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Abstract 32 

Purpose: To quantify relevant fundus autofluorescence (FAF) image features cross-33 

sectionally and longitudinally in a large cohort of inherited retinal diseases (IRDs) patients. 34 

Design: Retrospective study of imaging data (55-degree blue-FAF on Heidelberg Spectralis) 35 

from patients. 36 

Participants: Patients with a clinical and molecularly confirmed diagnosis of IRD who have 37 

undergone FAF 55-degree imaging at Moorfields Eye Hospital (MEH) and the Royal 38 

Liverpool Hospital (RLH) between 2004 and 2019. 39 

Methods: Five FAF features of interest were defined: vessels, optic disc, perimacular ring of 40 

increased signal (ring), relative hypo-autofluorescence (hypo-AF) and hyper-41 

autofluorescence (hyper-AF). Features were manually annotated by six graders in a subset 42 

of patients based on a defined grading protocol to produce segmentation masks to train an 43 

AI model, AIRDetect, which was then applied to the entire MEH imaging dataset. 44 

Main Outcome Measures: Quantitative FAF imaging features including area in mm2 and 45 

vessel metrics, were analysed cross-sectionally by gene and age, and longitudinally to 46 

determine rate of progression. AIRDetect feature segmentation and detection were validated 47 

with Dice score and precision/recall, respectively.  48 

Results: A total of 45,749 FAF images from 3,606 IRD patients from MEH covering 170 49 

genes were automatically segmented using AIRDetect. Model-grader Dice scores for disc, 50 

hypo-AF, hyper-AF, ring and vessels were respectively 0.86, 0.72, 0.69, 0.68 and 0.65. The 51 

five genes with the largest hypo-AF areas were CHM, ABCC6, ABCA4, RDH12, and RPE65, 52 

with mean per-patient areas of 41.5, 30.0, 21.9, 21.4, and 15.1 mm2. The five genes with the 53 

largest hyper-AF areas were BEST1, CDH23, RDH12, MYO7A, and NR2E3, with mean 54 

areas of 0.49, 0.45, 0.44, 0.39, and 0.34 mm2 respectively. The five genes with largest ring 55 

areas were CDH23, NR2E3, CRX, EYS and MYO7A, with mean areas of 3.63, 3.32, 2.84, 56 

2.39, and 2.16 mm2. Vessel density was found to be highest in EFEMP1, BEST1, TIMP3, 57 

RS1, and PRPH2 (10.6%, 10.3%, 9.8%, 9.7%, 8.9%) and was lower in Retinitis Pigmentosa 58 

(RP) and Leber Congenital Amaurosis genes. Longitudinal analysis of decreasing ring area 59 

in four RP genes (RPGR, USH2A, RHO, EYS) found EYS to be the fastest progressor at  60 

-0.18 mm2/year. 61 

Conclusions: We have conducted the first large-scale cross-sectional and longitudinal 62 

quantitative analysis of FAF features across a diverse range of IRDs using a novel AI 63 

approach. 64 

 65 

  66 

 67 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.03.24.24304809doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.24.24304809


 3

Introduction 68 

Inherited retinal diseases (IRDs) are clinically and genetically heterogeneous disorders that 69 

affect the retina and represent the leading cause of legal blindness among working-age 70 

adults in England and Wales, and the second commonest cause in childhood 1. A recent 71 

study from Austria, covering nine federal states, has also shown that IRDs are now the 72 

leading cause of registered blindness in Austrian children and working-age adults2. This 73 

group of disorders can be caused by genetic variants in any one of over 300 genes 3–5. 74 

 75 

Many IRDs are associated with structural changes within the retina, which can be detected 76 

with retinal imaging using different imaging modalities such as colour fundus, infrared-77 

reflectance (IR), spectral-domain optical coherence tomography (SD-OCT), or fundus 78 

autofluorescence (FAF). FAF is of particular importance in the context of IRDs, as it allows 79 

the detection of patterns of fluorophores, often at the level of the photoreceptors and retinal 80 

pigment epithelium (RPE), which can be indicative of pathological changes such as loss of 81 

overlying photoreceptors 6,7. Some of these FAF signal changes are highly characteristic of 82 

specific IRDs and can indicate features such as areas of RPE atrophy or lipofuscin deposits. 83 

FAF is listed as a primary or secondary outcome in multiple clinical trials, and it has become 84 

a useful retinal biomarker for diagnostic and prognostication purposes in a wide variety of 85 

IRDs 4,6,8,9.   86 

 87 

The identification and quantification of disease-associated features within retinal imaging is 88 

critical for diagnosis, monitoring disease progression, providing prognostic information and 89 

assessing treatments in IRDs. The first steps in quantifying retinal imaging-based 90 

biomarkers of disease involves identification and segmentation of these features. Manual 91 

segmentation performed by human annotators is time-consuming and requires expert 92 

annotators, which makes this process subjective and not feasible on a large scale. 93 

Automated identification and segmentation of IRD features in a reliable way is important for 94 

enabling the routine use of these data quantitatively in clinical practice and to help further 95 

our understanding of these diseases. 96 

 97 

Existing studies that have used deep learning to segment IRD features from retinal images 98 

have so far focused on specific IRD phenotypes such as retinitis pigmentosa (RP), Stargardt 99 

(STGD1), and choroideremia (CHM) 10,11. 100 

 101 

To support our analysis on a broad range of different IRD phenotypes, we developed 102 

AIRDetect, a deep learning model that can automatically identify and segment relevant 103 

features from FAF images. We apply AIRDetect to the entire cohort of IRD patients with 104 
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molecularly confirmed diagnoses at Moorfields Eye Hospital (MEH), to identify genotype-105 

phenotype associations, as well as quantify disease progression. 106 

 107 

Methods 108 

Dataset Curation 109 

Patients’ genotypes were extracted from the Genetics database of MEH (London, UK) 3,12. 110 

Patients’ images were exported from the Heidelberg Imaging (Heyex) database (Heidelberg 111 

Engineering, Heidelberg, Germany) based on their hospital number, for records between 112 

2004-06-17 and 2019-10-22. All 55-degree FAF images were 488nm blue-FAF images 113 

captured by the Heidelberg Spectralis and the HRA2 imaging platforms.  114 

 115 

A dataset of 736 blue-FAF images (55-degree) from 573 patients from MEH were annotated 116 

with four different image features, optic disc, regions of hyper- and hypo-autofluorescence 117 

(AF), and perimacular ring of increased signal, and a further set of 206 blue-FAF images 118 

(55-degree) from 127 patients from the Royal Liverpool Hospital (RLH) were annotated with 119 

the retina vessel tree. A grading protocol was defined for IRD retinal feature annotations 120 

(Table 1) 13. The Dice similarity coefficient score was used to assess inter-grader agreement 121 
14. The Dice similarity coefficient is defined as twice the area of overlap between two 122 

annotations divided by the total area occupied by the two annotations. It ranges from one for 123 

perfect overlap between two annotations to zero for no overlap between two annotations. 124 

The intergrader agreement was not found to be significantly different between the graders. 125 

Manual grading was completed over an 18-month period from June 2022 to December 2023 126 

by four graders, with two additional graders carrying out the vessel segmentation at RLH. 127 

The four MEH graders were research fellows with over 5 years’ experience in medical retina, 128 

three of which had 3 years’ experience with FAF scans and IRDs. The two RLH graders 129 

were staff from the RLH Reading Centre with over 5 years’ experience in vessel annotation 130 

on FAF scans. Manual grading was performed using the Moorfields Grading Portal online 131 

platform (grading.readingcentre.org). A full breakdown of the manually annotated dataset is 132 

given in Supplementary Table 1. 133 

 134 

  135 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.03.24.24304809doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.24.24304809


 5

Table 1: Features and definitions used during the annotation process of five features by the graders. 136 

 137 

 138 

Training and Test Datasets 139 

The annotated dataset was compiled, and any images without confirmation for all features 140 

from at least one grader at the time of model development were discarded, and, to avoid 141 

bias, the annotation from a single grader was randomly selected where multiple grader 142 

annotations were available for a single image. After this process there were 554 images from 143 

464 patients from MEH. The MEH training set consisted of 506 images from 424 patients. 144 

The MEH hold-out test set consisted of 48 images from 40 patients. The RLH training set 145 

consisted of 72 images from 52 patients from RLH. The RLH hold-out test set consisted of 146 

23 images from 22 patients. Training sets were split into five separate sets for use with 5-fold 147 

cross validation, ensuring a balanced representation of each class across folds. Assignment 148 

to the training and test sets was done at patient-level to avoid any potential data leakage. 149 

The data flowchart is fully described in Supplementary Figure 1.  150 

 151 

Development of AIRDetect Segmentation Model 152 

For training the AIRDetect segmentation model, we selected the nnU-Net (no-new-UNet) 153 

framework for its adaptability and performance in automatic medical image segmentation 154 

tasks 17. At its core, nnU-Net leverages a fully convolutional network design inspired by the 155 

Name Shorthand Includes Excludes 

Optic Disc disc The optic nerve head. Includes both the 
optic cup and rim. 

Peripapillary atrophy not included 
in annotation. 

Hypo-
autofluorescence 

hypo-AF Areas distinctly darker than physiological 
normal area with 50% grader confidence. 
The level of hypo-AF should be at least 90-
100% as dark as the optic disc. This is 
defined as Definitely Decreased AF (DDAF) 
in the literature15,16 Note this is relative AF 
rather than absolute AF. 

Excludes peripapillary atrophy. 
Areas of ambiguous (not definitely 
decreased) regions in the 
periphery are not annotated as 
hypo-AF. 

Hyper-
autofluorescence 

hyper-AF Regions brighter than physiological normal 
area with 50% grader confidence. Note this 
is relative AF rather than absolute AF. 

Excludes macular ring. Excludes 
flecks. 

Perimacular ring of 
increased signal 

ring Ring shaped area of hyper-AF within the 
vascular arcades at the macula. 

Must be >50% complete circle. 

Veins and Arteries vessels All visible retinal vessels stemming from the 
optic disc. 

Only annotated over atrophy if the 
grader is more than 50% certain 
of the location of the vessel.  
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U-Net architecture, renowned for its efficacy in medical imaging tasks 18–20. The overlying 156 

nnU-Net framework then automatically configures its network architecture, preprocessing, 157 

and training strategy based on the dataset's characteristics, optimising for performance, 158 

without requiring manual hyperparameter tuning or architecture modifications from the user. 159 

 160 

For the five different image features, we trained two separate nnU-net models. A single 161 

multi-class model for disc, hyper-AF and hypo-AF, and ring, and a separate single-class 162 

model for vessels. As with common practice for nn-Unet each model consisted of an 163 

ensemble of five U-nets with identical architectures, but different weights, trained 164 

independently and then ensembled at inference, taking the unweighted average of the 165 

probability scores across networks. 166 

 167 

The model was trained using a sum of Dice and cross-entropy loss functions to optimise for 168 

multi-class segmentation accuracy. Hyperparameters, such as learning rate and batch size, 169 

were selected by the nnU-Net based on its analysis of the dataset. Training was curtailed at 170 

200 epochs as this was sufficient to achieve convergence in most cases. 171 

 172 

Validation of AIRDetect Segmentation Model 173 

Model validation was assessed using the Dice coefficient between the model predictions and 174 

the corresponding grader annotation on the hold-out test set. Where images were double-175 

graded, we took the mean of the model-grader Dice for each grading. We also analysed the 176 

accuracy of the model-grader agreement for simple presence/absence detection where we 177 

counted cases as positive for which the model/annotator marked at least some part of the 178 

image for the given feature, and negative otherwise, from which we derived 179 

presence/absence detection accuracy, precision and recall. 180 

Automatic Annotations on Real World IRD Dataset 181 

The trained models were applied to automatically segment 45,749 FAF images (55-degree) 182 

from 3,606 IRD patients with a molecularly confirmed diagnosis from MEH covering 170 183 

genes 3,12. This took on average 1 second per image parallelised over four 3090 Nvidia 184 

GPUs amounting to approximately 3-4 hours in total. In comparison a human grader could 185 

take 5-30 minutes per scans amounting to 5-3 months in total. Images where the optic disc 186 

was not segmented by the model were removed, as these images were of poor quality or not 187 

centred on the macula (Supplementary Figure 2). Results were analysed from 33,042 FAF 188 

images from 3,496 patients, after filtering. 189 

 190 
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For each of the generated masks we extracted: a) if the feature was present or absent; b) 191 

the area, number of pixels in the segmented mask multiplied by the resolution; c) the number 192 

of connected components, found using watershed clustering 21; d) feature brightness, mean 193 

intensity of pixels from the region covered by the segmented mask. For vessels, we 194 

calculated a selection of metrics defined in Supplementary Table 2, using the provided 195 

code from the reti-py library as used in the AutoMorph repository 22.  Features were also 196 

analysed based on their distance from the fovea. 197 

 198 

To calculate rate of progression for a given feature, a linear regression was fit to each 199 

patient-eye, taking time since the first appointment (in years) as the independent variable, 200 

and taking the calculated areas of the segmented feature at each time-point as the 201 

measured variable. The slope of the regression was then averaged across eyes per-patient 202 

to give a rate of progression. Where multiple scans per eye were present for a given date, 203 

we took the most recent scan with the rationale that good quality scans were less likely to 204 

lead to further imaging by the operator. 205 

 206 

Results 207 

AIRDetect Model Validation 208 

 209 
Examples of AIRDetect segmentation output are presented in Figure 1. Model-grader Dice 210 

scores for disc, hypo-AF, hyper-AF, ring and vessels were respectively 0.86, 0.72, 0.69, 0.68 211 

and 0.65, with intergrader Dice scores of 0.82, 0.75, 0.72, 0.80, 0.95, respectively. Model 212 

detection accuracy ranged from 77% to 83% (excluding anatomical features) (Table 2). 213 

Features which were the most challenging to detect were hyper-AF and ring as those had 214 

the lowest precision scores at 0.53 and 0.60 respectively. 215 

 216 
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 217 

 218 

Figure 1: Examples of manually and automatically segmented masks for the five features: vessels, 219 
disc, ring, hyper- and hypo-autofluorescence. The vessel dataset was separate to the rest of the data, 220 
so vessel visualisation is separate from other features. 221 
 222 
 223 

224 
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Table 2: Segmentation model training data and results. Dice score quantifies the model's 225 
segmentation performance and presence/absence quantifies its feature detection performance. Total 226 
= number of annotated images. Incidence = percent of images with gradable feature. Dice inter-grader 227 
= inter-grader agreement of double-graded images (repeated from Table 2 for reference). Dice model-228 
grader = Dice score between model and graders, with mean scores used when images were double-229 
graded.  230 

 
Feature 

Train set  Test Set 
Segmentation 

(Dice) 
Detection 

(Presence/Absence) 

Total Incidence  Total Incidence  
Inter- 

grader 
Model- 
grader Accuracy Precision Recall 

disc 506 98% 48 98% 0.82 0.86 - - - 

hypo-AF 506 70% 48 44% 0.75 0.72 83.3% 0.81 0.81 

hyper-AF 506 18% 48 23% 0.72 0.69 79.2% 0.53 0.82 

ring 506 32% 48 31% 0.80 0.68 77.1% 0.60 0.80 

vessels 72 100% 23 100% 0.94 0.65 - - - 

 231 

Genotype-phenotype Associations 232 

 233 

Analysing associations between identified features and genes across most common genes 234 

(Supplementary Table 3), the five genes with the largest hypo-AF areas were CHM, 235 

ABCC6, ABCA4, RDH12, and RPE65, with mean per-patient areas of 41.5, 30.0, 21.9, 21.4, 236 

and 15.1 mm2 (Figure 2a). The five genes with the largest hyper-AF areas were BEST1, 237 

CDH23, RDH12, MYO7A, and NR2E3, with mean areas of 0.49, 0.45, 0.44, 0.39, and 0.34 238 

mm2 respectively (Figure 2b).  The five genes with largest ring areas were CDH23, NR2E3, 239 

CRX, EYS and MYO7A, with mean areas of 3.63, 3.32, 2.84, 2.39, and 2.16 mm2 (Figure 240 

2c).  At the gene variant level, ABCA4 p.(Gly1961Glu)  showed a higher ring area than other 241 

common ABCA4 variants (Supplementary Figure 4). Vessel density was found to be 242 

highest in EFEMP1, BEST1, TIMP3, RS1, and PRPH2 (10.6%, 10.3%, 9.8%, 9.7%, 8.9%) 243 

and was lower in Retinitis Pigmentosa (RP) and Leber Congenital Amaurosis associated 244 

genes (Figure 2d). A full breakdown of features across the 30 most common genes is given 245 

in Supplementary Table 3, for all genes in Supplementary Table 4 and for vessels in 246 

Supplementary Table 5. 247 

 248 
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 249 
Figure 2: Mean a) extent of hypo-AF, b) extent of hyper-AF, c) extent of ring, and, d) Vessel density 250 
(ratio between area of vessels and total image area) across the 30 most common genes (RPE65 251 
included for reference). Error bars denote standard error. Values were first averaged by patient before 252 
averaging by gene to minimise correlations due to multiple contributions from individual patients. 253 
Genes are grouped into approximate phenotype groupings denoted by bar styling. 254 
 255 
We analysed how features vary with distance from the fovea by looking at the prevalence of 256 

each feature in each 0.5 mm annulus moving away from the fovea. Figure 3 compares 257 

prevalence of hyper- and hypo-AF at different distances from the fovea in five different 258 

genes (see Supplementary Figure 7 for scale). The two genes associated largely with 259 

maculopathy or cone-rod dystrophy (ABCA4, PRPH2) show increased area and prevalence 260 

of hypo-AF at the fovea (Figure 3.a and Figure 2.a) but reducing proportions of the retina 261 

displaying hypo-AF moving away from the fovea. The two RP-associated genes (USH2A, 262 

RPGR) show less hypo-AF across the whole retina compared with the cone-rod genes, but 263 

with a bimodal profile, with the greatest relative proportion of hypo-AF at the fovea followed 264 

by 4-6mm from the fovea, just within the vascular arcade. For CHM, unlike the other genes, 265 

there was the least hypo-AF at the fovea, but substantially increased hypo-AF away from the 266 

fovea. For hyper-AF there is an increased proportion of hyper-AF at the fovea in all genes 267 

except ABCA4 that reduces further from the fovea (Figure 3b). In the two RP-associated 268 

genes (USH2A, RPGR) there is an increase in hyper-AF at 1-3mm from the fovea. 269 

 270 

a) b)

c)
d)

A
r
e
a
 o
f 
h
y
p
o
-
A
F

A
r
e
a
 o
f
 h
y
p
e
r-
A
F

V
e
s
s
e
l 
d
e
n
s
it
y

A
r
e
a
 o
f
 r
in
g

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.03.24.24304809doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.24.24304809


 11

 271 
Figure 3: Autofluorescence (AF) as a proportion of total altered AF area in the image compared with 272 
distance from fovea for patients with variants in ABCA4, RPGR, USH2A, RPGR, and CHM for a) 273 
hypo-AF and b) hyper-AF. 274 
 275 

In Figure 4 the area of hyper-AF within 1.5mm of the fovea is compared against patient age 276 

for five different IRD genes. Most genes showed an increase with age, with the exception of 277 

PRPH2, which remained fairly stationary, and BEST1, which demonstrated a sharp 278 

decrease with patient age - although there was a considerable variability across ages within 279 

all genes. 280 

 281 

 282 
Figure 4: hyper-AF area within 1.5mm of the fovea (corresponding to inner 3mm ETDRs ring) 283 
compared with patient age. Least-squares regression line in red. Significant increase in hyper-AF with 284 
age for ABCA4 (β=691 μm2/yr, p<0.001), USH2A (β=4090μm2/yr, p<0.001) and RPGR 285 
(β=2520μm2/yr, p<0.029). Significant decrease for BEST1 (β=-6500μm2/yr,  p<0.001). No significant 286 
changes of hyper-AF with age were found for PRPH2. 287 
 288 
 289 

.  290 

 291 

a) b)
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 292 

Disease Progression  293 

We applied AIRDetect longitudinally to monitor progression within individual patients across 294 

multiple visits. Figure 5 shows an example using AIRDetect to visualise the decrease in ring 295 

area in individual patients with RP associated with variants in four different genes, namely 296 

USH2A, PRPH2, RHO and EYS. Comparing these four RP genes in the entire MEH IRD 297 

cohort, average rate of decrease in total ring area was greater in patients with RP associated 298 

with EYS (-0.178 mm2/year), USH2A (-0.066 mm2/year), and RPGR (-0.046 mm2/year), when 299 

compared to RHO (-0.040 mm2/year). 300 

 301 

We also applied AIRDetect to monitor progression in patients belonging to three subgroups 302 

of ABCA4 (Figure 6). Patients were classified into three groups (A, B and C) based on 303 

increasing severity of genetic variants as defined by Cornelis et al. 23,24. Patients in group A 304 

had two severe variants, while group C had a mild variant in trans with any other variant. 305 

Patients with variants of known severity whose combination do not fit the other two groups 306 

were placed into group B. The average increase in hypo-AF area per year was compared 307 

between groups (Supplementary Figure 3). In keeping with previous studies 25–29, the mean 308 

per-patient rate of increase in hypo-AF area was highest in the highest severity classification 309 

(group A), at 3.11 mm2/year (0.294 mm/year change in square root area), followed by 1.59 310 

mm2/year (0.169 mm/year) for the intermediate severity group (B), and finally 0.87 mm2/year 311 

(0.108 mm/year) in the lowest severity group (C) (Supplementary Table 6). 312 

 313 

 314 
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Figure 5: Automatic monitoring of lesion size for disease progression. Decreasing area of ring for four 315 
patients with disease-causing variants in: a) RPGR, b) USH2A, c) RHO, and d) EYS. In these genes, 316 
the macular ring is expected to shrink in diameter over time as the disease progresses. 317 
 318 

319 
Figure 6: Increasing area of hypo-AF for two patients of each of the three ABCA4 severity groups: a) 320 
group A, b) group B and c) group C. Here we see the expected patterns of progression reported in 321 
Supplementary Table 6 with A being the fast progressors, followed by B and C.  322 
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Discussion 323 

The results of our cross-sectional analysis match known genotype-phenotype associations 324 

demonstrating the validity of our approach, as well yielding novel insights. For example in 325 

Figure 2.a, CHM and ABCA4 both exhibited higher levels of hypo-AF, consistent with the 326 

large areas of atrophy that spare the fovea in choroideremia, as well as the macular atrophy 327 

typically seen in STGD1 disease (ABCA4) 8,30–32. Of interest however, ABCC6 which is 328 

associated with pseudoxanthoma elasticum was identified to have second largest areas of 329 

hypo-AF. On further inspection, these could be explained by the large angioid streaks 330 

characteristic of this condition which can appear as hypo-AF on FAF33. For hyper-AF, BEST1 331 

exhibited the largest areas of hyper-AF, which can be attributed to the vitelliform lesion(s) 332 

that are characteristically observed in autosomal dominant and recessive forms of the 333 

disease 34–36 (Figure 2.b). For ring the presence of a macular ring typically corresponds to a 334 

demarcation between diseased and non-diseased retina, and is usually seen in RP and cone 335 

rod dystrophies, in keeping with our findings herein 4 (Figure 2.c). The lower vessel density 336 

observed in RP and LCA genes was also in keeping with the vessel attenuation commonly 337 

associated with these genes37,38 (Figure 2.d). As well as genotype-phenotype associations, 338 

we also found associations at the individual variant level confirming known association 339 

between the p.(Gly1961Glu) variant in ABCA4 and presence of a macular ring 39–42 340 

(Supplementary Figure 3). When considering feature prevalence from the fovea, we found, 341 

as expected, that genes usually associated with cone-rod degeneration showed a decrease 342 

in hypo-AF extent moving away from the fovea, but with an opposite trend for the RP genes 343 

and CHM (Figure 3). Hyper-AF was mainly concentrated at the fovea, but with a distinctive 344 

peak at 2-3mm from the fovea which may be attributed to partial macular rings classified as 345 

hyper-AF by our model (Figure 3.b). PRPH2 also had a higher coverage of hyper-AF in the 346 

fovea when compared to ABCA4 which is consistent with the pattern/macular dystrophy and 347 

adult vitelliform phenotypes associated with PRPH2 43 (Figure 3.b).  348 

 349 
In our longitudinal analysis we were able to replicate the findings of Fakin et al. 2016 in 350 

Figure 7 and Table 4, where we found that growth of areas of hypo-AF was much more 351 

rapid in the group associated with more severe ABCA4 genetic variants 25. Our estimates for 352 

rate of progression were higher than that previously reported, which may be due to the use 353 

of 55-degree as opposed to 30-degree imaging in our dataset and hence a larger area of 354 

hypo-AF 28,44. Comparing hyper-AF across patient age in Figure 4, the hyper-AF within 355 

1.5mm of the fovea increased for ABCA4, USH2A and RPGR, consistent with lesions 356 

developing with disease progression over time. However, there were some noteworthy 357 

exceptions for individual genes. In particular, BEST1 is associated with “yolk-like” regions of 358 

hyper-AF, typically within 2-3 mm of the perifovea, which change over time through pre-359 
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vitelliform, vitelliform, pseudohypopyon, vitelliruptive stages and finally to the atrophic stage 360 
4,36. The highest hyper-AF signal would be associated with the vitelliform stage, progressively 361 

reducing in intensity to become a region of hypo-AF by the atrophic stage, which matches 362 

what we see as a decrease in foveal hyper-AF with age.  No significant progression of 363 

hyper-AF with age was detected for PRPH2 which is likely due to the later onset of the 364 

condition in most patients (typically after 45 years of age) and hence a more limited age 365 

range, as well as the milder pattern of dystrophy 45 366 

 367 

We also identified increased rate of decrease in area of macular ring in EYS, USH2A and 368 

RPGR compared to RHO (Figure 6). Monitoring the rate in which the macular ring narrows 369 

down is common practice in generalised retinal dystrophies such as RP 6. A more rapid 370 

encroachment of the macular ring in autosomal recessive (USH2A, EYS) and X-linked 371 

(RPGR) genes compared to the autosomal dominant RHO, is consistent with the latter 372 

having a slower disease progression compared to the others 46. 373 

 374 

To date, deep learning AI models to analyse FAF images from IRD patients have been 375 

limited. There have been studies developing classification models of FAF images based on 376 

IRD phenotypes 47–50.  But as to segmentation approaches, areas of hypo-AF have been 377 

measured  either manually or semi-automatically using RegionFinder on HEYEX2 software 378 

to study the progression rate of the area of atrophy in STGD1 disease 51–54. These 379 

approaches compared to deep-learning approaches would be challenging to scale 380 

accurately to our real-world dataset as they require considerable parameter tuning compared 381 

to deep-learning based approaches such as AIRDetect. Previous deep-learning based 382 

segmentation approaches have mostly focused on STGD1  to segment for hypo-AF55 or 383 

flecks11. Hence our AIRDetect approach represents the first to be developed and applied to 384 

a wide range of IRDs covering 170 genes. 385 

 386 

One limitation of our approach is that the gene associations described in our study are 387 

limited by the variation in phenotypes which can occur with stage of disease for progressive 388 

conditions, different variants in the same gene or different modes of inheritance. Examining 389 

distribution of best corrected visual acuity per gene in our data, we can confirm that a range 390 

of disease stages are present in our dataset (Supplementary Figure 8). In terms of 391 

examples of phenotype variability per gene, CRX can be associated with a mild CORD but 392 

also quite severe LCA 56–58. RPGR can be associated with RP, LCA, macular dystrophy and 393 

CORD 59,60. We conducted a sub analysis in ABCA4 (Supplementary Figure 4) but have 394 

not yet conducted this analysis across all gene variants and modes of inheritance. 395 

 396 
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Other limitations are the limited sample size for some of the genes and the large variance in 397 

imaging quality in our real-world dataset in part due to the discomfort of the patient to 398 

potential blue light-toxicity61, which affects the reliability of some of the features in lower 399 

quality images. While automatic image quality assessment tools exist for colour fundus 400 

retinal imaging 62, none have been developed for FAF imaging. Assessing image quality can 401 

also be particularly challenging for IRDs as they are associated with a wide range of 402 

pathologies, many of which can affect perceived image quality, as well as make it more 403 

challenging for the operator to acquire good quality images. We plan to develop an IRD FAF 404 

image quality assessment model in future, which should help to improve the consistency of 405 

our segmented masks and reduce noise in our analysis. 406 

 407 

We anticipate that AIRDetect can be used to validate further clinically relevant findings, as 408 

well as identifying new potential associations between different feature patterns and certain 409 

genes or variants. Our approach could also be applied to identifying structure-function 410 

association (Supplementary Figure 5) as well as cross-modality image registration tasks by 411 

using vessel-based segmentation to align images (Supplementary Figure 6). Besides 412 

IRDs, the diverse nature of IRD-associated pathologies might make AIRDetect useful to 413 

improve robustness for segmentation of FAF imaging for other non-IRD conditions or provide 414 

a good starting point for developing models for specific conditions where data is more scarce 415 

or to other imaging modalities such as ultra-widefield imaging, via transfer learning. 416 

 417 

In conclusion, we have conducted, to our knowledge, the largest quantitative cross-sectional 418 

and longitudinal analysis of FAF features across a diverse range of IRDs in a real world 419 

dataset, enabled by our novel automatic segmentation AI model, AIRDetect. 420 
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Code availability  427 

The source code for the AIRDetect model architecture training and inference is available 428 

from https://github.com/Eye2Gene/. The model weights of AIRDetect are intellectual 429 

proprietary of UCLB so cannot be shared publicly. However, they may be shared via a 430 

licensing agreement with UCLB. A running version of the AIRDetect app is accessible via the 431 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.03.24.24304809doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.24.24304809


 17

Eye2Gene website (www.eye2gene.com) and via the Moorfields Grading Portal 432 

(grading.readingcentre.org) on invitation.  433 
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Data availability  435 

The data that support the findings of this study are divided into two groups, published data 436 

and restricted data. Published data are available from the Github repository. Restricted data 437 
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privacy and intellectual property. Synthetic data derived from the test data has been made 439 

available at  https://github.com/Eye2Gene/.  440 

 441 

Author contributions 442 

WAW analysed the data and wrote the manuscript. NP designed the obtained the funding, 443 

designed the experiments, analysed data and wrote the manuscript. MM, KB, WAW, TACG, 444 

SAK, MDV, BM designed the experiments, analysed data and wrote the manuscript. SS 445 

analysed the data. MS wrote the manuscript. PBa analysed the data. PBu, DP analysed the 446 

data. All authors have critically reviewed the manuscript. 447 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.03.24.24304809doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.24.24304809


 18

Acknowledgement 448 

This work is primarily funded by a NIHR AI Award (AI_AWARD02488) which supported NP, 449 

WAW, MM, KB, SD and SM. The research was also supported by a grant from the National 450 

Institute for Health Research (NIHR) Biomedical Research Centre (BRC) at Moorfields Eye 451 

Hospital NHS Foundation Trust and UCL Institute of Ophthalmology. NP was also previously 452 

funded by Moorfields Eye Charity Career Development Award (R190031A). BJ was partially 453 

funded by IIR-DE-002818 from Shire/Takeda and by the European Reference Network for 454 

Rare Malformation Syndromes, Intellectual and Other Neurodevelopmental Disorders (ERN-455 

ITHACA). OAM is supported by the Wellcome Trust (206619/Z/17/Z). AYL is supported by 456 

an unrestricted and career development award from RPB, Latham Vision Science Awards, 457 

NIH OT2OD032644, NEI/NIH K23EY029246, and NIA/NIH U19AG066567. SA is supported 458 

by a scholarship from Qatar National Research Fund (GSRA6-1-0329-19010).This project 459 

was also supported by a generous donation by Stephen and Elizabeth Archer in memory of 460 

Marion Woods. The hardware used for analysis was supported by the BRC Challenge Fund 461 

(BRC3_027). We also gratefully acknowledge the support of NVIDIA Corporation with the 462 

donation of the Titan Xp GPU used for this research. The views expressed are those of the 463 

authors and not the funding organisations. 464 

  465 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.03.24.24304809doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.24.24304809


 19

Supplementary 466 

Supplementary Figure 1: Data flowchart with number of images, patients, eyes, and genes at each 467 
stage of AIRDetect model development. 468 

 469 
 470 
  471 
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Supplementary Figure 2: Examples of images with no Disc segmentation from the model. These are 472 
either poor quality, have significant atrophy, or are improperly centred. 473 
 474 

 475 
  476 
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Supplementary Table 1: Overview of annotated dataset for the manually segmented features, 477 
considering each feature individually. Not all features were gradable within all images, with some 478 
images only annotated for some features. Images for vessel annotations were selected by clinicians 479 
and were all gradable. Incidence includes ungradable 480 

Feature Graded 
Double 
graded 

Partially 
Gradable 

Un- 
Gradable 

Num 
Patients 

Num 
Genes Present Incidence  

disc 736 207 74 32 573 63 716 97.3% 

hypo-AF 736 204 75 32 573 63 482 65.5% 

hyper-AF 730 191 77 32 570 63 106 14.5% 

ring 729 195 76 32 571 63 212 29.1% 

vessels 206 13 n/a n/a 127 33 206 100% 

 481 
 482 
Supplementary Table 2: Vessel metrics and their description. 483 
Vessel Metric Description 

Fractal Dimension 
Method that represents geometric complexity of the vascular branching 
pattern observed in the retina. Essentially how close are the vessels to 
being “space-filling”. 

Vessel Density Ratio between area of vessels and total image area. 

Average Width Average width of vessels. 

Distance Tortuosity 
Distance tortuosity is a measure of the tortuosity of a path based on the ratio 
of the actual path length to the straight-line distance between the start and 
end points of the path 63 

Squared Curvature 
Tortuosity 

Squared curvature tortuosity is a more sophisticated measure of tortuosity 
that takes into account the curvature along the path, providing a detailed 
view of its winding nature 63 

Tortuosity Density 
Assesses vessel tortuosity by aggregating local contributions, examining the 
degree to which each turn curve deviates from a smooth curve 64 

 484 
. 485 
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Supplementary Table 3: Feature statistics by gene for selected 30 genes. Results are mean across all images. %=Incidence, A=Average Area (mm2), 
C=Num Components, I = Intensity (pixel brightness), <3mm=Proportion of feature area within 3mm of the fovea (corresponding to outer 6mm ETRDS ring), 
D=vessel density, F=fractal dimension. The table cells have been shaded with lower values in red, intermediate values in white and larger values in green. 

 disc hypo-AF hyper-AF ring vessels 

Gene A C I <3mm % A C I <3mm % A C I <3mm % A C I <3mm D F 

ABCA4 2.19 1.01 9.20% 13.70% 80.30% 19.81 1.45 11.10% 61.30% 18.00% 0.05 0.33 66.40% 48.30% 33.50% 0.57 1.58 59.60% 81.80% 7.65% 1.33

ABCC6 1.53 1.03 16.90% 17.60% 69.00% 21.44 2.08 14.30% 32.60% 54.90% 0.23 1.2 62.50% 23.40% 8.20% 0.03 0.15 43.30% 38.00% 8.07% 1.37

BBS1 2.59 1.02 10.40% 7.50% 67.50% 8.35 1.29 11.90% 56.90% 25.90% 0.15 0.38 47.30% 86.90% 32.50% 0.84 1.03 56.50% 72.70% 4.56% 1.18

BEST1 1.84 1.01 11.60% 4.10% 40.50% 2.58 0.9 11.50% 59.70% 57.50% 0.73 1.09 61.20% 59.80% 57.50% 1.28 1.83 56.30% 77.20% 9.62% 1.38

CACNA1F 2.04 1.01 14.80% 0.00% 5.70% 0.91 0.2 7.10% 42.40% 12.80% 0.01 0.15 59.80% 2.50% 3.80% 0.01 0.06 53.60% 79.80% 5.35% 1.21

CDH23 2.05 1.01 14.30% 6.40% 16.20% 0.71 0.47 10.40% 42.00% 19.60% 0.23 0.5 57.60% 34.20% 77.30% 2.46 2.73 47.30% 67.30% 2.46% 1.05

CERKL 2.63 1 12.30% 9.10% 82.30% 10.33 1.43 12.10% 51.70% 17.70% 0.02 0.21 46.00% 88.60% 29.70% 1.04 0.95 58.10% 65.30% 3.51% 1.16

CHM 1.45 1.06 20.60% 2.80% 82.60% 51.77 3.28 19.90% 21.00% 48.80% 0.26 0.83 54.50% 37.90% 5.50% 0.03 0.08 43.20% 32.20% 6.20% 1.3

CNGA3 1.74 1.01 13.80% 14.50% 31.10% 1.48 0.96 7.10% 56.30% 8.00% 0.05 0.17 54.00% 31.80% 35.60% 0.32 0.75 50.00% 74.90% 5.36% 1.24

CNGB3 1.91 0.99 14.90% 12.70% 12.50% 0.16 0.38 6.70% 73.60% 10.40% 0.01 0.12 52.70% 63.90% 32.60% 0.2 0.63 54.60% 92.20% 5.92% 1.24

CRB1 1.97 1.02 14.70% 3.60% 55.20% 8.3 1.22 15.60% 40.40% 44.00% 0.41 0.89 46.40% 54.00% 43.70% 1.73 1.35 48.90% 59.20% 4.27% 1.11

CRX 2.11 1 15.60% 5.70% 70.30% 5.51 1.39 15.60% 62.70% 16.90% 0.05 0.26 50.70% 29.90% 59.30% 2.23 4.22 52.90% 65.90% 7.30% 1.33

EFEMP1 1.77 1 15.30% 6.00% 78.70% 5.15 1.84 14.20% 82.40% 77.90% 0.24 1.55 61.80% 79.40% 24.10% 0.18 0.66 60.00% 82.50% 10.10% 1.43

EYS 2.36 1.02 15.20% 2.90% 65.90% 9.55 1.64 13.30% 27.30% 23.40% 0.23 0.4 57.60% 42.90% 72.50% 2.08 2.76 52.60% 76.80% 3.07% 1.16

GUCY2D 2 1 14.70% 6.50% 48.00% 5.25 0.86 17.50% 71.20% 17.60% 0.22 0.3 61.20% 36.00% 60.90% 1.51 2.94 53.10% 75.00% 6.91% 1.29

MYO7A 2.07 0.99 15.80% 2.30% 42.30% 2.37 0.95 18.00% 32.90% 28.00% 0.41 0.97 53.70% 21.80% 73.60% 3.24 3.26 47.00% 57.80% 2.70% 1.09

NR2E3 1.94 1.02 10.90% 7.40% 31.50% 1.42 0.76 10.20% 12.90% 21.40% 0.37 0.5 56.50% 17.90% 39.60% 1.72 1.4 52.20% 24.70% 8.33% 1.32

PDE6B 2.62 1.01 14.80% 3.40% 52.20% 4.48 0.93 17.00% 49.30% 21.30% 0.08 0.28 55.10% 56.90% 86.00% 3.37 4.06 47.30% 86.60% 3.00% 1.12

PROM1 2.3 1.01 12.60% 7.00% 80.00% 12.15 1.72 12.60% 72.00% 21.10% 0.04 0.25 52.30% 72.90% 34.80% 0.85 2.06 54.00% 82.50% 6.10% 1.26

PRPF31 2.2 1.03 15.50% 1.20% 48.10% 6.78 1.56 12.00% 41.30% 18.80% 0.12 0.34 45.90% 68.30% 64.00% 2.17 2.85 52.50% 86.90% 4.10% 1.21

PRPH2 2.05 1.01 12.30% 4.50% 68.70% 10.28 1.89 10.10% 62.00% 36.40% 0.07 0.58 59.10% 77.10% 26.30% 0.69 0.85 55.80% 69.40% 8.00% 1.36

RDH12 1.92 1.01 18.00% 11.80% 58.10% 22.35 1.1 19.00% 37.30% 33.70% 0.37 0.52 49.00% 22.10% 34.10% 1.51 2.52 57.90% 84.80% 2.93% 0.99

RHO 2.17 1.03 15.50% 1.50% 61.90% 9.74 1.72 13.60% 34.80% 18.50% 0.11 0.24 53.00% 56.00% 70.60% 2.25 2.99 53.60% 82.80% 4.47% 1.22

RP1 2.19 1.01 13.70% 5.50% 63.00% 9.32 1.76 13.10% 40.10% 19.10% 0.18 0.27 55.90% 66.70% 65.00% 2.03 2.98 54.60% 74.80% 4.59% 1.23

RP2 2.48 1.05 9.90% 13.30% 47.60% 3.1 1.19 10.50% 48.30% 6.90% 0.02 0.08 54.70% 84.40% 13.00% 0.26 0.38 59.00% 67.80% 3.65% 1.19

RPE65 1.15 1.06 19.30% 7.60% 52.40% 40.13 2.65 15.00% 29.10% 37.80% 0.24 0.65 56.40% 61.80% 4.90% 0.19 0.05 43.10% 97.60% 2.04% 0.97

RPGR 2.31 1.01 13.70% 3.70% 54.20% 7.78 1.27 14.40% 36.50% 22.60% 0.13 0.31 54.40% 58.60% 61.30% 2.13 2.09 55.90% 82.00% 4.06% 1.19

RS1 1.93 1 11.90% 3.50% 26.80% 2.41 0.58 10.70% 36.70% 24.80% 0.1 0.37 44.30% 73.20% 16.90% 0.35 0.59 53.00% 66.40% 8.69% 1.34

TIMP3 1.71 1.01 17.50% 9.50% 62.10% 16.35 1.84 15.30% 46.50% 30.70% 0.14 0.51 58.50% 32.60% 27.00% 0.47 1 55.20% 35.30% 9.15% 1.39

USH2A 2.17 1.02 15.60% 2.30% 61.30% 8.47 1.76 13.00% 36.50% 19.80% 0.15 0.31 53.50% 66.50% 72.10% 1.98 3.2 53.50% 87.50% 3.42% 1.17

All 2.09 1.02 13.50% 6.90% 61.20% 13.04 1.46 13.00% 48.20% 25.10% 0.15 0.43 57.10% 52.80% 43.70% 1.19 1.78 54.10% 77.90% 5.75% 1.25

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted A

ugust 14, 2024. 
; 

https://doi.org/10.1101/2024.03.24.24304809
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2024.03.24.24304809


 23

Supplementary Table 4:  Feature statistics for all genes. Phenotypes: pheno = most common phenotype presentation according to literature. 
ACHM = achromatopsia, ALB = albinism, BEST = best disease, CD = cone-dystrophy, CHM = choroidemia, CR = cone-rod, CSNB = congenital 
stationary night blindness, DR = diabetic retinopathy, FEVR = Familial exudative vitreoretinopathy, GA = Gyrate atrophy, LCA = Leber’s 
congenital amaurosis, MAC = Microphthalmia, anophthalmia, coloboma, MD = macular dystrophy, OA = optic atrophy, PD = pattern dystrophy, 
PXE = pseudoxanthoma elasticum, RP = retinitis pigmentosa. pat = number of patients. img = number of FAF images. Feature metrics are 
averaged across all images per gene.  Features: % = average incidence in percent, A = averge area in mm2, C = average number of clusters, I  
= average pixel intensity in percentage, % <6mm = average incidence within 6mm area in percent, FD = vessel fractal dimensions, D = average 
vessel density, W = average vessel width, DTM = distance tortuosity mean, SCTM = squared curvature tortuosity mean, TDM = tortuosity 
density mean.  
 
(see online supplementary table 4) 
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Supplementary Table 5: All vessel metrics across selected genes. Definitions of metrics are given in Supplementary 
Table 2 . The table cells have been shaded with lower values in red, intermediate values in white and larger values in 
green. 

gene Fractal Dimension Vessel Density Average Width 
Distance 

Tortuosity Mean 

Squared 
Curvature 

Tortuosity Mean 
Tortuosity Density 

Mean 

ABCA4 1.33 7.65% 184.81 4.81 61.6 0.71 

ABCC6 1.37 8.07% 196.68 6.17 80.7 0.73 

BBS1 1.18 4.56% 186.86 9.66 214.9 0.7 

BEST1 1.38 9.62% 203.18 4.46 49.4 0.71 

CACNA1F 1.21 5.35% 218.03 9.24 83.8 0.73 

CDH23 1.05 2.46% 198.91 7.97 177.8 0.68 

CERKL 1.16 3.51% 179.55 7.2 95.8 0.67 

CHM 1.3 6.20% 190.34 6.14 104.4 0.69 

CNGA3 1.24 5.36% 209.19 5.17 70.9 0.7 

CNGB3 1.24 5.92% 205.53 6.42 67.1 0.7 

CRB1 1.11 4.27% 178.82 7.2 83.2 0.69 

CRX 1.33 7.30% 192.4 9.58 119.5 0.72 

EFEMP1 1.43 10.06% 208.55 4.31 39.4 0.72 

EYS 1.16 3.07% 172.31 7.39 108.3 0.69 

GUCY2D 1.29 6.91% 197.87 5.41 64.4 0.72 

MYO7A 1.09 2.70% 182.09 11 296.8 0.7 

NR2E3 1.32 8.33% 202.83 5.85 77.5 0.72 

PDE6B 1.12 3.00% 181.7 7.22 113.4 0.71 

PROM1 1.26 6.10% 179.6 6.5 116.9 0.72 

PRPF31 1.21 4.10% 178.26 7.11 146.2 0.7 

PRPH2 1.36 8.00% 184.62 4.76 52.1 0.71 

RDH12 0.99 2.93% 179.48 3.48 20.6 0.72 

RHO 1.22 4.47% 175.72 6.49 86.1 0.69 

RP1 1.23 4.59% 174.37 6.93 139.4 0.7 

RP2 1.19 3.65% 181.19 6.83 109.3 0.69 

RPE65 0.97 2.04% 164.35 6.64 110.8 0.65 

RPGR 1.19 4.06% 182.93 8.03 126.1 0.7 

RS1 1.34 8.69% 207.5 5.45 62.3 0.72 

TIMP3 1.39 9.15% 198.27 4.99 71.9 0.71 

USH2A 1.17 3.42% 170.22 7.26 101.6 0.69 

All 1.25 5.75% 186.52 6.45 98 0.7 
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Supplementary Table 6: Average increase in hypo-AF area stratified by ABCA4 variant severity.  ABCA4 patients a
grouped based on the severity of their genetic variants as proposed by Cornelis et al. 2022 into groups A, B and C 2

ABCA4 
severity 

classification 

Number of 
Patients 

Variant combination Average increase in 
hypo-AF area per 

year (mm2) 

Average increase 
in sqrt hypo-AF 

area per year 
(mm) 

A 69 Severe/Severe 3.11 0.29 

B 75 Intermediate/Intermedia
te or 

Severe/Intermediate 

1.59 0.17 

C 184 Mild/* 0.87 0.11 

 

Supplementary Figure 3: Rate of progression of hypo-AF in mm2 per year for patients in the three severity classific
groups of ABCA4. Note that Group A has a higher mean rate of progression than groups B and C, as it corresponds
the group with the highest severity.  Error bars denote standard error. 
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Supplementary Figure 4: Comparison of the mean per-patient extent of macular ring present for patients with differ
variants (i.e. patients with at least one copy of the given variant) in ABCA4. Axes are truncated to exclude 99th perce
outliers. Most variants of ABCA4 are not associated with a macular ring of raised AF, apart from p.(Gly1961Glu) whi
see reflected in the different distributions of ring area in our data. 
 

 
 

Supplementary Figure 5: hypo-AF area within 1.5mm of the fovea compared to LogMAR best corrected 
visual acuity (BCVA) where higher values corresponds to poorer acuity. Axes rescaled to 90th pct of data 
legibility. Each circle represents a single patient with mean value across images. Least-squares regressio
in red (β=0.083, p<0.001). Mean values for select genes are indicated by red crosses. Comparing hypo-A

 
ferent 
rcentile 
hich we 

d 
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ion line 
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area within 1.5mm of the fovea and LogMAR best corrected visual acuity (BCVA) showed a positive statistical 
association (β=0.083, p<0.001). However, some genes demonstrated a different relationship from the main 
trend. For example, in ABCA4 a worse BCVA was observed than might be expected from hypo-AF coverage, 
likely because ABCA4-associated retinopathy usually initially affects the fovea/central macula. By contrast, 
CHM typically exhibits a spared foveal island despite having significant areas of atrophy, thus accounting for 
the relatively preserved BCVA. 
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Supplementary Figure 6: Example showing how vessel tree segmentation improves cross-modality image registration. 
First row shows the individual and overlaid images, and second rows shows corresponding segmented vessel masks. For 
the overlaid images, the IR image is rendered in red, while the FAF image is rendered in green, enabling overlap to be 
assessed by looking at the correspondence between the two-colour channels. Vessel trees were extracted using 
AIRDetect for both the IR and the FAF image. Results of automatic registration directly on the raw images (scans column) 
and registration on the vessel trees (vessels column) are shown. In both cases this registration was performed using the 
SimpleElastix package. As shown by the final column, registering using vessel trees results in better overlap than 
registering using images alone.   
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Supplementary Figure 7: 55-degree FAF image with 0.5mm, 1.5mm, and 3mm radial distances shown (correspond
to 1mm, 3mm, and 6mm diameter ETDRS regions), and scale bar with 1mm gradations.  
 
 
 
 

 

nding 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.03.24.24304809doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.24.24304809


 30

Supplementary Figure 8: Distributions of best corrected visual acuity (in LogMar) with respect to 36 genes 
sorted by the median of the visual acuity distribution per gene. Low vision is defined as a best-corrected visual 
acuity worse than 0.5 LogMAR but equal or better than 1.3 LogMAR in the better eye. Blindness is defined as 
a best-corrected visual acuity worse than 1.3 LogMAR. Also represented are Logmar of 1.98 (Counting 
Fingers), 2.28 (Hand Movement) and 2.7 (Light Perception). 
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