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Abstract 

Heart failure (HF) is a common cardiovascular disease that poses significant morbidity and mortality 

risks. While genome-wide association studies reporting on HF abound, its genetic etiology is not well 

understood due to its inherent polygenic nature. Moreover, these genetic insights have not been 

completely translated into effective strategies for the primary treatment of HF. In this study, we 

conducted a large-scale integrated multi-trait analysis using European-ancestry GWAS summary 

statistics of coronary artery disease and HF, involving near 2 million samples to identify novel risk loci 

associated with HF. 72 loci were newly identified with HF, of which 44 were validated in the replication 

phase. Transcriptome association analysis revealed 215 HF risk genes, including EDNRA and FURIN. 

Pathway enrichment analysis of risk genes revealed their enrichment in pathways closely related to HF, 

such as response to endogenous stimulus (adjusted P = 8.83×10-3), phosphate-containing compound 

metabolic process (adjusted P = 1.91×10-2). Single-cell analysis indicated significant enrichments of 

these genes in smooth muscle cells, fibroblast of cardiac tissue, and cardiac endothelial cells. 

Additionally, our analysis of HF risk genes identified 74 potential drugs for further pharmacological 
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evaluation. These findings provide novel insights into the genetic determinants of HF, highlighting new 

genetic loci as potential interventional targets to HF treatment, with significant implications for public 

health and clinical practice. 
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Introduction 

Heart failure (HF) is a common cardiovascular syndrome that causes symptoms, such as shortness of 

breath, volume overload, and other functional limitations, resulting from structural or functional 

impairment of ventricular filling or ejection of blood[1]. It poses a significant global health challenge with 

high prevalence, morbidity, mortality, hospitalization rates, and healthcare costs[2]. Identifying HF risk 

loci and genes is highly meaningful for a full comprehension of the underlying molecular mechanisms 

and subsequent development of novel, early-intervention strategies for HF, albeit challenging due to its 

polygenic nature. 

Genome-wide association studies (GWAS) have proven to be an effective tool to understand the 

genetic risk of HF, providing insights into its molecular mechanisms and potential therapeutic targets. 

Nevertheless, compared to other well-understood cardiovascular diseases, such as hypertension, 

coronary artery disease (CAD), and atrial fibrillation, risk loci for HF remained to be elucidated. 

Specifically, while hundreds, or even thousands, of risk loci have been pinpointed for hypertension, 

CAD, and atrial fibrillation, only 249 have been ascertained for HF. This calls for further studies aimed 

at understanding the genetic architecture of HF. 

Fortunately, recent methodological advancements have shown that employing multi-ethnic and 

multi-trait approaches is effective in understanding the complex polygenic etiology. Multi-ethnic analysis 

aims to improve the generalizability of GWAS findings by leveraging the genetic diversity of study 

participants. The latest multi-ethnic analysis of HF has already reached a substantial sample size, 

comprising over 1.5 million individuals[3], making significant further augmentation in the short term 

challenging. 

An alternative approach is the multi-trait analysis of GWAS (MTAG), which uses genetically 

correlated phenotypes to improve statistical power[4]. For instance, a recent MTAG analysis of 

cardioembolic stroke and AF identified 47 new loci associated with cardioembolic stroke[5]. Similarly, 

MTAG applied to primary sclerosing cholangitis and other clinical and epidemiological traits pinpointed 

seven novel loci associated with primary sclerosing cholangitis[6]. Another MTAG study of Lewy body 

dementia, Alzheimer's disease, and Parkinson's disease, unveiled eight novel genetic loci for Lewy 

body dementia and revealed the shared genetic etiology of these diseases[7]. These examples 
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underscore the utility and efficacy of MTAG in further unraveling the genetic underpinnings of complex 

diseases. 

In the case of HF, existing evidence has clearly demonstrated its clinical and genetic correlations 

with CAD. For example, in a longitudinal study on 892 CAD patients, it was found that 173 of these 

patients developed HF during a 13-year follow-up[8]. Another study used pairwise linkage disequilibrium 

score regression analysis (LDSC) to find a genetic correlation between HF and CAD of 0.67[9]. Publicly 

available GWAS summary statistics data have been progressively increasing in recent years. The 

primary repository that stores GWAS findings is the GWAS catalog[10], which currently includes full 

summary statistics of 65,590 studies. Notably, studies within it collected more than one million samples. 

Other platforms, such as IEU OpenGWAS[11] and PhenoScanner[12], also offer large repositories of 

GWAS summary statistics data. 

Although GWAS has identified thousands of loci associated with complex diseases like HF, the 

presence of linkage disequilibrium often hinders the identification of potential causal genes from GWAS 

data. This limitation has prompted the development of methods that prioritize risk genes based on 

GWAS loci, among which the Transcriptome-Wide Association Study (TWAS) stands as one promising 

strategy. TWAS involves three main steps: training gene expression prediction models based on 

reference panels such as Genotype-Tissue Expression (GTEx), predicting individual expression in 

GWAS cohorts using these models, and conducting association analyses between predicted expression 

and phenotypes. Initially, methods like PrediXcan[13] focused on predicting gene expression levels at 

the individual level using GWAS data and performing association analyses. Recently, methods that 

leverage GWAS summary statistics data for predicting gene expression levels and conducting 

association analyses have emerged, such as FUSION[14] and S-PrediXcan[15]. 

Finally, drug-repurposing emerged as an efficient approach to translate approved drugs for new 

indications based on GWAS identified risk genes. Currently, although several medications exist for 

treating HF, most only alleviate symptoms and do not reverse the condition. Additionally, for HF with 

preserved ejection fraction, only SGLT2 inhibitors have demonstrated significant reductions in 

hospitalization and cardiovascular death for patients[16]. Therefore, there is an urgent need to discover 

new therapeutic drugs for HF. However, traditional drug development is time-consuming and labor-

intensive. Drug repurposing, wherein already approved compounds are indicated for treating new 

conditions, offers the potential for faster deployment in clinical settings, with lower expenditures and 
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higher safety assurance. In recent years, mapping of genome-wide significant GWAS loci to specific 

genes, thus enabling the reuse of drugs targeting these genes becomes an important repurposing 

method[17-20]. Another approach involves using TWAS[13, 15] to obtain gene information associated 

with the phenotype and conducting signature mapping. Specifically, this involves correlating expression 

level of genes associated with the disease with the pharmacological effects of compounds acting on 

these genes[21-23]. 

Illuminated by these latest methodological advances in GWAS and related fields, we designed this 

study. We collected and preprocessed the largest European GWAS summary statistics data for HF, and 

CAD to date (10/1/2022). Through MTAG analysis, we identified 99 HF risk loci, with 72 being newly 

reported in this study. Among these 72 loci, 44 were validated in the replication phase. We further 

conducted a TWAS study and identified 215 HF risk genes, including EDNRA and FURIN, newly 

associated with HF. We then conducted pathway enrichment analysis of TWAS risk genes revealing 

their enrichment in pathways closely related with HF, such as response to endogenous stimulus, 

phosphate-containing compound metabolic process, and cell population proliferation. Single-cell 

analysis showed that TWAS risk genes were significantly enriched in smooth muscle cells, fibroblast of 

cardiac tissue, and cardiac endothelial cells. Drug repurposing analysis based on MTAG genes and 

TWAS risk genes suggested 74 potential therapeutic drugs for HF. 
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Fig. 1 Overall study design. Employing the largest available GWAS summary statistics for heart failure (HF) 

encompassing 47,309 cases and 930,014 controls, as well as coronary artery disease (CAD) with 181,522 cases 

and 984,168 controls, we explored the polygenicity and genetic correlation between them using linkage 

disequilibrium score regression (LDSC), followed by multi-trait analysis of GWAS (MTAG) to identify significant 

SNPs. Functional annotation at the SNP level was performed to identify novel risk loci paired with MTAG on 

replication phase to confirm the novel identified risk loci. Additionally, transcriptome-wide association study (TWAS) 

was conducted to uncover HF risk genes. Subsequently, four gene-based analyses (pathway enrichment, single-

cell enrichment, protein-protein interaction network, and animal knockout models) were performed to confirm the 

role of TWAS risk genes in the development of HF. Finally, drug repurposing was employed to identify potential 

therapeutic drugs for HF. 
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Materials and Methods 

Study design, data source and quality control 

The complete workflow of this study is shown in Fig. 1. We obtained, by far (10/1/2022), the largest 

GWAS summary statistics of HF (47,309 cases and 930,014 controls), and the largest GWAS summary 

statistics of CAD (181,522 cases and 984,168 controls) from the GWAS Catalog 

(https://www.ebi.ac.uk/gwas/)[10, 24, 25] as the discovery phase. Additionally, we also obtained GWAS 

summary statistics for HF (19,350 cases and 288,996 controls) and CAD (33,628 cases and 275,526 

controls) from the FinnGen repository (https://finngen.gitbook.io/documentation/v/r7/)[26], serving as an 

independent replication phase. These studies were all conducted on individuals of European ancestry 

and underwent stringent quality control procedures, as previously described[24-26].  

In the CAD summary statistics, base pair positions were converted to rs ID, employing the Genome 

Reference Consortium Human Reference 37 (GRCh37) (Index of /goldenPath/hg19/database 

(ucsc.edu). Furthermore, we excluded the major histocompatibility complex region (chromosome 6, 26–

34 Mb) from our analyses due to its complex structure. SNPs with minor allele frequency less than 0.01 

were filtered out, and the analysis was restricted to biallelic SNPs. SNPs with duplicated or missing rs 

IDs were removed from each GWAS summary dataset for subsequent analyses. A detailed description 

of all GWAS studies used in this research can be found in Additional file 1: Table S1. 

Linkage disequilibrium score regression analysis 

To estimate the polygenicity of HF and the genetic correlation between HF and CAD, we used LDSC[27, 

28]. We first performed single-trait LDSC analysis on the GWAS summary statistics of HF and CAD to 

obtain several key parameters, including the mean 2 statistic, genomic inflation factor (λGC), and 

intercept.  

The mean 2 statistic measures the association between genetic variants and a specific trait of 

interest in the GWAS summary statistics. We excluded traits with a mean 2 statistic < 1.1 from further 

analysis. The factor λGC evaluates the presence of genetic inflation, which refers to an excess of test 

statistics over the expected null distribution. A value close to 1 indicates that the inflation in test statistics 

mostly results from polygenic effects. Similarly, the intercept obtained from LDSC analysis, subtracted 
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by one, assesses the contribution of confounding biases to the inflation of test statistics. Again, a value 

close to 1 suggests that inflation is primarily driven by polygenic effects. 

Subsequently, we applied pairwise LDSC analysis to investigate the genetic correlations between 

HF and CAD. We used the pre-computed linkage disequilibrium scores of European ancestry 

downloaded from the 1000 Genomes Project Phase 3 

(https://alkesgroup.broadinstitute.org/LDSCORE/)[29]. Since that low imputation quality can potentially 

diminish test statistics, we focused on well-imputed HapMap3 SNPs. 

Multi-trait meta-analysis with MTAG 

To boost the power of HF-associated SNP discovery, we used MTAG v.1.0.8[4]. MTAG is a robust 

method designed to enhance trait-specific power by leveraging genetic correlations among multiple 

genetically related traits[4]. As input, it takes the GWAS summary statistics of correlated traits and 

incorporates the LDSC method to estimate the genetic covariance matrix. Subsequently, it generates 

weights and employs generalized inverse variance weighting to estimate trait-specific effects for a 

common set of SNPs. MTAG results can be similarly presented as the original GWAS summary 

statistics for individual traits, providing an easily understood view of genetic architecture. 

To replicate new MTAG identified HF-associated loci, we also conducted MTAG on HF and CAD 

from FinnGen repository[26], which are independent from those in discovery phase. In our analyses, 

the summary statistics derived from single-trait GWAS are denoted as GWASHF and GWASCAD. 

Additionally, those acquired from the discovery phase of the MTAG analysis for HF are denoted as 

MTAGHF, while results from the replication phase are denoted as MTAGHF_R. The genome-wide 

significance level for MTAGHF was set at PMTAG_HF < 5 × 10-8. 

Functional annotation by FUMA 

To investigate the functional implications of HF associated SNPs, we used the Functional Mapping and 

Annotation (FUMA) platform v1.5.4[30]. Using its default settings, we annotated significant SNPs of 

MTAGHF, using the European ancestry data from the 1000 Genomes Project Phase 3 as a reference. 

We defined independent significant SNPs as those with PMTAG_HF < 5 × 10-8 and independent from each 

other at r2 < 0.6. Lead SNPs are independently significant SNPs that are independent from each other 

at r2 < 0.1. Genomic risk loci were identified by merging linkage disequilibrium blocks of independent 
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significant SNPs in close proximity (< 250 kb). The top lead SNP was recognized as the SNP with the 

lowest PMTAG_HF[30] within a locus. 

To gain further insight into the functional annotations of independent significant SNPs and their LD 

proxies, we employed tools including ANNOVAR categories[31], combined annotation-dependent 

depletion (CADD) scores[32], and Regulome DB scores[33] with their default parameters. For 

comparative purposes, we also annotated genome-wide significant SNPs from GWASHF using the same 

procedure.   

Bayesian fine-mapping analysis 

To facilitate the shortlisting of causal SNPs for each locus, we conducted Bayesian fine-mapping 

analysis to analyze risk loci determined in the FUMA analysis using the finemap.abf  function of the 

coloc v5 R package (https://chr1swallace.github.io/coloc/)[34]. This function leverages bayesian 

methods to calculate the posterior probability that each SNP is a causal variant for the corresponding 

risk locus[34]. SNPs were incrementally included into the set based on their descending posterior 

probabilities, up to the point where cumulative posterior probability reached 0.90, resulting in a 90% 

credible SNP set for each locus.  

Functional enrichment analysis 

To investigate the functional enrichments of significant SNPs of MTAGHF, we used GWAS analysis of 

regulatory or functional information enrichment with LD correction (GARFIELD) [35]. GARFIELD uses 

GWAS summary statistics data, along with regulatory functional annotation data, including genic 

annotations, histone modifications, transcription factor binding sites, and chromatin segmentation states, 

across cell types and tissues[35]. Specifically, GARFIELD applies LD pruning based on LD and distance 

information to select independent SNPs. It then annotates SNPs with regulatory information if they, or 

highly correlated SNPs with them, overlap with such regulatory features. Finally, it computes odds ratios 

(OR) and enrichment p-values using logistic regression. We determined the enrichment to be significant 

at Bonferroni-corrected p < 4.98×10-5 (0.05/1005), where 1,005 is the number of feature annotations. 

We also applied GARFIELD to GWASHF for comparison. 
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Transcriptome-wide association analysis 

To fully harness the information from SNPs for prioritizing risk genes associated with HF, we used the 

S-PrediXcan method[36] combined with the Joint Transcriptome Imputation (JTI) model[37] to perform 

TWAS analysis on MTAGHF. S-PrediXcan integrates summary-level GWAS data with gene expression 

prediction models, providing an estimate of the association between gene expression and HF[15]. To 

strengthen the accuracy and robustness of S-PrediXcan analysis, we applied the JTI model. This model 

combines information from multiple tissue-specific gene expression prediction models, allowing for 

more effective integration of gene expression data across tissues[37]. We used JTI models derived 

from the Genotype-Tissue Expression (GTEx) project version 8 transcriptome data[38], for eight 

different tissues associated with the heart. These tissues include subcutaneous adipose tissue, visceral 

omental adipose tissue, atrial appendage, left ventricle, kidney cortex, liver, lung, and whole blood. We 

applied a Bonferroni correction for multiple testing in each tissue. We also conducted S-PrediXcan on 

GWASHF as a comparison. 

Functional characterization and contextual analysis for risk genes 

To gain insight into the biological processes associated with risk genes identified from TWAS, we 

conducted pathway enrichment analysis using the web-based tool g:Profiler[39]. Pathways were 

considered significant if they reached a Bonferroni-corrected significance level (adjusted P < 0.05). For 

comparative purposes, we conducted separate enrichment analyses on the risk genes identified by 

TWAS on GWASHF. 

We used the scDRS method[40] to explore the association between the expression levels of HF 

risk genes and cardiac-relevant cells. scDRS integrates single-cell RNA sequencing data with gene-

disease association information derived from GWAS[40]. It associates individual cells with disease 

status by assessing the excess expression of HF risk genes within each cell. We also applied the scDRS 

method to risk genes identified by TWAS on GWASHF as a comparative analysis. 

Furthermore, we investigated the functional enrichment of PPI networks among risk genes 

identified from TWAS using the STRING v12.0 database[41]. We then used the cytoHubba plugin in 

cytoscape to determine the top ten genes as hub genes[42]. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 27, 2024. ; https://doi.org/10.1101/2024.03.24.24304812doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.24.24304812
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 / 30 

 

Querying the MGI database 

To confirm the roles of novel genes identified by MTAG and hub genes in our study within cardiovascular 

diseases, we queried the Mouse Genome Informatics (MGI, http://www.informatics.jax.org/) 

resource[43] for information on knockout models associated with them. MGI is a pivotal bioinformatics 

resource, providing comprehensive datasets pertaining to the mouse genome, and it is comprised of 

gene functionalities, expression patterns, mutation profiles, and data related to disease models. We 

focused on genes for which cardiovascular abnormalities became apparent after knockout 

experiments[43]. 

Drug repurposing analysis 

In order to translate our genetic findings into therapeutic strategies for treating HF, we conducted drug 

repurposing, with the main steps outlined as follows: We first selected all TWAS risk genes associated 

with HF and genes identified by MTAG. Subsequently, we utilized the GEN2FUNC function within FUMA 

to map these genes onto the DrugBank database to generate a preliminary list of candidate drugs[44]. 

We then obtained a list of 26 FDA-approved HF drugs from Drug Bank[45] (Additional file 1: Table 

S2). For each candidate drug, we calculated its similarity value to all FDA-approved HF drugs, and 

subsequently averaged these values to obtain an overall similarity score. Here, similarity between two 

drugs is calculated using DICE score based their molecular fingerprints using drug structure data from 

DrugBank v5.1.10[45]. Finally, we identified drugs with an average similarity value greater than 0.2 as 

potential HF drugs. As a comparison, we also performed drug repurposing using 27 reported MTAG 

genes and the risk genes identified through TWAS results on GWASHF. 
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Results 

LDSC analysis revealed the polygenicity of HF and CAD, along with a strong genetic 

correlation between them 

Single-trait LDSC analysis suggested that the inflation observed in the test statistics is likely a 

consequence of polygenicity, rather than population stratification (Additional file 1: Table S3). The 

mean 2 statistics were both greater than 1.1. LDSC intercepts consistently remained close to 1. Further 

pairwise LDSC analysis revealed a strong positive genetic correlation between HF and CAD (rg = 0.67, 

se = 0.03; P = 8.03×10-112). These findings validated our rationale for conducting a multi-trait analysis 

of HF, CAD. 

MTAG analysis identified new HF-associated risk loci with evidence of replication 

We conducted MTAG on GWASHF and GWASCAD, and identified 4,899 SNPs significantly associated 

with HF (PMTAG_HF < 5×10-8), among which 4,749 SNPs did not reach genome-wide significance in the 

original GWASHF analysis (Fig. 2a, b).For instance, rs6841581, located within the exon of the EDNRA 

gene, demonstrated an increase in significance from GWASHF analysis (PGWAS = 1.41×10-2) to MTAG 

analysis (PMTAG_HF = 4.75×10-18). Similarly, rs3918226, located within the intron of the NOS3 gene, 

exhibited an increase in significance from GWASHF analysis (PGWAS = 5.98×10-5) to MTAGHF analysis 

(PMTAG_HF = 1.09×10-22). From the original GWAS results to multi-trait results, the mean 2 statistics 

increased from 1.158 to 1.340. These results suggested MTAG analysis could be more powerful than 

single-trait analysis by leveraging the genetical correlation among multiple traits. And the maxFDR for 

MTAGHF is 0.03, suggesting no overall inflation due to violation of the homogeneous assumption. 

 Through FUMA annotation of the 4,899 significant SNPs, we pinpointed 99 risk loci (Additional 

file 2: Fig. S1). Among these loci, 27 had been previously reported, while 72 were newly discovered. 

To verify these newly identified risk loci, we performed MTAG analysis on GWAS summary statistics  

data obtained from FinnGen repository[26]. Notably, these summary statistics were independent from 

the GWAS conducted in the discovery phase.  
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We replicated 44 HF-specific associations at the nominal significance level of 0.05 (Additional 

file 1: Table S4).Notable examples included the previously mentioned rs6841581 in EDNRA (PMTAG_HF_R 

= 8.01×10-9) and rs3918226 in NOS3 (PMTAG_HF_R = 4.22×10-5). Additionally, other associations such as 

rs7173743 in MORF4L1 (PMTAG_HF_R = 2.36×10-4), rs12509595 in FGF5 (PMTAG_HF_R = 3.34×10-3), 

rs2306556 in GUCY1A3 (PMTAG_HF_R = 5.60×10-3), and rs1250258 in FN1 (PMTAG_HF_R = 4.08×10-2) were 

also successfully replicated. 

 

 

Fig. 2 MTAG analysis boosted SNP discovery power.  Manhattan plots for MTAGHF (a) and GWASHF (b). 

Horizontal red dashed lines indicate the genome-wide significance threshold (P < 5 × 10-8). SNPs are labeled in 

place on chromosome coordinates. 
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Functional annotation for significant SNPs of MTAGHF 

We conducted FUMA to understand the functional characteristics of significant SNPs (Additional file 

1: Table S5). For candidate SNPs located within risk loci, most (97.42%) were located in non-coding 

regions, including UTR3, UTR5, downstream, intergenic region, intron, ncRNA intron and upstream. 

Only a small proportion of SNPs were exon with 144 (1.41%) in coding RNA and 116 (1.17%) in non- 

coding RNA (Fig. 3a). Among exonic SNPs in coding RNA, rs10965215 was the most statistically 

significant (PMTAG_HF = 2.87 × 10-58) and was mapped to the CDKN2B-AS1 gene. This was followed by 

rs3798220 (PMTAG_HF = 6.74 × 10-51) mapped to the LPA gene. The most significant exonic SNP in non-

coding RNA was rs564398 (PMTAG_HF = 1.95 × 10-54) also mapped to the CDKN2B-AS1 gene. 

Furthermore, 94.89% of candidate SNPs were located in open chromatin regions (minimum 

chromatin state ≤ 7) (Fig. 3b), 3.89% of candidate SNPs were likely to affect the binding of transcription 

factors (RegulomeDB scores from 1b to 2c) (Fig. 3c), and 3.62% of candidate SNPs were deemed 

potentially deleterious (Combined Annotation Dependent Depletion score > 12.37). Notably, the SNP 

with the highest CADD score was rs328 (CADD score 50) located in the 8p21.3 locus. It is an exonic 

Fig. 3 Functional annotations of HF-associated SNPs. (a) Functional annotation of candidate SNPs. (b) 

Distribution of candidate SNPs across 15 categories of minimum chromatin state. Chromatin states with a value ≤ 

7 are considered as open chromatin regions. (c) RegulomeDB scores of candidate SNPs. RegulomeDB scores 

from 1b to 2c are considered likely to affect transcription factor binding. 
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SNP of gene LPL. All afore mentioned genes (LPA, CDKN2B-AS1, and LPL) have been associated with 

HF[46] and CAD[47, 48]  in previous studies, now with higher-level of evidence offered in this study. 

Defining SNP credible sets within risk loci 

To facilitate the shortlisting of causal SNPs for each of the 99 risk loci, we identified 1,982 SNPs within 

the 90% credible set using Bayesian fine mapping test (see Methods, Additional file 1: Table S6). 

The credible set of 10 HF loci contained only the top SNP with posterior probability greater than 0.90.  

The credible set of 85 HF loci contained multiple SNPs. The credible set of the remaining four risk loci 

(1p36.32, 4q33, 5q31.3, 21q22.12) did not include any SNPs.  

Among the 10 loci with exactly one top SNPs, two were particularly noticeable. One was the top 

SNP rs3918226 (PMTAG_HF = 1.09×10-22) in locus 7q36.1. This SNP was associated with systolic blood 

pressure[49] and myocardial infarction[50], and it was an intron of the NOS3 gene, with a CADD score 

of 12.89. The protein encoded by the NOS3 gene plays a crucial role in synthesizing endothelial nitric 

oxide and is involved in the modulation of vascular function and the maintenance of cardiovascular 

health. Research has also revealed that mice with a knockout of the NOS3 gene exhibit cardiovascular 

abnormalities, including increased heart weight and abnormal cardiac muscle relaxation[51].  

The other one top SNP was rs7412 (PMTAG_HF = 6.95×10-24) in locus 19q13.32. It was within an 

exon of the APOE gene and possessed a high CADD score of 25.1. Additionally, it has been associated 

with low-density lipoprotein cholesterol measurement[52], triglycerides[53], and pulse pressure[49]. The 

APOE gene encodes a protein known as apolipoprotein E, which plays a crucial role in lipid metabolism, 

including cholesterol transport and lipoprotein clearance, thereby influencing cardiovascular health. 

Study has indicated that the knockout of APOE in mice increases the risk of atherosclerosis in 

arteries[54].  

Functional enrichment of significant MTAGHF SNPs 

We observed 780 significant enrichments of significant MTAGHF SNPs in regulatory and functional 

categories (Additional file 1: Table S7), As a comparison, among the significant SNPs of GWASHF 

results, only 3 reached the significance threshold (Additional file 1: Table S8). In terms of genic regions 

(Fig. 4a), the most significant enrichment of SNPs was found in exonic regions (OR = 3.76, P = 2.34×10-
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10). In terms of tissue specific DNase I hypersensitive sites (Fig. 4b), SNPs were significantly enriched 

in tissues, such as fetal heart, blood vessel, fetal large intestine, gingival, embryonic stem cell, and fetal 

small intestine, with fetal heart being the most significant (OR = 4.94, P = 6.14×10-18). In terms of tissue-

specific chromatin states (Fig. 4c), SNPs were significantly enriched in the transcribed region, with the 

most significant enrichment found in the actively transcribed region of liver tissue (OR = 2.67, P = 

1.00×10- 8). In terms of tissue specific histone-modified regions, SNPs showed a significant enrichment  

Fig. 4 Functional enrichment of significant MTAGHF SNPs. A total of 4,899 SNPs were analyzed with 

GARFIELD. Enrichment by (a) genic regions, (b) tissue-specific DNase I hypersensitive sites (DHS) regions (c) 

tissue-specific chromatin states, and (d) tissue-specific histone-modified regions. In all plots, enrichment odds 

ratios were plotted against −log10(P value). The dotted horizontal lines mark the statistical significance threshold of 

P = 0.05/1005.Size of markers is proportional to the number of independent significant SNPs in a specific 

annotation category, while in subplots (c) and (d), markers are also color-coded by tissue categories. 
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across tissues, such as blood, liver, and cervix (Fig. 4d), with the H3K4me1 region of blood tissues 

 (OR = 3.22, P = 2.45×10-11) being the most significant. 

Uncovering HF risk genes through TWAS 

To uncover HF risk genes for subsequent in-depth functional analysis, we conducted a comprehensive 

transcriptome-wide association analysis (TWAS) on MTAGHF (see Methods). After Bonferroni 

correction to adjust for multiple testing within each tissue, we identified 215 genes that displayed 

significant associations with HF in at least one tissue type (Additional file 1: Table S9). 

Among these genes, two were noteworthy. The first was EDNRA (PTWAS = 1.72×10-17 in adipose 

visceral omentum tissue), which was previously linked to ischemic stroke[55], pulse pressure[56], but 

newly associated with HF in this study. Importantly, it did not appear in the TWAS results using only 

GWASHF (Additional file 1: Table S10). EDNRA encodes the Endothelin Receptor Type A, which is a 

G protein-coupled receptor predominantly expressed in endothelial cells and smooth muscle cells. It 

plays a pivotal role in mediating the signaling of Endothelin-1 hormone. Research suggested that the 

deficiency in this gene could result in cardiovascular anomalies in mice, such as elevated blood 

pressure, abnormal cardiovascular system morphology, and the dilation of the right ventricle[57]. 

The second gene of significance is FURIN. This was also the first study to report the association 

between FURIN and HF. FURIN (PTWAS = 3.09×10-15 in liver tissue) is a gene encoding a protein known 

as furin, which belongs to the family of serine proteases. This protease primarily functions within the 

cell's Golgi apparatus and vesicles, playing a pivotal role in the post-translational modification and 

processing of proteins. Research has indicated that the absence of furin leads to severe cardiovascular 

anomalies , including anomalous cardinal vein morphology, the absence of vitelline blood vessels, and 

abnormal heart development in developing mouse embryos[58].  

Contextual analysis of TWAS risk genes 

We obtained 10 significantly enriched pathways of TWAS risk genes (Fig. 5a, Additional file 1: Table 

S11). These pathways primarily involve metabolic processes of important compounds, and cell 

proliferation. such as response to endogenous stimulus (adjusted P = 8.83×10-3), phosphate-containing 
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compound metabolic process (adjusted P = 1.91×10-2), and cell population proliferation (adjusted P = 

Fig. 5 Contextual analysis of TWAS risk genes. (a) Bubble plot of 10 enriched pathways. The x-axis represents 

pathway names, and the y-axis represents -log10(padj). Size of the bubbles indicates the number of genes enriched 

in the corresponding pathway, while the color of the bubbles changes according to the -log10(padj). (b) Enrichment 

of risk genes at the cellular level. Node color represents the risk score on the cells with red indicating high risk and 

blue indicating low risk. (c) Protein-protein interaction (PPI) sub-network of 10 hub genes. Gene nodes are 

arranged from left to right based on their degrees, with round rectangle representing the hub genes. 
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2.41×10-2). In comparison, risk genes identified by GWASHF showed no enrichment in any pathway. 

Using single-cell enrichment analysis, we found that HF risk genes were enriched in smooth 

muscle cells, fibroblast of cardiac tissue, cardiac endothelial cells (Fig. 5b, Additional file 1: Table  

S12). Risk genes identified by GWASHF showed no enrichment in any cardiac cells (Additional file 1: 

Table S13). 

We also constructed a protein-protein interaction (PPI) network on the risk genes, resulting in a 

network with 204 nodes and 402 edges (Additional file 1: Fig. 2). PPI network demonstrated significant  

enrichment (P < 1×10-16), indicating that the proteins in this network are biologically interconnected. 

Among all genes, ten hub genes were identified: APOE, APOB, PCSK9, LPL, SCARB1, LIPC, CETP, 

ABCG8, SREBF1, ANGPTL4 (Fig. 5c). 

Mouse knock-out models for novel MTAG genes and hub genes 

We conducted queries for in silico knock out mouse models using the Mouse Genomics resource to 

find evidence of target gene modifications that could produce phenotypes associated with HF 

(Additional file 1: Table S14). A total of 29 gene knock-out models yielded evidence associated with 

cardiovascular abnormalities. To be specific, knock-out models of PRDM16, ABCG8, FN1, FGD5, 

EDNRA, GUCY1A3, NOS3, PLCE1, CNNM2, MORF4L1, FES showed evidence for congestive heart 

failure, myocardial abnormalities, cardiac hypertrophy, and abnormal myocardial fiber morphology, all 

were related to the development of HF. 

Drug repurposing analysis 

We identified 74 potential therapeutic drugs based on MTAG genes and HF risk genes identified by 

TWAS (see Methods, Additional file 1: Table S15), out of which 21 are approved by the U.S. FDA 

(Table 1). Notably, five (DB06403, DB00945, DB00559, DB08932, and DB06268) have undergone 

clinical trials for the treatment of HF[59-63]. Another three (DB09237, DB05676, and DB12548) have 

been subjected to clinical trials for diseases related to HF, such as hypertension[64, 65] and vascular 

inflammation[66]. The remaining 53 candidate drugs are investigational compounds that have not 

obtained approval from the U.S. FDA for the treatment of any disease. In contrast, using 27 reported 

MTAG genes and the risk genes identified through TWAS results on GWASHF, we identified only seven 
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drug compounds. However, their overall similarity score to FDA-approved HF drugs were all below 0.2 

and did not pass the threshold for repurposing (Additional file 1: Table S16). 

Discussion 

In this study, we conducted a multi-trait analysis by combining HF and CAD, leading to the identification 

of 72 novel HF risk loci and 215 HF risk genes through TWAS. Based on these genetic discoveries, we 

conducted drug repurposing and identified 74 potential therapeutic drugs for HF, among which 21 were 

U.S. FDA-approved. 

Using summary statistics data from the largest HF and CAD GWAS, we proved a highly positive 

genetic correlation between HF and CAD, which was corroborated by previously findings[3]. This 

connection led us hypothesize that these cardiovascular diseases with high genetic correlation could 

Table 1 Twenty-one FDA-approved drugs were identified as candidate drugs for HF. 

DrugBank ID Generic Name Target Similarity score 

DB09237 Levamlodipine NOS3 0.346 

DB01125 Anisindione GGCX 0.311 

DB06237 Avanafil PDE5A 0.305 

DB05676 Apremilast NOS3 0.29 

DB06403 Ambrisentan EDNRA 0.291 

DB12548 Sparsentan EDNRA 0.285 

DB12010 Fostamatinib FES 0.272 

DB04951 Pirfenidone FURIN 0.269 

DB00945 Aspirin EDNRA 0.261 

DB00820 Tadalafil PDE5A 0.254 

DB00559 Bosentan EDNRA 0.252 

DB08932 Macitentan EDNRA 0.248 

DB06589 Pazopanib SH2B3 0.248 

DB00170 Menadione GGCX 0.246 

DB09332 Kappadione GGCX 0.242 

DB01110 Miconazole NOS3 0.238 

DB06268 Sitaxentan EDNRA 0.231 

DB06267 Udenafil PDE5A 0.229 

DB00862 Vardenafil PDE5A 0.217 

DB00203 Sildenafil PDE5A 0.215 

DB01022 Vitamin K1 GGCX 0.20 
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be analyzed with the multi-trait approach to expand novel genetic discoveries by integrating large-scale 

data[5, 67, 68]. 

Our multi-trait analysis significantly improved the identification of HF risk loci. Specifically, we 

identified 72 novel loci associated with HF. One noteworthy risk locus is the 2p21, with the top lead SNP 

rs4245791 reaching significance in GWASCAD[24] and demonstrating a consistent effect direction with 

MTAGHF. The locus mapped to the gene ABCG8, also referred to as ATP binding cassette subfamily G 

member 8. ABCG8 encodes a protein crucially involved in cholesterol transport and homeostasis. 

Research has revealed that its deficiency in mice lead to abnormalities in heart left ventricle morphology, 

along with an increase in cardiac muscle contractility[69]. Another noteworthy risk locus is 15q25.1, with 

the top lead SNP being rs7173743. The SNP was an intronic of gene MORF4L1. MORF4L1, also known 

as Mortality Factor 4 Like 1, is a gene responsible for encoding a protein engaged in cellular processes, 

such as chromatin remodeling and DNA repair. Research has additionally demonstrated that its 

deficiency in mice resulted in cardiovascular abnormalities, including myocardial fiber disarray and 

cardiac hypertrophy[70]. 

Since the replication analysis is recommended to evaluate the credibility of each SNP association 

when applying MTAG to low-powered GWAS or to GWAS characterized by significant heterogeneity in 

statistical power. We conducted MTAG analysis on the FinnGen cohort serving as a replication phase. 

Our findings revealed that out of the 99 loci, 68 exhibited replicated HF-specific associations. 

Additionally, among the 72 novel loci identified, 44 were successfully replicated. Notably, several genes 

mapped with replicated loci showed direct relevance to cardiovascular abnormalities, such as 

myocardial abnormalities, cardiac hypertrophy, and abnormal myocardial fiber morphology, in mouse 

knockout models. These genes include EDNRA, NOS3, MORF4L1, FGF5, GUCY1A3, and FN1. 

We further conducted a TWAS analysis and identified 215 HF risk genes and validated the roles 

of these genes in the progression of HF. Pathway enrichment analysis identified several key pathways 

closely associated with HF, including response to endogenous stimulus, phosphate-containing 

compound metabolic process, and cell population proliferation. Response to endogenous stimulus 

refers to any process that induces a modification in the state or function of a cell or organism, 

encompassing alterations in movement, secretion, enzyme production, gene expression, and other 

physiological activities. Further, a close association of endogenous hemodynamic[71] and endogenous 

nitric oxide[72] with HF has been reported. The phosphate-containing compound metabolic process 
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pathway encompasses chemical reactions related to the phosphate group, which is the anion or salt 

derived from any phosphoric acid. This includes processes such as the synthesis of adenosine 

triphosphate. Notably, a reduction in the energy reserve available for adenosine triphosphate synthesis 

can render the heart more susceptible to systolic and diastolic failure[73]. The cell population 

proliferation pathway refers to the multiplication or reproduction of cells, leading to the expansion of a 

cell population. The proliferation of cardiac myocytes is intricately linked to the development of HF[74-

76], and contemporary researches have proposed various approaches aimed at inducing cardiac 

myocyte proliferation as a therapeutic strategy for HF[77-79]. 

In the context of single-cell enrichment, it is noteworthy that risk genes demonstrated enrichment 

in cell types, such as smooth muscle cells, fibroblasts of cardiac tissue, and cardiac endothelial cells. 

Additionally, an earlier study has demonstrated that the deletion of the mineralocorticoid receptor 

specifically from smooth muscle cells can mitigate HF induced by transverse aortic constriction[80]. 

Furthermore, contemporary research indicated that endothelial cells play a crucial role in both coronary 

microvascular dysfunction and cardiac remodeling, ultimately contributing to the development of HF[81]. 

Moreover, investigations have highlighted the involvement of cardiac fibroblasts in myocardial stiffening 

through collagen production, as well as their active participation in modulating cardiac inflammation by 

synthesizing chemoattractive substances[82].  

Drug repurposing facilitated by GWAS methods has gained popularity in recent years[83]. Our 

study extensively leveraged the genetic discoveries including those loci identified by MTAG and the risk 

genes identified through TWAS to explore potential drugs for primary prevention of HF. We identified 

74 potential therapeutic drugs for HF treatment. Notably, five of these approved drugs (DB06403, 

DB00945, DB00559, DB08932, and DB06268) have undergone clinical trials for the treatment of HF[59-

63], thus boosting the credibility of our findings. Moreover, the target genes of these potential 

medications exhibited substantial evidence of associations with cardiovascular system abnormalities in 

knock out models. Notably, ALDH2, NOS3, MIF, FURIN, and PDGFD, demonstrated direct associations 

with such pathological features as congestive heart failure, myocardial abnormalities, cardiac 

hypertrophy, and abnormal myocardial fiber morphology[51, 58, 84-86]. Furthermore, ALDH2, EDNRA, 

and FURIN, which exhibited expression levels positively correlated with HF risk, may represent more 

favorable targets for the development of novel therapies, since therapeutics aimed at downregulating a 
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gene are typically easier to develop than those aimed at upregulation. It is noteworthy that using solely 

previously reported loci information and the original GWASHF data, we failed to identify any drugs. 

Despite these novel findings, our study did have limitation. Our data were derived from European 

populations, thus potentially limiting the generalizability of our study to other ethnicities. However, recent 

advancements have introduced methods for transferring genetic findings from European populations to 

others, increasing the applicability of our research[87, 88].  

Conclusions 

In conclusion, our study identified 72 novel HF risk loci. Subsequently, we employed MTAG on 

replication phase, Bayesian fine mapping, GARFIELD, and MGI queries to establish the biological and 

statistical credibility of these loci. We also identified 215 significant HF risk genes through TWAS 

analysis. Pathway enrichment, single-cell enrichment, PPI network, and MGI queries confirmed the 

roles of these genes in the progression of HF. Based on these novel HF genes, we identified 74 drugs 

suitable for repurposing for HF. These findings have translational value in future efforts aimed toward 

the discovery of HF prevention and treatment regimens. 
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