate the 249 

fundamental feature of RCTs, i.e., balanced covariates across treatment arms, but also reflected 250 

the covariate distributions of this second population’s distribution. In addition, the RCT-Twin-251 

GAN digital twin cohorts were indistinguishable from the SPRINT RCT cohorts, reproduced 252 

RCT covariate correlations, and outperformed other model architectures. Moreover, in a positive 253 

control experiment within a two-RCT system where treatment effects were known from well-254 

conducted experiments but were discordant across the RCTs, the RCT-Twins conditioned on 255 

covariates from the opposing RCT replicated the results observed in the other RCT, 256 

demonstrating the value of examining the effect of population characteristics on study outcomes. 257 

We also demonstrate that the approach is flexible to these characteristics drawn from any 258 

population, thereby enabling a quantitative evaluation of an RCT’s potential treatment effects in 259 

populations that differed from those included in the trial.  260 

 Our work has built upon the established need to quantify generalizability of RCTs to new  261 

populations.32 Prior methods, such as standardization of event rates, allow adjustment by single 262 

variables, which groups patients together by singular stratification.33 Others have used distance 263 

metrics and decision tree machine learning techniques to represent the complex interplay of 264 
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covariates and characterize the heterogeneity of treatment effect.8–10,23,34–36 Prior generative 265 

methods have used statistical machine learning to build digital twins of control patients in 266 

neurological clinical trials and observational studies with accurate reproduction of patient 267 

trajectory at the individual level.35–37 Our method complements these by building trial-level 268 

digital twins of a conditioning cohort that draw from the multiple covariate distributions and 269 

outcomes of an RCT population to generate equivalent covariates in the conditioning population 270 

and estimate population-level treatment effects from the RCT intervention. CTAB-GAN+ has 271 

been used to build an RCT control patient population, but our studies have demonstrated 272 

superiority with DATGAN in reproducing trial baseline characteristics.38 In addition, compared 273 

to other GAN conditioning methods, our architecture is the only method that can condition on 274 

multiple continuous and categorical variables, allowing for multi-variate correlations of the 275 

conditioning cohort to be preserved. Statistical methods to assess heterogeneous treatment effects 276 

across populations have generally focused on equalizing baseline characteristics between 277 

populations using propensity score matching, but this scores one variable at a time, thereby 278 

ignoring multi-variable differences across patients, and does not consider effect modifiers.39  279 

We incorporate the distributions of multiple mutual pre-randomization covariates 280 

available across datasets to ensure representation across multivariate axes. In addition, we utilize 281 

clinician expertise to identify connections between covariates and build digital twins modeling 282 

the complex interplay of effect modifiers and outcomes. The result is a data-driven generated 283 

outcome of the conditioning cohort based on the correlations between multiple covariates and 284 

within overlapping covariate distributions between the two patient populations. In Table 1, we 285 

discuss the minimum requirements to estimate treatment effects across two populations, 286 

including cohort requirements, randomization, intervention and outcome, and sample size. 287 
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A unique feature of our model incorporates both rigorous statistical methods and clinical 288 

knowledge to build digital twins of RCTs with representative covariate balance and effect 289 

modifier information. The DAG structure weights clinically relevant relationships between 290 

covariates and outcomes and removes spurious correlations that would otherwise be included in 291 

the GAN. Of note, the choice of the covariates was governed by primary analysis focused on 292 

shared covariates between SPRINT and ACCORD. In real-world translations, a different 293 

covariate set shared between a development and target population can be selected. In addition, 294 

the ability of the ciDATGAN architecture to condition on multiple continuous and categorical 295 

values is unique compared to competing architectures. Our ability to reproduce treatment effect 296 

estimates from the conditioning cohort by sampling its covariate distributions relies on the 297 

inference of important correlations between covariates during GAN training and digital twin 298 

generation. Although prior digital twin studies have focused on supplementing RCTs with 299 

synthetic patients for controls35–38 and reproducing progression within the same cohort, our study 300 

builds upon these by estimating the treatment effect across different patient populations. 301 

Measuring the hazard ratios of treatment effect outcomes as an evaluation metric provided 302 

valuable insights into the fidelity of the synthetic dataset in simulating clinical trial outcomes and 303 

treatment responses. 304 

Methodologically, ACCORD represents a second RCT that experimentally tested the 305 

same intervention as SPRINT but in a different population. This is essential as the effect 306 

estimates in a conditioned twin otherwise have no gold standard comparison. We demonstrate 307 

that conditioning generates effect estimates replicated in the trial that experimentally tested the 308 

intervention but arrived at a different conclusion, suggesting the validity of the produced 309 

estimates. This is the key methodological outcome of our experiments. 310 
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Moreover, there are direct clinical implications for both hypertension management and 311 

evidence generation via clinical trials. Our work demonstrates that the observed effect estimate 312 

differences in SPRINT and ACCORD emerge because of the nature of populations enrolled in 313 

these trials, and not because of diabetes status. There has been a lack of clarity about whether 314 

these effects suggested some consideration about blood pressure and its effects on diabetes. But 315 

we demonstrate that even in a trial like SPRINT, if the enrolled population had key features that 316 

resemble those seen in ACCORD, the trial could have produced a potentially null result. 317 

Similarly, had ACCORD enrolled patients that resembled SPRINT – based on features other than 318 

diabetes, it could have been positive. While these observations represent data experiments, this 319 

was recently observed in the ESPRIT trial, where patients with diabetes benefitted from intensive 320 

blood pressure lowering.40     321 

This has implications for the interpretation of clinical trials as well. We acknowledge that 322 

our work is a proof-of-concept, but we demonstrate that trials can be evaluated in populations 323 

that differ from those enrolled on key features to address whether embedded heterogeneous 324 

treatment effects and differences in these covariates affect how these results should be 325 

interpreted. Moreover, these experiments can guide the need for populations ideally chosen for 326 

additional trials. Health systems could determine the likely treatment effect of an intervention in 327 

their patient population to better contextualize their patient outcomes with the intervention by 328 

developing population-wide digital twins. This effort to use general real-world evidence to 329 

establish the efficacy of interventions has major regulatory support from agencies such as the US 330 

Food and Drug Administration.41 331 

 There are limitations to consider. First, RCT-Twin-GAN uses a select set of variables to 332 

build the digital twin. We chose a smaller set of covariates to maximize efficiency and showed 333 
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that even with this small number of representative variables, we can build a digital twin that 334 

successfully replicates treatment effect estimates. Second, our model relies on outside input for 335 

identifying correlations between covariates, but we believe this can be considered a strength that 336 

clinical expertise can be imbued into the model to reduce the weight of spurious correlations 337 

inherent in data. Third, this is a post-hoc analysis of RCTs, but we show the ability of digital 338 

twins to mirror covariate characteristics and treatment effects found in SPRINT and ACCORD. 339 

Fourth, we only applied RCT-Twin-GAN to the SPRINT - ACCORD pair because it was the only 340 

paired trial testing the same intervention with different results available through a public domain, 341 

the National Heart, Lung, and Blood Institute Biologic Specimen and Data Repository 342 

Information Coordinating Center (BioLINCC). As the data are publicly available, further 343 

research can build upon this example, and we further anticipate applying our model to other 344 

examples.  345 

Fifth, we could not study glycemic effects on the intervention because SPRINT did not 346 

control hyperglycemia or include diabetic patients as seen in ACCORD. Despite this, we 347 

demonstrate a positive treatment effect aligned with SPRINT among the ACCORD patients, who 348 

had a full range of glycemic management differences as part of the original ACCORD trial, and 349 

so do not find evidence to suggest glycemic management differences produced the null results 350 

observed in ACCORD. Sixth, GANs are known to have challenges with achieving successful 351 

convergence between the discriminator and generator, so we have adapted the most successful 352 

advances in GAN development to optimize convergence. We chose an architecture that reduces 353 

spurious correlations by introducing a DAG to define the correlation structure between variables, 354 

stabilized training with the most appropriate learning rate and batch normalization layers, and 355 

incorporated a loss function that eliminated the risk of vanishing gradients to ensure optimal 356 
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model performance. Seventh, modeling real-world patients in the EHR can be challenging since 357 

the data represents a snapshot of patients who seek care, but we choose patients from a diverse 358 

tertiary care system to maximize the breadth of the general population identified. In addition, the 359 

EHR covariates had to be operationally defined by experts to be analogous to the criteria used in 360 

RCT, but this is a descriptive study that shows different covariate distributions can be modeled. 361 

Finally, the true effect estimates in the EHR populations are unknown, and those estimated by 362 

RCT-Twin-GAN should not inform care but rather give an idea of discordance or concordance 363 

with the original RCT population. 364 

 We have introduced a new application of GANs to build synthetic cohorts by creating an 365 

RCT digital twin reflective of different patient populations, including similar RCTs and real-366 

world patients found in the EHR. Our study demonstrates a way to evaluate the generalizability 367 

of an RCT to the general population by embedding covariate distributions that are more 368 

representative of real-world populations. This amplifies the effects for those more frequently 369 

seen in clinical practice. Overall, our model contributes significantly to the evidence supporting 370 

the development of an RCT digital twin that more consistently mirrors real-world populations, 371 

thereby enhancing inference for real-world patients. 372 

 373 

METHODS 374 
 375 
Data Source and Patient Populations 376 

SPRINT and ACCORD Cohorts 377 

From 2010-2013, at 102 clinical sites across the United States, participants were recruited for the 378 

SPRINT RCT who were at least 50 years old, had a systolic blood pressure between 130 and 180 379 

mm Hg, and had increased cardiovascular event risk, including cardiovascular disease with the 380 
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exception of stroke, chronic kidney disease, Framingham 10 year cardiovascular risk score of 381 

15% or greater, and advanced age over 75. Patients with prior stroke, diabetes mellitus, and a 382 

recent heart failure exacerbation had been excluded from the study. 383 

From 2001 to 2005, at 77 clinical sites across the United States and Canada, participants 384 

were recruited for the ACCORD RCT who had type 2 diabetes mellitus, a glycated hemoglobin 385 

level of 7.5% or greater, and either age 40 or older with cardiovascular disease or age 55 or older 386 

with risk factors for cardiovascular disease and anatomical evidence of longstanding 387 

hypertension or diabetes such as albuminuria or left ventricular hypertrophy. Patients with a BMI 388 

over 45, a creatinine over 1.5 mg/dL, or serious illness were excluded.  389 

EHR cohorts 390 

The two EHR cohorts were extracted from patients within the Yale New Haven Health System 391 

(YNHHS) from 2013 to 2023. The study was reviewed by the Yale Institutional Review Board 392 

and deemed exempt as it uses retrospective data. We sampled 100,000 adult patients and then 393 

filtered the cohort to those with an ICD-10-CDM code for hypertension (Table S16). Out of these 394 

patients, we filtered for patients with an ICD-10-CDM code for type 2 diabetes mellitus (Table 395 

S16). Patients with both hypertension and type 2 diabetes mellitus billing codes were considered 396 

for the ACCORD EHR cohort. The remaining hypertension patients who did not have type 2 397 

diabetes mellitus billing codes were considered for the SPRINT EHR cohort. We excluded 398 

patients who did not have values for continuous covariates and patients above the age of 110. We 399 

then sampled 4000 patients each for the ACCORD EHR and SPRINT EHR cohorts with values 400 

for all conditioned covariates. We further excluded patients who had continuous values out of 401 

range of the training cohort of SPRINT or ACCORD (Table S17).  402 

 403 
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Development of RCT Digital Twins Conditioned on a Second Patient Population 404 

We adapted CGAN models to create digital twin datasets of an RCT conditioned on covariate 405 

distributions from a second patient population. We first built a SPRINT digital twin (SPRINT-406 

twin) trained on the SPRINT cohort without a second conditioning cohort. We then built a 407 

SPRINT digital twin conditioned on the ACCORD participant population (SPRINTACCORD-Twin) 408 

with the intention of reproducing the ACCORD primary composite outcome in a SPRINT digital 409 

twin (Figure 1). To implement this, we applied the Conditional inputs for Direct Acyclic Tabular 410 

Generative Adversarial Networks (CiDATGANs), a conditional tabular GAN that uses a directed 411 

acyclic graph  (DAG) to assign relationships between pre-randomized covariates.29,42 The DAG 412 

ensures clinically relevant connections are introduced between covariates and prevents the 413 

weighting of spurious correlations between covariates. To condition the digital twins on the other 414 

RCT population, we mapped 33 equivalent covariates between SPRINT and ACCORD (Table 415 

S18).  416 

 417 

Covariate Extraction for SPRINT, ACCORD, and the EHR 418 

In order to condition the SPRINT digital twin (SPRINT-Twin) on equivalent ACCORD 419 

covariates (SPRINTACCORD-Twin), we mapped 33 equivalent covariates between the two cohorts, 420 

which included demographics such as age, gender, race, and ethnicity, conditions and social 421 

history, such as smoking history, family history of cardiovascular disease (CVD), 422 

hyperlipidemia, left ventricular hypertrophy (LVH) and prior myocardial infarction (MI), 423 

medications such as taking aspirin or statins, procedures such as coronary revascularization, and 424 

laboratory values and vital signs such as glomerular filtration rate (GFR), glucose, and systolic 425 

blood pressure (Table S18). We also included outcome, time to outcome, and treatment arm 426 
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assignment. We limited the maximum time to outcome to five years, censoring all subsequent 427 

outcomes. 428 

To build the DAG, an expert clinician identified 16 representative variables of the 33 429 

mapped between SPRINT and ACCORD to represent all clinical areas such as demographics, 430 

conditions, medications, family history, symptoms, social history, procedures, vital signs, and 431 

laboratory and EKG measures, and also maintaining a balance of both categorical and continuous 432 

variables. All demographic variables were included since they are available for everyone in the 433 

EHR cohort. The variables included continuous covariates of age at randomization, GFR, heart 434 

rate, LDL cholesterol, and systolic blood pressure, and categorical covariates converted to a 435 

binary assignment of the presence (1) or absence (0) of angina, Black race, BMI, current smoker, 436 

family history of CVD, female sex, Hispanic ethnicity, LVH, previous MI, statin use, and White 437 

race (Table S18). Since BMI was considered a binary variable in ACCORD (above or below 32 438 

kg/m2), we used a similar definition in SPRINT.   439 

Variables related to exclusion criteria of at least one of the cohorts were not included in 440 

the conditioning of the model or constructing the DAG because of the lack of overlap in the 441 

distribution of these covariate values between the SPRINT and ACCORD cohorts. These 442 

included glucose and diabetes mellitus. The DAG construction includes an iterative process of 443 

expert assessment of clinically relevant pairs and the causal direction within the pairs and 444 

calculation of correlations between unpaired variables (Table 2). The final DAG included 71 445 

connections (Figure 2, Table S19). The arrows’ direction pointed from the independent covariate 446 

to the dependent covariate. No arrow pointed to the treatment arm covariate, labeled “Group”, 447 

since this assignment was independent of all covariates. All covariates and the “Group” pointed 448 

to the “Outcome” and “Time to Outcome” covariates since all covariates and treatment arm 449 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.03.25.24304868doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.25.24304868
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

assignment were thought to influence the outcome (Figure 2, Table S19). We used the 10 450 

covariates with the largest absolute standardized mean difference between SPRINT and 451 

ACCORD as the conditioned covariates in order to condition from the covariate distributions 452 

most representative of the second cohort. The included binary and continuous covariates, in the 453 

order of increasing dissimilarity between cohorts, were black race, history of previous MI, 454 

female sex, statin use, LVH, BMI, heart rate, age at randomization, family history of CVD, and 455 

GFR.  456 

Since we sought to condition on the EHR populations as well, we extracted the 10 457 

conditioned covariates established in the prior analysis from the EHR as well (Table S16). Only 458 

patients with a value for the demographics sex, race, and age (based on an available date of 459 

birth), the vital signs BMI and heart rate, and the laboratory test eGFR (or computable from 460 

serum creatinine), were included. The binary covariates of family history of CVD, LVH, 461 

previous MI, and statin use were considered not present (assigned 0) if they were not recorded in 462 

the patient’s EHR, as is the norm for observational research studies in the EHR.43 Age was 463 

calculated on October 1, 2023 (EHR query date), unless they were deceased, where we used the 464 

death date to define their last known age. We used this index date to consider most current 465 

clinical characteristics of the patient to estimate their treatment effect, the equivalent of the 466 

randomization to treatment arm date in the RCT. 467 

 468 

Design of the RCT-Twin-GAN Model  469 

RCT-Twin-GAN is a Generative Adversarial Network model, which is a deep learning model 470 

rooted in game theory that pits a generator, the neural network that creates synthetic data, against 471 

a discriminator, the neural network that distinguishes between the real data it is trained on and 472 
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the synthetic data created by the generator. The minimization of the discrimination between real 473 

and synthetic data allows for the GAN to make realistic digital twins of the cohort on which it is 474 

developed.44 The neural networks are comprised of Long Short Term Memory (LSTM) cells, 475 

which are structured to retain information from prior inputs in addition to the current variable 476 

input.45 GANs have been adapted to accurately synthesize tabular data such as EHR data.27,28,46 477 

GANs can also integrate data from a second patient population through conditioning the model 478 

on sample covariate values from the original cohort within the covariate distribution of the 479 

conditioning cohort, or the second patient population.28,29,46 To avoid the well-documented 480 

challenges with consistently achieving convergence in GANs, our model utilizes Wasserstein 481 

loss to overcome training instability and prevent vanishing gradients.47 482 

RCT-Twin-GAN is based on the architecture of CiDATGAN, which is an extension of 483 

DATGAN with an additional feature of conditioning covariates with distributions from a second 484 

population.29,42 The DATGAN and CiDATGAN models employ a unique feature, allowing the 485 

generator to have the relationships between covariates and outcomes of the original training 486 

cohort to be explicitly encoded via a Directed Acyclic Graph (DAG). This prevents overfitting of 487 

the discriminator by defining the correlation structure between variables. It constrains the 488 

number of relevant associations, prioritizing key features for the model to learn. In contrast to 489 

other conditional GAN architectures that infer variable relationships solely by correlation, the 490 

addition of DAG to the training of the CiDATGAN generator incorporates directed relationships 491 

between pairs of variables to eliminate spurious correlations between variables. Continuous 492 

variables were winsorized based on the min-max values of the covariate in the training dataset 493 

(Table S17) to remove outlier values below the 2.5% and 97.5% percentiles, and categorical 494 
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variables were encoded into one-hot vectors and then fed into the discriminator as part of the 495 

input.  496 

During the training phase, the generator combines Gaussian noise and attention vectors of 497 

the LSTM cells in the order of the DAG relationships and transforms the covariates from the 498 

original cohort using a fully connected layer in order to refine relationships and dependencies 499 

between the inputs. CiDATGAN creates a key modification to the DATGAN architecture in 500 

which the transformed conditional covariate inputs are also fed to the generator. Because of this 501 

modification, the DAG is also modified so that all conditional covariates are source nodes. The 502 

generator then synthesizes complementary values of the remaining covariates of the original 503 

dataset. The discriminator is then trained to differentiate between the original versus generated 504 

values of the remaining covariates from the original dataset.  The discriminator is then trained to 505 

differentiate between the original versus generated values of the remaining covariates from the 506 

original dataset (Figure 1a).  507 

During the sampling phase, the generator receives Gaussian noise, the modified DAG, 508 

and conditioned covariate values from the conditioning cohort and produces synthetic data 509 

without transformation in order to directly reflect the learned distribution from training while 510 

maintaining the integrity of the inputs from the conditioning cohort. Therefore, the final synthetic 511 

dataset incorporates the conditioning cohort inputs and generates complementary values for the 512 

remaining covariates missing from the conditioning cohort. The generator creates a cohort digital 513 

twin by producing one row of data at a time for each patient within the conditioning cohort 514 

(Figure 1b). 515 

The CiDATGAN was then trained with the DAG and encoded dataset to generate the 516 

synthetic dataset. We performed a hyperparameter grid search with different batch sizes and 517 
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epochs to find the best parameters to generate synthetic data with similar outcomes to the 518 

original dataset (Table S20). 519 

 520 

Application of RCT-Twin-GAN in SPRINT, ACCORD, and the EHR 521 

 We first used RCT-Twin-GAN to build a SPRINT-Twin, which created a DAG based on the 522 

SPRINT cohort, trained the DATGAN architecture on the SPRINT cohort, and ran the sampling 523 

phase of the DATGAN pipeline ten times, resulting in ten distinct synthetic twins. We then built 524 

a SPRINTACCORD-Twin, which again created a DAG from and trained on the SPRINT cohort but 525 

was conditioned on the ACCORD cohort, utilizing the CiDATGAN architecture. This meant that 526 

the DAG was modified to remove connections going to the conditioning covariates, and in the 527 

sampling phase, Gaussian noise and the conditioned covariate distributions from the ACCORD 528 

cohort were inputs for the generator in order to create the final synthetic dataset. We sampled this 529 

process for 10 iterations to make 10 SPRINTACCORD-Twin datasets. We repeated this process to 530 

create ACCORDSPRINT-Twin datasets by replacing ACCORD to be the training cohort and 531 

SPRINT to be the conditioning cohort.   532 

We repeated this training and conditioning process using the EHR cohorts as well. 533 

Specifically, we trained RCT-Twin-GAN on the SPRINT cohort, conditioned on the SPRINT-534 

EHR cohort, and sampled 10 times to create SPRINTEHR-Twins. We similarly made 535 

ACCORDEHR-Twins with ACCORD and the ACCORD-EHR cohort.  536 

 537 

Analysis of Cohort Representation in Digital Twins 538 

To determine whether RCT-Twin-GAN created digital twins that are balanced by treatment arm, 539 

we calculated the mean absolute standardized mean difference (MASMD) of all covariates of the 540 
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digital twins stratified by treatment arm assignment. A value of less than 0.1 was considered 541 

adequate balance, consistent with convention when assessing the success of propensity score 542 

matching.48 To assess the representation of the conditioning cohort in the synthetic digital twin, 543 

we also calculated the absolute standardized mean difference (ASMD) between SPRINT and 544 

ACCORD for each covariate, SPRINT-Twin and ACCORD, and SPRINTACCORD-Twin and 545 

ACCORD. We also calculated the Spearman correlation between all variables for each RCT and 546 

digital twin, discretized the correlations into 7 bins from -1 to 1,  and then calculated the 547 

proportion of covariate correlations from the RCT and twin data that were in the same bin 548 

(termed correlation accuracy) and mean absolute difference between RCT covariate correlation 549 

values and digital twin covariate correlation values as described in Li et al.27 550 

 551 

Evaluation of Digital Twin Similarity and Integrity 552 

We evaluated whether any row of the digital twin cohorts matched the RCT patients by a 553 

similarity score evaluation by Synthetic Data Vault.49 To assess distinguishability of the RCT 554 

data from the conditioned twins, we trained and tested with a 70/30 split a multivariable logistic 555 

regression classifier to differentiate between the RCT and digital twin, which has been used to 556 

assess the integrity of prior digital twins.37 557 

 558 

Comparison of RCT-Twin-GAN to other synthesizer models 559 

We compared the DATGAN architecture used in RCT-Twin-GAN to 5 competing models 560 

including Conditional Tabular GAN (CTGAN)28, Conditional Tabular GAN+ (CTABGAN+)50, 561 

CopulaGAN51, GaussianCopula51, and Triplet-based Variational Autoencoder (TVAE)28. We 562 

utilized the non-conditioned DATGAN architecture because none of the comparator models have 563 
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the flexibility to condition multiple continuous and categorical variables like the CiDATGAN 564 

architecture. Specifically, we tested the mean absolute error, R2, root mean squared error, 565 

standardized root mean squared error, and Pearson correlation between the distribution of unique 566 

values in the RCT compared to the digital twin. We also tested machine learning efficacy, in 567 

which a gradient bosting classifier is trained on twin data and evaluated on how well it generates 568 

real data. 569 

  570 

Estimation of Treatment Effect on Cardiovascular Outcomes in the Digital Twins 571 

In order to assess the ability of RCT-Twin-GAN to estimate RCT treatment effect outcomes in 572 

populations other than the original RCT, we calculated the hazard ratio of cardiovascular 573 

outcomes stratified by treatment arms in each of the digital twin cohorts using cox proportional 574 

hazard models. We utilized hazard ratios to evaluate the comparative risks of events over time 575 

between different treatment groups within the synthetic data. This analytical approach allowed us 576 

to gauge the effectiveness of the synthetic dataset in accurately representing the underlying 577 

dynamics of treatment effects and event occurrences observed in real-world scenarios. 578 

We reported the median hazard ratio and 95% confidence intervals for the 10 SPRINT-579 

Twin, SPRINTACCORD-Twin, and ACCORDSPRINT-Twin digital twins. In order to demonstrate the 580 

ability to estimate treatment effect outcomes in a variety of cohorts, we calculated the hazard 581 

ratio and 95% confidence intervals of cardiovascular outcomes of the SPRINTEHR-Twins and 582 

ACCORDEHR-Twins as well.  583 

 584 

Statistical Analysis 585 
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Categorical variables were summarized as numbers with percentages, and continuous variables 586 

were summarized as median with 25% and 75% interquartile ranges (IQR) or mean with 587 

standard deviation (SD). Covariate distributions were compared using ASMD and standard 588 

deviations and Spearman correlations between covariates and graphed as love plots comparing 589 

datasets and heatmaps of the correlations. Data was winsorized at 2.5% and 97.5% percentiles to 590 

remove outliers. Survival analysis was conducted using unadjusted cox proportional hazard 591 

models with p values calculated after 5 years and presented as Kaplan Meier survival curves. 592 

Hazard ratios across digital twins and SPRINT and ACCORD cohorts were presented as forest 593 

plots with 95% confidence interval error bars. Analyses were conducted using python 3.9, with 594 

packages specified in the supplement.  595 

 596 

DATA AVAILABILITY 597 

The SPRINT and ACCORD cohorts are publicly available through the National Heart, Lung, and 598 

Blood Institute Biologic Specimen and Data Repository Information Coordinating Center 599 

(BioLINCC). The SPRINT dataset is available at https://biolincc.nhlbi.nih.gov/studies/sprint/ 600 

and the ACCORD dataset is available at https://biolincc.nhlbi.nih.gov/studies/accord/. The Yale 601 

electronic health record cohorts are not available due to the use of patient data. 602 

 603 
CODE AVAILABILITY 604 

The code for reproducing the treatment effect estimates, digital twins, and analysis figures will 605 

be available during peer review in an accompanying file, and the code will be made publicly 606 

available upon publication. 607 

 608 

  609 
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FIGURES 778 

Figure 1: Graphical abstract of RCT-Twin-GAN model. 779 

780 

  781 

A. In the training phase, the original cohort (pink) is a randomized clinical trial (RCT), and 782 
variables across all clinical domains are extracted from the cohort. The directed acyclic graph 783 
(DAG) includes clinician-defined relationships between original cohort covariates and is inputed 784 
to the generator, along with RCT values of the non-conditioned variables. The generator then 785 
creates the conditioned variables, and the discriminator must differentiate from the original RCT 786 
conditioned variables and the generator conditioned variables. Once the disciminator cannot 787 
distinguish between the original and generated values, the training is complete. B. In the 788 
sampling phase, conditioned variables from the RCT cohort are mapped to a conditioning cohort 789 
(blue), examples of which are another RCT or a patient cohort in the electronic health record 790 
(EHR). The trained generator then takes the conditioned variables from the conditioning cohort 791 
and noise as input, and then generates non-conditioned variables. The final cohort-conditioned 792 
RCT twin has conditioned covariate values from the conditioning cohort (blue) and generated 793 
non-conditioned covariates based off the relationships and correlations between covariates (light 794 
purple). Abbreviations: DAG: Directed Acyclic Graph, EHR: electronic health record, and RCT: 795 
Randomized Clinical Trial.  796 

797 
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Figure 2: Directed acyclic graph of RCT-Twin-GAN. 798 
 799 

 800 
Directed relationships between covariates (in blue), time to outcome and outcome (in orange), 801 
and treatment arm designation (“Group”) in green. Abbreviations: BMI: Body Mass Index, CVD: 802 
Cardiovascular disease, FH: Family History, GFR: Glomerular Filtration Rate, LVH: Left 803 
ventricular hypertrophy, LDL: low-density lipoprotein, MI: Myocardial infarction, SBP: Systolic 804 
Blood Pressure. 805 
 806 

 807 

 808 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.03.25.24304868doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.25.24304868
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

Figure 3: Absolute standardized mean difference (ASMD) of covariates between datasets. 809 

 810 
(A) ASMD of covariates between treatment arms of RCTs and digital twins. Markers include 811 
SPRINT (red circle), ACCORDSPRINT Twin (orange square), SPRINTACCORD-Twin (blue 812 
triangle), and ACCORD (purple diamond). The digital twin ASMDs are the mean of the 10 813 
digital twin samples with standard deviation error bars. (B) ASMD of covariates between RCTs 814 
and digital twins. Red circle represents ASMD between ACCORD and SPRINT, green triangle 815 
represents ASMD between ACCORD and SPRINTACCORD-Twins, and the blue square represents 816 
the ASMD between SPRINT and ACCORDSPRINT Twins.  The digital twin ASMDs are the mean 817 
of the 10 digital twin samples with standard deviation error bars. The grey dotted line represents 818 
an ASMD of 0.1, and the black dotted line separates non-conditioned and conditioned covariates. 819 
The conditioning covariates included Age, Black, BMI, FH CVD, Female, GFR, Heart Rate, 820 
LVH, MI, and On Statin. Abbreviations: ASMD: Absolute Standardized Mean Difference, BMI: 821 
Body Mass Index, CVD: Cardiovascular disease, C: Control Arm, FH: Family History, eGFR: 822 
Glomerular Filtration Rate, I: Intervention Arm, LDL: low-density lipoprotein, LVH: Left 823 
ventricular hypertrophy, MI: Myocardial infarction, SBP: Systolic Blood Pressure. 824 

825 
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Figure 4: Hazard ratios of intensive blood pressure lowering on cardiovascular outcomes.  826 
 827 

 828 
(A) Forest plot of the SPRINTACCORD-Twin datasets and (B) Forest plot of the ACCORDSPRINT-829 
Twin datasets. In both graphs, the purple circle is the ACCORD hazard ratio and 95% confidence 830 
interval, the red diamond is the SPRINT hazard ratio and 95% confidence interval, and the grey 831 
dotted line represents a hazard ratio of 1. In (A), orange squares are the hazard ratio of major 832 
cardiovascular outcome predicted for each twin run of ACCORD-conditioned SPRINT twins 833 
with 95% confidence intervals and in (B) the blue triangles are SPRINT-conditioned ACCORD 834 
twins. Abbreviations: MACE: Major Cardiovascular Outcomes, SPRINTACCORD-Twin: 835 
ACCORD-conditioned SPRINT Twin, ACCORDSPRINT-Twin: SPRINT-conditioned ACCORD 836 
twin. 837 

838 
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Figure 5: Representative Kaplan-Meier curves of digital twins conditioned on EHR data. 839 
 840 

841 

 842 
(A) Kaplan-Meier curves of SPRINT treatment arms along with EHR-conditioned SPRINT 843 
treatment arms, (B) Kaplan Meier curves of ACCORD treatment arms along with EHR-844 
conditioned ACCORD treatment arm balance of the original cohorts and digital twins. 845 
Abbreviations: ACCORDEHRTwin: ACCORD conditioned on EHR digital twin., C. Control arm, 846 
EHR: Electronic Health Record, I: Intervention Arm, SPRINTEHR-Twin: SPRINT conditioned on 847 
EHR digital twin. 848 
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TABLES 850 

Table 1: Minimal Requirements for RCT-Twin-GAN 851 

Rules 

1. The model requires at least a pair of cohorts, one should be an RCT, the second should 
have the same covariates accessible and overlapping covariate distributions. This is, 
however, extendable to any number of cohorts. 
 

2. There must be at least two treatment arms in the RCT with any ratio of randomization. 

 
3. A measured outcome, categorical or continuous, should be available in the RCT to 

estimate treatment effect. 
 

4. A sample size of at least 100 is needed for model convergence, but at least 1000 
participants and further hyperparameter tuning of the model is needed to accurately 
estimate treatment effects. 

 852 

  853 
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Table 2: Construction of the Directed Acyclic Graph 854 

1. Assemble covariates, treatment arms, time to outcome, and outcome. 
 

2. Assign treatment arm as a source node that only connects to time to outcome and 
outcome. 

 
3. Ensure all covariates are connected to time to outcome and outcome. 

 
4. Clinicians assess which covariates influence each other based off clinical knowledge, 

such as systolic blood pressure to left ventricular hypertrophy or current smoker to 
angina or MI. 

 
5. Pearson and Spearman correlations are calculated between every unconnected pair of 

variables and those with both Pearson and Spearman correlations >0.75 are assessed. 
 

6. Clinicians assess which of the suggested pairs are clinically relevant and add them to 
the DAG. 

 
7. Repeat steps 5 and 6 until no more clinically relevant pairs are suggested. 

 

 855 
  856 
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Table 3: CiDATGAN Architecture, Training and Sampling 857 
 858 
1. DAG Construction: For each cohort (e.g., SPRINT and ACCORD), we constructed a DAG 
representing the causal relationships between covariates and outcomes. This DAG was used to 
inform the generator about the relevant correlation structure and prevent overfitting of 
correlations from noise.  
The graph G for a DAG is specified by the modeler to define the correlations between the 
variables in the data. 

• Each variable V!	in the table T must be associated with a node in the graph G. 
• A directed edge between two nodes, i.e. V!" → V!#, means that the generation of the 

first variable V!" will influence the generation of the second variable V!#. 
• The absence of a link between two variables means that their correlation is not directly 

learned by the Generator.  
 
Once the DAG G was created, we defined several sets: 
 

• A(V!): the set of ancestors of the variable V! 
• D(V!): the set of direct ancestors of the variable V! 
• S(V!): the set of source nodes leading to the variable V! 
• E(V!): the set of in-edges of the variable V! 

 
2. Training and Conditioning Phase: The DATGAN architecture was trained on the original 
cohort data (e.g., SPRINT). Continuous and categorical variables from the dataset were 
encoded at the discriminator input. We introduced conditioning covariates to condition the 
generation of synthetic data. The DAG was constructed so that the conditioning covariates 
were removed and treated as source nodes because the discriminator was only trained on non-
conditioned covariates. The generator utilized Gaussian noise, the DAG-informed covariate 
relationships, and the conditioned covariate values from the conditioning cohort to generate 
synthetic data. The discriminator was trained to distinguish between the generated synthetic 
data and the real cohort data.  
 
The mathematical representations of these are included below: 
 
T$: Original cohort with N$ variables (v%$	for	i − 1,… , N$) 
T&: Original cohort with N& variables (v%&	for	i − 1,… , N&) where N$ 	> 	N& 
N&': Number of common variables across both cohorts such that N&' 	≤ 	N$ 
These common variables are denoted as T$(%	and	T&(%	for the original and conditioning cohorts 
respectively. 
Goal: To generate complementary variables T$( =	T$ −	T$(%	 using the values of common 
variables T&(% as inputs. 
 
Generator: 
Let,  
G = Generator  
z = Gaussian Noise  
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 T&(% = Conditional Inputs  
Generates each variable in T$( 
Let T$→&(,+,-!. = Generated Data 
 
Discriminator: 
Let, 
 D = Discriminator  
 D distinguishes between the real data T$( and generated data T$→&(,+,-!.  
 
The model is trained on T$ with the associated DAG structure where the conditional variables 
are source nodes.  
The generation of synthetic variables V!$ in T$( using LSTM cells follows an order provided 
by the linearization of the DAG. 
 
LSTM Cells: 
Each LSTM cell LSTM! is associated with the variable v!$, ordered based on the DAG. The 
cell takes as input the cell state of the previous variable in the DAG C!/" and the input tensor 
i!, which is a concatenation of: 

i! = [z!, f!/", a!] 
Where: 

• z! is a tensor of Gaussian noise. 
• f!/"	is the transformed output of the previous LSTM cell in the DAG. 
• a!	is the attention vector used to retain information from previous ancestors not directly 

linked to the current cell in the DAG. 
 
Attention Vector 𝐚𝐭: 

a! =	 D
exp	(α1! )

∑ exp	(α2!)
|4(!)|
27"1∈49!)\;(!)

	 f1 

 
where A(t)\P(t) is the set of ancestors of the variable v!& in the DAG, excluding direct 
predecessors, α!	is a learned attention weight vector, and f1 is the final output of the LSTM 
cell LSTM1. 
 
Output of LSTM Cells: 
Each LSTM cell outputs two tensors, the new cell state C!  and the output of the cell h!. This 
output is then passed through fully connected layers to get the synthetic values v!

&,+,-!.: 
v!
$,+,-!. = FC(h!) 

The synthetic tensor is resized to a common size between all variables using an input 
transformer. 
 
Handling Conditional Inputs: 
For variables in T$(%,	the generator needs the transformed output f!/" of the direct ancestor and 
the direct output h1 of all ancestors. 
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Transformed Output f!: 
The same type of input transformer is used to get f! for the conditional inputs. 
 
Dense (Fully connected) Layer Transformation: 
Since LSTM output h! is not available for conditional inputs, the original value v! is 
transformed using a Dense layer: 

h! = Dense(v!) 
The parameters in this Dense layer are learned during the training process, allowing the model 
to use the conditional inputs in the attention vector. 
 
3. Sampling Process:  
During the sampling phase, the model received Gaussian noise, the DAG, and the values of 
conditioned covariates for the patient, which can come from either the original dataset T$(% or 
the conditioning dataset T&(%. This combination was used to generate the final digital twin 
(T$→&

(,+,-!.) from each patient of the conditioning cohort, which included a copy of conditioned 
covariate values, and generated non-conditioned covariates based off the correlations between 
the covariates from the original cohort.  
 
4. Sampling and Iterations:  
Digital twin generation was repeated for a specified number of iterations (e.g., 10 iterations). 
In each iteration, the generator produced a synthetic dataset based on the conditioned 
covariates and Gaussian noise. Each iteration generated a complete digital twin cohort.” 
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