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Abstract: 
Randomized clinical trials (RCTs) are essential to guide medical practice; however, their 
generalizability to a given population is often uncertain. We developed a statistically informed 
Generative Adversarial Network (GAN) model, RCT-Twin-GAN, that leverages relationships 
between covariates and outcomes and generates a digital twin of an RCT (RCT-Twin) 
conditioned on covariate distributions from a second patient population. We used RCT-Twin-
GAN to reproduce treatment effect outcomes of the Systolic Blood Pressure Intervention Trial 
(SPRINT) and the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Blood 
Pressure Trial, which tested the same intervention but had different treatment effect results. To 
demonstrate treatment effect estimates of each RCT conditioned on the other RCT patient 
population, we evaluated the cardiovascular event-free survival of SPRINT digital twins 
conditioned on the ACCORD cohort and vice versa (SPRINT-conditioned ACCORD twins). The 
conditioned digital twins were balanced by the intervention arm (mean absolute standardized 
mean difference (MASMD) of covariates between treatment arms 0.019 (SD 0.018), and the 
conditioned covariates of the SPRINT-Twin on ACCORD were more similar to ACCORD than a 
sprint (MASMD 0.0082 SD 0.016 vs. 0.46 SD 0.20). Most importantly, across iterations, 
SPRINT conditioned ACCORD-Twin datasets reproduced the overall non-significant effect size 
seen in ACCORD (5-year cardiovascular outcome hazard ratio (95% confidence interval) of 0.88 
(0.73-1.06) in ACCORD vs median 0.87 (0.68-1.13) in the SPRINT conditioned ACCORD-
Twin), while the ACCORD conditioned SPRINT-Twins reproduced the significant effect size 
seen in SPRINT (0.75 (0.64-0.89) vs median 0.79 (0.72-0.86)) in ACCORD conditioned 
SPRINT-Twin). Finally, we describe the translation of this approach to real-world populations by 
conditioning the trials on an electronic health record population. Therefore, RCT-Twin-GAN 
simulates the direct translation of RCT-derived treatment effects across various patient 
populations with varying covariate distributions.  
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BACKGROUND 

Randomized control trials (RCTs) generate evidence that defines optimal clinical practices, but 

their generalizability to real-world patient populations is often challenging to quantify.1,2 This is 

a concern because RCTs often have underrepresentation from several demographic and clinical 

subpopulations3–7 and varying treatment effects among individuals with certain characteristics.8–

10 These considerations are critical to translating information from RCTs to real-world patient 

populations,11,12 but no strategies exist to evaluate how they may affect the applicability to 

patients in these settings.  

The differences across RCTs testing similar interventions with discrepant treatment 

effects are one of the manifestations of potential issues arising out of the generalizability of 

interventions tested in RCTs.13–19 For example, the Systolic Blood Pressure Intervention Trial 

(SPRINT) was a treatment intervention RCT that showed improved cardiovascular outcomes 

with intensive blood pressure control.13 In contrast, the Action to Control Cardiovascular Risk in 

Diabetes Blood Pressure (ACCORD) trial did not find improved cardiovascular outcomes with 

the same intervention.14 Among the explanations posited for these discrepant findings, 

differences in population composition and event rates are frequently suggested,20–23 but despite 

experimental evidence available from two trials, there is no quantitative strategy to evaluate 

these assertions explicitly. Therefore, while it is critical to evaluate whether the effects observed 

in an RCT population generalize to a second population – either a planned second RCT or a 

general population of patients with the condition – it is currently challenging to examine these 

effects across the complex differences across multiple population characteristics.   

Digital twins represent a strategy to create a synthetic representation of complex systems 

that replicates their underlying structure. Specifically, digital twin synthesis through deep 
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generative models such as generative Adversarial Networks (GANs) can integrate multiple 

patient population characteristics by constructing a synthetic cohort that accurately represents 

their covariate distributions. While GANs have been utilized to estimate individual treatment 

effects, their potential for evidence translation across patient populations has not been 

explored.24–27 Conditional GANs (CGAN) enable the generation of synthetic datasets that allow 

for the conditioning of covariates with a second population distribution.28,29 We hypothesize that 

applying this model to an RCT with the conditioning of a second population will estimate the 

treatment effects of the original RCT in the new patient population. 

We present RCT-Twin-GAN, a generative framework that combines clinical knowledge 

and the statistically informed architecture to create a digital twin of an RCT conditioned on the 

characteristics of another patient population to assess for generalizability of treatment effect. To 

demonstrate the ability of the digital twin to replicate treatment effects in the conditioning or 

target population, we first compared two RCTs, SPRINT and ACCORD, with similar 

interventions but disparate treatment effects on cardiovascular outcomes. We created a digital 

twin of each of the 2 RCTs conditioned on covariate distributions of the other and evaluated 

whether the RCT-Twins reproduced the treatment effect of the conditioning or target cohort.  

Finally, we describe the cardiovascular outcomes of SPRINT and ACCORD digital twins 

conditioned on characteristics of patients in the electronic health record (EHR), introducing the 

role of RCT-Twins in estimating RCT treatment effects in real-world populations.  

 

RESULTS 

Study Populations 
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The study developed digital twins of two RCTs. The first, SPRINT, was a treatment intervention 

study to test whether intensive blood pressure control (goal systolic blood pressure less than 120 

mmHg) versus standard care (goal systolic blood pressure less than 140 mmHg) reduced major 

cardiovascular events. The trial consisted of 9361 participants (median age 67 (61 to 76 (25-75% 

IQR, and 3332 (36%) women). Patients with prior stroke, diabetes mellitus, and a recent heart 

failure exacerbation had been excluded from the study. The patients in SPRINT were followed 

for a median of 3.26 years for the first occurrence of any of the primary composite outcome 

components of myocardial infarction, acute coronary syndrome, stroke, heart failure, or death 

from cardiovascular causes.  

Our study built a SPRINT digital twin with a population representation of another RCT 

with the same intervention, the ACCORD trial, a double factorial RCT of participants with type 

2 diabetes mellitus and cardiovascular disease. We specifically leveraged the blood pressure 

management component of the ACCORD trial, wherein half of the participants were randomized 

to intensive versus standard care blood pressure control, with the same treatment goals as those 

in the SPRINT trial. ACCORD consisted of 4733 participants (median age 62, IQR, 58-67, and 

2258 [48%] women). ACCORD median follow-up time was 4.7 years for the primary composite 

outcome of myocardial infarction, stroke, or death for cardiovascular cause.  

We also incorporated two cohorts from the Yale New Haven Hospital Health System 

Electronic Health Record (EHR), a large healthcare system including several hospitals with 

diverse racial and socioeconomic demographics across Connecticut and Rhode Island. Two sets 

of patients with hypertension, one without and the other with diabetes were identified to broadly 

represent populations included in SPRINT and ACCORD, respectively, to estimate the treatment 

effects found in the two RCTs on corresponding real-world patient populations. We included 
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4,000 randomly selected patients from each cohort for the final SPRINT EHR and ACCORD 

EHR cohorts.  The SPRINT EHR cohort had a median age of 73 years (IQR, 61 to 84) and 2069 

(52%) women), while the ACCORD EHR cohort had a median age of 71 (61 to 80 IQR) and 

2032 (51%) women).  

Development of RCT Digital Twins Conditioned on a Second Patient Population 

We developed CGAN models to create digital twin datasets of an RCT conditioned on covariate 

distributions from a second patient population. We first built a SPRINT digital twin (SPRINT-

twin) trained on the SPRINT cohort without a second conditioning cohort. We then built a 

SPRINT digital twin conditioned on the ACCORD participant population (SPRINTACCORD-Twin) 

with the intention of reproducing the ACCORD primary outcome in a SPRINT digital twin 

(Figure 1). To implement this, we applied the Conditional inputs for Direct Acyclic Tabular 

Generative Adversarial Networks (CiDATGANs), a conditional tabular GAN that uses a directed 

acyclic graph to assign relationships between pre-randomized covariates.29,30 The directed 

acyclic graph ensures clinically relevant connections are introduced between covariates and 

prevents the weighting of spurious correlations between covariates. To condition the digital twins 

on the other RCT population, we mapped 33 equivalent covariates between SPRINT and 

ACCORD.  

Our directed acyclic graph contained 16 representative covariates, including age at 

randomization, body mass index (BMI), current smoker, family history of cardiovascular disease, 

glomerular filtration rate (GFR), low-density lipoprotein (LDL) cholesterol level, left ventricular 

hypertrophy (LVH), previous myocardial infarction (MI), race,  systolic blood pressure and heart 

rate, sex, statin use, and symptoms of angina, to minimize the number of variables needed to 

build a digital twin of the RCT cohort (Figure 2). In addition to the covariates, outcome, time to 
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outcome, and treatment arm were included in the graph. Two expert clinicians identified directed 

clinical relationships between the covariates and outcomes. Overall, 71 connections within the 

DAG were identified. 

After training CiDATGAN with the DAG and SPRINT cohort data, the created SPRINT-

Twin (the non-conditioned SPRINT twin) reproduced the distributions of the original covariates 

in SPRINT (Supplementary Table 6,7). In addition, all covariates were balanced between the 

intervention and standard care groups in SPRINT-Twin, as evidenced by absolute standardized 

mean differences of less than 0.1 and a mean absolute standardized difference (MASMD) of 

0.019 (SD 0.018) between treatment groups across all covariates (Figure 3a). This was similar to 

the MASMD between treatment arms of SPRINT, 0.013 (SD 0.013).  

After developing the CiDATGAN with the DAG informed by the SPRINT cohort, we 

conditioned the generator with covariate distributions from the ACCORD, choosing 10 

covariates most dissimilar between the two population distributions. This was done to enable the 

ACCORD conditioning to specifically evaluate the hypothesis that the differences in findings 

between the two trials were at least partly mediated by the differences in population 

characteristics. The included binary and continuous covariates, in the order of increasing 

dissimilarity between cohorts, were black race, history of previous MI, female sex, statin use, 

LVH, BMI, seated heart rate, age at randomization, family history of CVD, and GFR. The 

standardized mean differences between SPRINTACCORD-Twin and ACCORD for these covariates 

all had standardized mean differences of less than 0.1, with a MASMD of 0.0082 (SD 0.016), 

while the MASMD between SPRINT and ACCORD of the same covariates was 0.46 (SD 0.20) 

(Figure 3b).  

Estimating the Primary Cardiovascular Outcome in SPRINT-Twin 
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We confirmed the differences in reported outcomes in the SPRINT and ACCORD in the trial in 

our trial datasets, with a significant reduction in cardiovascular events in SPRINT’s intervention 

arm compared with control (hazard ratio 0.75 [0.64-0.89 95% CI, p<0.001]), without a 

significant reduction in a similar primary outcome in ACCORD (hazard ratio 0.88 [0.73 to 1.06 

95% CI, p=0.20]). In the SPRINT-Twin without conditioning, the median hazard ratio across 10 

generated SPRINT-Twin datasets was 0.73 (CI 0.61-0.87), with the 10 replications performed to 

ensure the reproducibility of the findings. This was comparable to the HR of 0.75 in the SPRINT 

trial. Similarly, the ACCORD-Twin without conditioning replicated the primary results of the 

ACCORD trial, with a median HR of 0.89 (CI 0.79-1.0) comparable to the HR of 0.88 of the 

ACCORD trial. 

Estimating the Primary Cardiovascular Outcome 

We then demonstrated the ability of RCT-Twins to replicate the known treatment effects of a 

second population. The SPRINTACCORD-Twin – the SPRINT-Twin that was conditioned on 

ACCORD. We found the median hazard ratio of 10 SPRINTACCORD-Twin datasets was 0.87 (CI 

0.68-1.13), this time comparable to the HR of 0.88 of the ACCORD trial (Figure 4a). In contrast, 

in 10 replicated digital twins of the ACCORD cohort conditioned on covariate distributions in 

SPRINT (ACCORDSPRINT-Twin), reproduced the significant effect size seen in SPRINT (HR 

0.75) with a median hazard ratio of 0.79 (CI 0.72-0.86) (Figure 4b).  

Estimating the Treatment Effect of SPRINT and ACCORD in the EHR 

In a descriptive substudy, we demonstrated the ability to estimate SPRINT and ACCORD 

treatment effect outcomes in patient populations reflecting a large US health system, YNHHS. 

The same 10 conditioning covariates used for conditioning SPRINT and ACCORD against each 

other, were computably extracted from the YNHHS EHR by clinician experts to define 
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covariates in the corresponding EHR cohorts. In the digital twin of SPRINT conditioned on the 

corresponding EHR cohort (SPRINTEHR-Twin), we confirmed the replication of RCT features, 

including covariate balance across treatment and control arms (MASMD 0.03 (SD 0.03), 

Supplementary Figure 1. In this SPRINTEHR-Twin the median cardiovascular outcome HR was 

0.84 (95% CI, 0.64-1.09) across the 10 replications. Similarly, the ACCORDEHR-Twin replicated 

both RCT features and EHR covariate distributions, with a median cardiovascular outcome HR 

of 0.94 (CI 0.8-1.1). 

 

DISCUSSION 
 
We present RCT-Twin-GAN, a deep generative model that utilizes clinical knowledge of 

covariate relationships to synthesize a digital twin of an RCT with selected covariate 

distributions from a second population distribution, which could be another RCT cohort to a 

general patient population reflected in an EHR. We found that RCT-Twin-GAN created digital 

twins that replicate the fundamental feature of RCTs, i.e., balanced covariates across treatment 

intervention arms, but with conditioning able to reflect the covariate distributions to mirror this 

second population’s distribution. Moreover, in a positive control experiment in a 2-RCT system 

where treatment effects were known from well-conducted experiments but were discordant 

across the RCTs, the RCT-Twins conditioned on covariates from the opposing RCT replicated 

the results observed in other RCT, demonstrating the value of the approach in examining the 

effect of population characteristics on study outcomes. We also demonstrate that the approach is 

flexible to these characteristics drawn from any population, thereby enabling a quantitative 

evaluation of an RCT’s potential treatment effects in populations that differed from those 

included in the trial.  
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 Our work has built upon the established need to quantify generalizability of RCTs to new  

populations.31 Prior methods, such as standardization of event rates, allow adjustment by single 

variables, which groups patients together by singular stratification.32 Others have used distance 

metrics and decision tree machine learning techniques to represent the complex interplay of 

covariates and characterize the heterogeneity of treatment effect.8–10,23,33–35 Our method 

complements these by building digital twins for each patient, drawing from the multiple 

covariate distribution and outcomes of each population to create complex subgroups within the 

conditioning population and allowing granularized treatment effect estimates. Statistical methods 

to assess heterogeneous treatment effects across populations have generally focused on 

equalizing baseline characteristics between populations using propensity score matching, but this 

scores one variable at a time, thereby ignoring multi-variable differences across patients, and 

does not consider effect modifiers.36 We incorporate the distributions of multiple mutual pre-

randomization covariates available across datasets to ensure representation across multivariate 

axes. In addition, we utilize clinician expertise to identify connections between covariates and 

build digital twins modeling the complex interplay of effect modifiers and outcomes.  

 Our application of digital twins introduces a novel approach for evidence translation 

across populations. Discordant randomized clinical trials can muddy the development of 

guidelines, but assessing population-level response could provide generalizable information 

needed to elucidate to which patient populations the guidelines apply. When a patient does not fit 

the population enrolled in the trial, assessment of the trial effect estimates with a general 

population, such as patients in the EHR or a registry, could similarly inform clinicians of 

possible differences in treatment effect from the original patient populations. Health systems 

could determine the likely treatment effect of an intervention in their patient population to better 
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contextualize their patient outcomes with the intervention by developing population-wide digital 

twins. This effort to use general real-world evidence to establish the efficacy of interventions has 

major regulatory support from agencies such as the US Food and Drug Administration.37 

 A unique feature of RCT-Twin-GAN is incorporating both rigorous statistical methods 

and clinical knowledge to build digital twins of RCTs with representative covariate balance and 

effect modifier information. The directed acyclic graph structure weights clinically relevant 

relationships between covariates and outcomes and removal of spurious correlations, which 

would otherwise be included in the GAN. Our ability to reproduce treatment effect estimates 

from the conditioning cohort by sampling its covariate distributions relies on the inference of 

important correlations between covariates during GAN training and digital twin generation. 

Although prior digital twin studies have focused on individual patient twin generation and 

supplementing RCTs with synthetic patients, our study builds upon these by estimating treatment 

effect across different patient populations. Measuring the hazard ratios of treatment effect 

outcomes as an evaluation metric provided valuable insights into the fidelity of the synthetic 

dataset in simulating clinical trial outcomes and treatment responses. 

 There are limitations to consider. First, RCT-Twin-GAN uses a select set of variables to 

build the digital twin. We chose a smaller set of covariates to maximize efficiency and showed 

that even with this small number of representative variables, we can build a digital twin that 

successfully replicates treatment effect estimates. Second, our model relies on outside input for 

identifying correlations between covariates, but we believe this can be considered a strength that 

clinical expertise can be imbued into the model to reduce the weight of spurious correlations 

inherent in data. Third, this is a post-hoc analysis of RCTs, but we show the ability of digital 

twins to mirror covariate characteristics and treatment effects found in SPRINT and ACCORD. 
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Fourth, we only applied RCT-Twin-GAN the SPRINT - ACCORD pair because it was the only 

paired trial testing the same intervention with different results available through a public domain, 

the National Heart, Lung, and Blood Institute Biologic Specimen and Data Repository 

Information Coordinating Center (BioLINCC). As the data are publicly available, further 

research can build upon this example, and we further anticipate applying our model to other 

examples. Fifth, modeling real-world patients in the EHR can be challenging since the data 

represents a snapshot of patients who seek care, but we choose patients from a diverse tertiary 

care system to maximize the breadth of the general population identified. In addition, the EHR 

covariates had to be operationally defined by experts to be analogous to the criteria used in RCT, 

but this is a descriptive study that shows different covariate distributions can be modeled. 

Finally, the true effect estimates in the EHR populations are unknown, and those estimated by 

RCT-Twin-GAN should not inform care but rather give an idea of discordance or concordance 

with the original RCT population. 

 We have introduced a new application of GANs to build synthetic cohorts by creating an 

RCT digital twin reflective of different patient populations, including similar RCTs and real-

world patients found in the EHR. Our study demonstrates a way to evaluate the generalizability 

of an RCT to the general population by embedding covariate distributions that are more 

representative of real-world populations. This amplifies the effects for those more frequently 

seen in clinical practice. Overall, our model contributes significantly to the evidence supporting 

the development of an RCT digital twin that more authentically mirrors real-world populations, 

thereby enhancing inference for real-world patients. 

 

METHODS 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 26, 2024. ; https://doi.org/10.1101/2024.03.25.24304868doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.25.24304868
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13

Data Source and Patient Populations 

SPRINT and ACCORD Cohorts 

The Systolic Blood Pressure Intervention Trial (SPRINT) was an open-label RCT testing 

difference in major cardiovascular outcomes between intensive blood pressure management of 

less than 120 mm Hg versus less than 140 mm Hg. From 2010-2013, at 102 clinical sites across 

the United States, 9361 participants were recruited who were at least 50 years old, had a systolic 

blood pressure between 130 and 180 mm Hg, and had increased cardiovascular event risk, 

including cardiovascular disease with the exception of stroke, chronic kidney disease, 

Framingham 10 year cardiovascular risk score of 15% or greater, and advanced age over 75. 

Patients with diabetes mellitus or stroke were excluded. 

The Action to Control Cardiovascular Risk in Diabetes Blood Pressure (ACCORD BP) 

Trial was part of the ACCORD trial in which 4733 of the participants were randomly assigned to 

the same intensive vs standard blood pressure control as SPRINT in addition to intensive or 

standard glycemic control in a 2 by 2 factorial design. From 2001 to 2005, at 77 clinical sites 

across the United States and Canada, participants with type 2 diabetes mellitus, a glycated 

hemoglobin level of 7.5% or greater, and either age 40 or older with cardiovascular disease or 

age 55 or older with risk factors for cardiovascular disease and anatomical evidence of 

longstanding hypertension or diabetes such as albuminuria or left ventricular hypertrophy. 

Patients with a BMI over 45, a creatinine over 1.5 mg/dL, or serious illness were excluded.  

EHR cohorts 

The two EHR cohorts were extracted from patients within the Yale New Haven Health System 

(YNHHS), a tertiary healthcare system with hospitals and outpatient locations that serve diverse 

socioeconomic, geographic, and demographic populations across Connecticut and Rhode Island. 
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The study was reviewed by Yale Institutional Review Board and deemed exempt as it uses 

retrospective data. We sampled 100,000 adult patients to identify EHR cohorts similar to 

SPRINT and ACCORD. We first filtered the cohort to those with an ICD-10-CDM code for 

hypertension (Supplementary Table 2). Out of these patients, we filtered for patients with an 

ICD-10-CDM code for type 2 diabetes mellitus (Supplementary Table 2). Patients with both 

hypertension and type 2 diabetes mellitus were considered for the ACCORD EHR cohort. The 

remaining hypertension patients that did not have type 2 diabetes mellitus were considered for 

the SPRINT EHR cohort. Out of 100,710 sampled EHR patients, 30,972 had a hypertension 

diagnosis, and 8,840 of these patients also had type 2 diabetes mellitus. The participants with 

hypertension and type 2 diabetes mellitus were considered for the ACCORD EHR cohort, and 

the participants with hypertension but no type 2 diabetes mellitus were considered for the 

SPRINT EHR cohort.  After excluding patients who did not have values for continuous 

covariates and patients above the age of 110, the SPRINT EHR cohort had 5,218 patients, while 

the ACCORD EHR cohort had 4,676 patients.  We sampled 4000 patients each for the ACCORD 

EHR and SPRINT EHR cohorts with values for all conditioning covariates. We further excluded 

patients who had continuous values out of range of the training cohort of SPRINT or ACCORD 

(Supplementary Table 4), leading to a final 3,130 patients in the SPRINT EHR cohort and 2,731 

patients in the ACCORD EHR cohort. Of note, the choice of the covariates was governed by 

primary analysis focused on shared covariates between SPRINT and ACCORD. In real-world 

translations, a different covariate set shared between a development and target population can be 

selected.  

Covariate extraction for SPRINT, ACCORD, and the EHR 
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In order to condition the SPRINT digital twin (SPRINT-Twin) on equivalent ACCORD 

covariates (SPRINTACCORD-Twin), we mapped 33 equivalent covariates between the two cohorts, 

which included demographics such as age, gender, and race, conditions, and social history, such 

as smoking history, family history of cardiovascular disease, hyperlipidemia, and prior 

myocardial infarction, medications such as taking aspirin or statins, procedures such as coronary 

revascularization, and laboratory values and vital signs such as glucose, GFR, and seated systolic 

blood pressure (Supplementary Table 1). We also included outcome, time to outcome, and 

treatment arm assignment. We limited the maximum time to outcome to five years, censoring all 

subsequent outcomes. 

In order to build the DAG, we identified 16 representative variables of those mapped 

between SPRINT and ACCORD including a family history of cardiovascular disease, race, 

symptoms of angina, seated systolic blood pressure and heart rate, LDL cholesterol, GFR, BMI, 

LVH, statin use, female sex, current smoker, previous myocardial infarction (MI), and age at 

randomization (Figure 2). Since BMI was considered a binary variable in ACCORD (above or 

below 32 kg/m2), we used a similar definition in SPRINT.  Variables related to exclusion criteria 

of at least one of the cohorts were not included in the conditioning of the model or constructing 

the DAG. These included glucose and type 2 diabetes mellitus.  First, expert clinicians 

determined clinically relevant pairs between covariates and outcomes, and then a data-driven 

iterative process was conducted in which the network model recommended pairs based on 

correlations between the covariates in the data. The expert clinicians then determined whether to 

add them to the DAG. The arrows’ direction pointed from the independent covariate to the 

dependent covariate. No arrow pointed to the treatment arm covariate, labeled “Group”, since 

this assignment was independent of all covariates. All covariates and the “Group” pointed to the 
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“Outcome” and “Time to Outcome” covariates since all covariates and treatment arm assignment 

were thought to influence the outcome (Supplementary Table 3, Figure 2). We used the 10 

covariates with the largest mean absolute standardized difference between SPRINT and 

ACCORD as the conditioning covariates in order to condition from the covariate distributions 

most representative of the second cohort population. These 10 covariates included black race, 

prior MI, female sex, statin use, LVH, BMI, heart rate, age, family history of CVD, and GFR.  

Since we sought to condition on the EHR populations as well, we extracted the 10 

conditioning covariates established in the prior analysis from the EHR as well. Only patients 

with all conditioning covariates were included. Specifically, these cohorts required a value for 

race, sex, glomerular filtration rate, heart rate, and BMI. The other binary covariates of previous 

MI, statin use, LVH, and family history of CVD were considered absent if not found in the 

patient’s EHR. Age was calculated on October 1, 2023 (EHR query date), unless they were 

deceased, where we used the death date to define their last known age. 

Design of the RCT-Twin-GAN Model  

RCT-Twin-GAN is a Generative Adversarial Network model, which is a deep learning model 

rooted in game theory that pits a generator, the neural network that creates synthetic data, against 

a discriminator, the neural network that determines whether the data it is trained on is synthetic 

or real. The minimization of the discrimination between real and synthetic data allows for the 

GAN to make realistic digital twins of the data on which it is trained.38 The neural networks are 

comprised of Long Short Term Memory (LSTM) cells, which are structured to retain information 

from prior inputs in addition to the current variable input. Since the GAN was initially built to 

produce synthetic images, this has been adapted to accurately synthesize tabular data such as 
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EHR.27,28,39 The incorporation of a conditioning parameter enables tabular digital twins to define 

covariate distributions sampled from a second cohort.28,29,39  

RCT-Twin-GAN is based on the architecture of CiDATGAN, which is an extension of 

DATGAN with the additional feature of conditioning covariates with distributions from an 

alternate population.29,30 The DATGAN model employs a unique feature allowing the user to 

feed to the generator causal relationships between covariates and outcomes of the original 

training cohort via a Directed Acyclic Graph (DAG). Continuous and categorical variables from 

the original dataset are encoded from tabular data at the discriminator input. During training, the 

generator utilizes Gaussian noise along with the DAG covariate relationships and the conditioned 

covariates of the original dataset to generate synthetic data. The discriminator is trained to 

differentiate between the generated data and the original cohort. The generator combines 

Gaussian noise and attention vectors of the LSTM cells to produce synthetic values and 

transforms conditional inputs using a dense layer. During the sampling phase, the generator 

receives Gaussian noise and inputs of the conditioned covariates from the second cohort. It 

generates the complementary set of variables based on these inputs and combines them with the 

conditional inputs to produce the final dataset. 

Once the DAG was built, we encoded the continuous columns based on the min-max 

values of the covariate in the training dataset (Supplementary Table 4) winsorized to remove 

outlier values below the 2.5% and 97.5% percentiles. The CiDATGAN was then trained with the 

DAG and encoded dataset to generate the synthetic dataset. We performed a hyperparameter grid 

search with different batch sizes and epochs to find the best parameters to generate synthetic data 

with similar outcomes to the original dataset (Supplementary Table 5). 

Application of RCT-Twin-GAN in SPRINT, ACCORD, and the EHR 
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 We first used RCT-Twin-GAN to build a SPRINT-Twin, which created a DAG based on the 

SPRINT cohort, trained the DATGAN architecture on the SPRINT cohort, and sampled the 

synthetic data generation for 10 iterations. We then built a SPRINTACCORD-Twin, which again 

built a DAG from the SPRINT cohort and trained on the SPRINT cohort but was conditioned on 

the ACCORD cohort. This meant that the DAG was modified to remove connections going to the 

conditioning covariates, and in the sampling phase, Gaussian noise and the conditioned covariate 

distributions from the ACCORD cohort were inputs for the generator in order to create the final 

synthetic dataset. We sampled this process for 10 iterations to make 10 SPRINTACCORD-Twin 

datasets. We repeated this process to create ACCORDSPRINT-Twin datasets by replacing 

ACCORD to be the training cohort and SPRINT to be the conditioning cohort.   

We repeated this training and conditioning process using the EHR cohorts as well. Specifically, 

we trained RCT-Twin-GAN on the SPRINT cohort, conditioned on the SPRINT-EHR cohort, 

and sampled 10 times to create SPRINTEHR-Twins. We similarly made ACCORDEHR-Twins with 

ACCORD and the ACCORD-EHR cohort.  

Analysis of Cohort Representation in Digital Twins 

To determine whether RCT-Twin-GAN created digital twins that are balanced by treatment arm, 

we calculated the mean absolute standardized mean difference (MASMD) of all covariates of the 

digital twins stratified by treatment arm assignment. A value of less than 0.1 was considered 

adequate balance, consistent with convention when assessing the success of propensity score 

matching.40 To assess the representation of the conditioning cohort in the synthetic digital twin, 

we also calculated the ASMD between SPRINT and ACCORD for each covariate, SPRINT-Twin 

and ACCORD, and SPRINTACCORD-Twin and ACCORD.  
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 We also ensured all the digital twins were made up of only synthetic rows, meaning there 

was no duplication of original or conditional rows using a previously recognized digital twin 

evaluation by Synthetic Data Vault.41 

Estimation of Treatment Effect on Cardiovascular outcomes in the digital twins 

In order to assess the ability of RCT-Twin-GAN to estimate RCT treatment effect outcomes in 

populations other than the original RCT, we calculated the hazard ratio of cardiovascular 

outcomes stratified by treatment arms in each of the digital twin datasets using cox proportional 

hazard models. We utilized hazard ratios to evaluate the comparative risks of events over time 

between different treatment groups within the synthetic data. This analytical approach allowed us 

to gauge the effectiveness of the synthetic dataset in accurately representing the underlying 

dynamics of treatment effects and event occurrences observed in real-world scenarios. 

We reported the median hazard ratio and 95% confidence intervals for the 10 SPRINT-

Twin, SPRINTACCORD-Twin, and ACCORDSPRINT-Twin digital twins. In order to demonstrate the 

ability to estimate treatment effect outcomes in a variety of cohorts, we calculated the hazard 

ratio and 95% confidence intervals of cardiovascular outcomes of the SPRINTEHR-Twins and 

ACCORDEHR-Twins as well.  

Statistical Analysis 

Categorical variables were summarized as numbers with percentages, and continuous variables 

were summarized as median with 25% and 75% interquartile ranges (IQR) or mean with 

standard deviation (SD). Covariate distributions were compared using mean absolute 

standardized mean difference and standard deviations and graphed as love plots comparing 

datasets. Data was winsorized at 2.5% and 97.5% percentiles to remove outliers. Survival 

analysis was conducted using unadjusted cox proportional hazard models with p values 
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calculated after 5 years and presented as Kaplan Meier survival curves. Hazard ratios across 

digital twins and SPRINT and ACCORD cohorts were presented as forest plots with 95% 

confidence interval error bars. Analyses were conducted using python 3.9, with packages 

specified in the supplement.  
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Figures 

 

Figure 1: Graphical Abstract of RCT-Twin-GAN Model. The original cohort is a randomized 
control trial (RCT) and variables from this cohort are mapped to a conditioning cohort, examples 
of which are another RCT or a patient cohort in the electronic health record (EHR). Variables 
from the original RCT cohort are mapped to the conditioning cohort. The original RCT variables 
are input to the discriminator neural network. The directed acyclic graph (DAG) is made up of 
the original cohort covariates and inputed to the generator, along with select covariates from the 
conditioning cohort and gaussian noise. The cohort-conditioned RCT twin is generated by the 
generator and serves as the second input to the discriminator, which has to discriminate between 
the original RCT data and the cohort-conditioned RCT-Twin. Abbreviations: RCT: Randomized 
Control Trial, EHR: electronic health record, and DAG: Directed Acyclic Graph.  
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Figure 2: Directed Acyclic Graph of RCT-Twin-GAN. Directed relationships between covariates 
(in blue), time to outcome and outcome (in orange), and treatment arm designation (“Group”) in 
green. Abbreviations: FH: Family History, CVD: Cardiovascular disease, BMI: Body Mass 
Index, GFR: Glomerular Filtration Rate, LVH: Left ventricular hypertrophy, LDL: low-density 
lipoprotein, MI: Myocardial infarction, SBP: Systolic Blood Pressure. 
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Figure 3: (A) Absolute standardized mean difference (ASMD) between treatment and placebo 
arms of RCTs and digital twins and (B) Absolute standardized mean difference (ASMD) between 
ACCORD and other datasets. (A) Markers include SPRINT (red circle), SPRINT-Twin (orange 
square), SPRINTACCORD-Twin (green triangle), and ACCORD (purple diamond). (B) Dark red 
circle represents ASMD between SPRINT and ACCORD, yellow square represents ASMD 
between SPRINT-Twin and ACCORD, and blue triangle represents ASMD between 
SPRINTACCORD-Twin and ACCORD. The dotted line represents an ASMD of 0.1. The 
conditioning covariates included Age, Black, BMI, FH CVD, Female, GFR, Heart Rate, LVH, 
MI, and On Statin. Abbreviations: T: Treatment Arm, P: Placebo Arm, FH: Family History, 
CVD: Cardiovascular disease, BMI: Body Mass Index, GFR: Glomerular Filtration Rate, LVH: 
Left ventricular hypertrophy, LDL: low-density lipoprotein, MI: Myocardial infarction, SBP: 
Systolic Blood Pressure, SMD: Standardized Mean Difference.  
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Figure 4: Hazard ratio of intensive blood pressure lowering on major cardiovascular outcomes in 
(A) the SPRINTACCORD-Twin datasets and (B) the ACCORDSPRINT-Twin datasets. In both graphs, 
the purple circle is the ACCORD hazard ratio and 95% confidence interval, the red diamond is 
the SPRINT hazard ratio and 95% confidence interval, and the grey dotted line represents a 
hazard ratio of 1. In (A), orange squares are the hazard ratio of major cardiovascular outcome 
predicted for each twin run of ACCORD-conditioned SPRINT twins with 95% confidence 
intervals and in (b) the blue triangles are SPRINT-conditioned ACCORD twins. Abbreviations: 
MACE: Major Cardiovascular Outcomes, SPRINTACCORD-Twin: ACCORD-conditioned SPRINT 
Twin, ACCORDSPRINT-Twin: SPRINT-conditioned ACCORD twin. 
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Figure 5: Representative Kaplan-Meier curves of digital twins conditioned on EHR data. (A) 
Kaplan-Meier curves of SPRINT treatment and placebo arms along with EHR-conditioned 
SPRINT treatment and placebo arms, (B) Kaplan Meier curves of ACCORD treatment and 
placebo arms along with EHR-conditioned ACCORD treatment and placebo arms. Hazard ratios 
(HR) and 95% confidence intervals displayed along with the treatment and placebo balance of 
the original cohorts and digital twins. Abbreviations: T: Treatment Arm, P. Placebo arm, EHR: 
Electronic Health Record, SPRINTEHR-Twin: SPRINT conditioned on EHR digital twin, 
ACCORDEHRTwin: ACCORD conditioned on EHR digital twin.  
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