1	
2	
3	
4	Evaluating soluble Axl as a biomarker for glioblastoma: a pilot study
5	
6	
7 8	Daniel Raymond ¹ ¶, Melanie B. Fukui ^{2,#a} , Samuel Zwernik ^{3,#b} , Amin Kassam ^{2,#a} , Richard A. Rovin ² ¶*, Parvez Akhtar ³ ¶
9	
10	
11	
12 13	¹ Department of Biology, Northern Michigan University, Marquette, Michigan, United States of America
14	² Aurora Neuroscience Innovation Institute, Milwaukee, Wisconsin, United States of America
15	³ Advocate Aurora Research Institute, Milwaukee, Wisconsin, United States of America
16 17	^{#a} Current Address: Department of Neurosciences, Northwest Community Hospital, Arlington Heights, Illinois, United States of America
18 19	^{#b} Current Address: Department of Surgery, Henry Ford Health System, Detroit, Michigan, United States of America
20	
21	*Corresponding author
22	e-mail: richard.rovin@aah.org (RAR)
23	
24	These authors contributed equally to this work.
25	
26	
27	
28	
29	
30	

31 Abstract

32	With current imaging, discriminating tumor progression from treatment effect following
33	immunotherapy or oncolytic virotherapy of glioblastoma (GBM) is challenging. A blood based
34	diagnostic biomarker would therefore be helpful. Axl is a receptor tyrosine kinase that is highly
35	expressed by many cancers including GBM. Axl expression is regulated through enzymatic cleavage
36	of its extracellular domain. The resulting fragment can be detected in serum as soluble Axl (sAxl).
37	sAxl levels can distinguish patients with melanoma, hepatocellular carcinoma, and pancreatic ductal
38	adenocarcinoma from healthy controls. This is a pilot study to determine if sAxl is a candidate
39	biomarker for GBM. The sAxl levels in the serum of 40 healthy volunteers and 20 GBM patients
40	were determined using an enzyme-linked immunosorbent assay (ELISA). Pre- and post- operative
41	sAxl levels were obtained. Volumetric MRI evaluation provided GBM tumor volume metrics. There
42	was no significant difference in the sAxl levels of the volunteers (30.16 ± 1.88 ng/ml) and GBM
43	patients (30.74 ± 1.96 ng/ml) p=0.27. The postoperative sAxl levels were significantly higher than
44	preoperative levels (32.32 ± 2.26 ng/ml vs 30.74 ± 1.96 ng/ml, p=0.03). We found no correlation
45	between tumor volume and sAxl levels. Axl expression was low or absent in 6 of 11 (55%) patient
46	derived GBM cell lines. Given the wide range of Axl expression by GBM tumors, sAxl may not be a
47	reliable indicator of GBM. However, given the small sample size in this study, a larger study may be
48	considered.

49 Introduction

50 Since 1977, interval imaging to monitor a brain tumor's response to treatment has been

- 51 standard of care.[1] However, distinguishing true progression from treatment effect
- 52 (pseudoprogression) is challenging, particularly so with the advent of immunotherapy and oncolytic

53	virotherapy.[2] A circulating biomarker that reflects the biological activity of the tumor would be
54	useful. While available for breast cancer[3], lung cancer[4], melanoma[5], prostate cancer[6], and
55	colorectal cancer[7], a circulating biomarker to monitor the course of gliomas remains elusive.
56	In earlier work, we found that patient derived glioblastoma (GBM) cell lines are susceptible
57	to productive Zika virus infection especially when Axl is overexpressed.[8] Axl is a member of the
58	TAM family of receptor tyrosine kinases (RTKs) along with Tyro3 and Mer. Like other RTKs, Axl
59	has an extracellular domain for ligand binding, a transmembrane domain, and an intracellular
60	domain. When stimulated through its ligand, growth-arrest specific factor 6 (Gas6), Axl activates
61	myriad intracellular signaling pathways that contribute to the cancer phenotype, including: epithelial-
62	mesenchymal transition, survival, proliferation, angiogenesis, chemotherapy resistance, and immune
63	suppression.[9,10] (Fig 1, right)
64	Fig 1, right. Axl signaling pathways and post-translational cleavage. Axl is a transmembrane
64	Fig 1, right. Axl signaling pathways and post-translational cleavage. Axl is a transmembrane
64 65	Fig 1, right. Axl signaling pathways and post-translational cleavage. Axl is a transmembrane receptor tyrosine kinase. Gas-6 ligand binding leads to dimerization and activation of cellular
64 65 66	Fig 1, right. Axl signaling pathways and post-translational cleavage. Axl is a transmembrane receptor tyrosine kinase. Gas-6 ligand binding leads to dimerization and activation of cellular pathways including: epithelial-mesenchymal transition, survival, proliferation, angiogenesis,
64 65 66 67	Fig 1, right. Axl signaling pathways and post-translational cleavage. Axl is a transmembrane receptor tyrosine kinase. Gas-6 ligand binding leads to dimerization and activation of cellular pathways including: epithelial-mesenchymal transition, survival, proliferation, angiogenesis, chemotherapy resistance, and immune suppression.
64 65 66 67 68	Fig 1, right. Axl signaling pathways and post-translational cleavage. Axl is a transmembrane receptor tyrosine kinase. Gas-6 ligand binding leads to dimerization and activation of cellular pathways including: epithelial-mesenchymal transition, survival, proliferation, angiogenesis, chemotherapy resistance, and immune suppression. Soluble Axl (sAxl) is the byproduct of regulation of Axl expression through post-
64 65 66 67 68 69	Fig 1, right. Axl signaling pathways and post-translational cleavage. Axl is a transmembrane receptor tyrosine kinase. Gas-6 ligand binding leads to dimerization and activation of cellular pathways including: epithelial-mesenchymal transition, survival, proliferation, angiogenesis, chemotherapy resistance, and immune suppression. Soluble Axl (sAxl) is the byproduct of regulation of Axl expression through post-translational deactivation by enzymatic cleavage. The sheddases ADAM10 and ADAM17 cleave the
64 65 67 68 69 70	Fig 1, right. Axl signaling pathways and post-translational cleavage. Axl is a transmembrane receptor tyrosine kinase. Gas-6 ligand binding leads to dimerization and activation of cellular pathways including: epithelial-mesenchymal transition, survival, proliferation, angiogenesis, chemotherapy resistance, and immune suppression. Soluble Axl (sAxl) is the byproduct of regulation of Axl expression through post-translational deactivation by enzymatic cleavage. The sheddases ADAM10 and ADAM17 cleave the extracellular domain of Axl, and this product can be identified in the bloodstream as sAxl.[9] (Fig 1,

74	Fig 1, left. Axl signaling pathways and post-translational cleavage. One mechanism to regulate
75	Axl expression is cleavage of the extracellular domain by the sheddases ADAM10 and ADAM17.
76	The cleavage product makes its way into the bloodstream as soluble Axl (sAxl).
77	Given that Axl is also overexpressed in GBM[14], we hypothesized that serum sAxl levels
78	should be elevated and could serve as a biomarker as it does in other solid tumors. Therefore, we
79	designed this pilot study to determine if circulating sAxl levels are elevated in patients with GBM
80	compared to healthy controls and to determine if there is a relationship between tumor volume and
81	sAxl levels.

82 Materials and Methods

83 This study was approved by the Northern Michigan University Institutional Review Board
84 #HS19-1033 and the Aurora St Luke's Institutional Review Board #14-79. Participants signed a
85 written informed consent document before enrolling in this study.

86 Study Design

87 This is a clinico-pathological correlation study using biospecimens (blood and tumor tissue)
88 collected per an existing Aurora St Luke's Medical Center biorepository protocol (Prospective
89 Biospecimen Collection, Storage, and Distribution).

90 Study Populations

91 Control cohort. Volunteers without pre-existing medical conditions were eligible to

92 participate. The control group included students and faculty at Northern Michigan University,

93 Marquette, Michigan. Student volunteers were recruited from the CLS 100 Phlebotomy course.

94	Their blood draws for soluble Axl analysis were part of their standard course work. Blood collection
95	for the control cohort took place between April 8 th and May 6 th , 1019.
96	Glioblastoma patients. Patients with preoperative imaging consistent with GBM were eligible
97	to participate in this study. Patients underwent medically indicated surgery at Aurora St Luke's
98	Medical Center, Milwaukee, Wisconsin. Blood was collected before and after surgery and did not
99	necessitate additional venipuncture. Blood collection for the GBM cohort took place between April

- 100 1st, 2018 and October 31st, 2018.
- 101 Patient derived cell lines. The patient derived GBM cell lines used to determine Axl
- 102 expression and sAxl levels in cell culture supernatant were previously established. They are not
- 103 derived from patients participating in the current study.

104 Serum collection

The blood collection tubes were labeled with a randomly generated ID number. The samples
were deidentified except for age, biological sex, cohort, and, for the GBM cohort, the time period
(pre- or post- operative) of the blood draw.

Serum was separated from whole blood samples using gold-top serum separator tubes,
which were then centrifuged at 1000 rpm for 5-10 minutes. Serum was aliquoted and stored at -80°
C.

111 Enzyme-linked immunosorbent assay for sAxl concentration

Serum sAxl and cell culture supernatant sAxl concentrations were determined by enzyme
linked immunosorbent assay (ELISA) using the commercially available human Axl DuoSet ELISA
kit (R&D Biosystems, Minneapolis, MN) with previously reported optimizations.[15] The 96-well

115	ELISA plates were read in a multi-mode microplate reader (BioTek Synergy H1, Agilent
116	Technologies, Santa Clara, CA). The optical density was measured at 450nm and 540nm. For
117	wavelength correction, the 540nm measurement was subtracted from the corresponding 450nm
118	value. After adjusting for background by normalizing against blank wells, a four-parameter
119	logarithmic curve-fit was generated in GraphPad Prism. A standard curve using known sAxl
120	standards was generated and used to interpolate the sAxl concentration of the samples. For each
121	plate, standards were applied in duplicate, and samples were applied in triplicate. The assay was
122	repeated either the same day using a duplicate 96-well plate on a separate day.

123 MRI volumetric tumor analysis

MRI scans were analyzed by a board certified neuroradiologist (M.B.F.) using BrightMatter Plan software (Synaptive Medical, Toronto, Canada). From gadolinium enhanced T-1 weighted images, a 3D model of the tumor was generated. From the pre-operative scans, total tumor volume, volume of enhancing tumor, and volume of necrotic tumor were determined. The ratios of enhancing tumor volume to total tumor volume, necrotic tumor volume to total tumor volume, and necrotic tumor volume to enhancing tumor volume were calculated.

130

131 Cell lines and cultures

Previously established and characterized patient derived glioblastoma stem cell lines were
maintained in NeuroCult NS-A basal medium (Stemcell Technologies), supplemented with B-27
without vitamin A, N-2, GlutaMAX and Pen/Strep (Thermo Fisher Scientific), BSA and heparin
(Sigma-Aldrich), human recombinant bFGF and EGF (20 ng/ml each; PeproTech Inc.). All cell
lines were routinely tested for mycoplasma contamination by using MycoAlert Detection Kit (Lonza
Inc.).

138

139 Western blotting

140	Patient derived GBM stem cells were collected and lysed in RIPA buffer with complete
141	protease inhibitor cocktail (Roche). Lysates were resolved by 4-12% SDS/PAGE and
142	electrotransferred to nitrocellulose iBlot 2 Transfer Stacks (Life Technologies, IB23002).
143	Membranes were blocked with 5% nonfat dry milk in 1x TBS and incubated overnight at 4°C with
144	anti-AXL primary antibody (1: 1000 dilution, R&D Systems, AF154) or β-actin antibody (Sigma,
145	A2066), and subsequently incubated for 1 hour at room temperature with HRP-coupled secondary
146	antibody. All membranes were scanned using the Odyssey infrared imaging system (LI-COR
147	Biosciences) in conjunction with the Clarity Western ECL Substrate (Bio-Rad).
148	
149	RNA extraction and qRT-PCR
149 150	RNA extraction and qRT-PCR Total RNA was extracted from patient derived GBM stem cells using the RNeasy Mini Kit
150	Total RNA was extracted from patient derived GBM stem cells using the RNeasy Mini Kit
150 151	Total RNA was extracted from patient derived GBM stem cells using the RNeasy Mini Kit (Qiagen). Isolated RNAs (1 µg total RNA) were then digested with 1 unit of DNase I (NEB) at
150 151 152	Total RNA was extracted from patient derived GBM stem cells using the RNeasy Mini Kit (Qiagen). Isolated RNAs (1 µg total RNA) were then digested with 1 unit of DNase I (NEB) at 37°C for 25 min to remove genomic DNA contamination before being processed for reverse
150 151 152 153	Total RNA was extracted from patient derived GBM stem cells using the RNeasy Mini Kit (Qiagen). Isolated RNAs (1 µg total RNA) were then digested with 1 unit of DNase I (NEB) at 37°C for 25 min to remove genomic DNA contamination before being processed for reverse transcription. Quantitative real time polymerase chain reaction (qRT-PCR) was performed using
150 151 152 153 154	Total RNA was extracted from patient derived GBM stem cells using the RNeasy Mini Kit (Qiagen). Isolated RNAs (1 µg total RNA) were then digested with 1 unit of DNase I (NEB) at 37°C for 25 min to remove genomic DNA contamination before being processed for reverse transcription. Quantitative real time polymerase chain reaction (qRT-PCR) was performed using iTaq Universal SYBR Green One-Step Kit (Bio-Rad, 1725151) according to the manufacturer's

158 GGATTTGGTCGTATTGGG -3'; Reverse primer 5'- GGAAGATGGTGATGGGATT -3'.

159 Relative expression quantification was performed based on the comparative CT Method $(2^{-\Delta\Delta Ct})$,

160 using GAPDH as an endogenous reference control.

Statistical analysis 161

162	Data from ELISAs were interpreted using a four-parameter logarithmic curve in GraphPad
163	Prism version 10.1.0 (GraphPad Software, San Diego, CA). Determination of statistically significant
164	variation between the two groups was performed using a two-tailed, unpaired student's t-test. For
165	datasets with three or more groups were analyzed using one-way ANOVA with Dunnett's post-hoc
166	multiple comparisons test. Graphical representation of datasets was performed in GraphPad with
167	error bars representing either 95% confidence intervals or mean \pm SEM. Graphical representation of
168	datasets was also performed using Stata version 15 (StataCorp, College Station, TX).

Results 169

Baseline sAxl levels in the control and GBM populations 170

171 There were 40 volunteers in the control group and 20 patients in the GBM group. The sAxl 172 level for the healthy controls of 30.16 ± 1.88 ng/ml (mean \pm SD) and the preoperative sAxl level in 173 the GBM cohort of 30.74 ± 1.96 ng/ml were not significantly different, p=0.27. (Table 1)

174 Table 1. Characteristics of the healthy control and glioblastoma (GBM) cohorts.

	Control (N=40)	GBM (N=20)	p value
Age (years)	30.7±16.7	64.2±10.8	=0.000
Female	27 (67.5%)	8 (40%)	
sAxl (ng/ml)	30.16±1.88	30.74±1.96	=0.27

175 sAxl: soluble Axl

sAxl levels in response to surgery 176

177 There were 19 GBM patients with matched pre- and post- operative sAxl levels. We found

178 that the post-operative sAxl level $(32.32\pm2.26 \text{ ng/ml})$ was significantly higher than the pre-operative sAxl level (30.74±1.96 ng/ml), p=0.03. In 11 (58%) patients, the preoperative sAxl level was greater
than the postoperative level. (Fig 2)

Fig 2. The relationship between pre- and post-operative soluble Axl levels. The blue closed
circles represent patients with postoperative sAxl levels lower than their preoperative levels. The red
open circles represent patients with postoperative sAxl levels higher than preoperative. The diagonal
line denotes pre- and post-operative sAxl equality.

185 Correlation between preoperative tumor volume and sAxl levels

186 Nineteen patients had matched preoperative tumor volumes and sAxl levels. There was no
187 correlation between total, enhancing, and necrotic tumor volumes and sAxl level. Nor was there a
188 correlation between necrotic to enhancing, necrotic to total, or enhancing to total volume ratios and
189 sAxl levels. (Fig 3)

Fig 3. The relationship between tumor volume metrics and soluble Axl levels. Multiple scatter plots visualize the lack of correlation between tumor volume metrics and sAxl levels. The total tumor volume, necrotic tumor volume, and enhancing tumor volume were determined through volumetric analysis of preoperative MRI scans. The ratios of necrotic to total volume, enhancing to total volume, and necrotic to enhancing volume were then calculated.

195 Axl expression and sAxl levels in patient derived glioblastoma cell

196 lines

197 Tumor Axl expression from the GBM patients participating in this study was not determined.
198 Therefore, to get a sense of Axl expression and sAxl levels in GBM, we performed Western blot (Fig
199 4A) and qRT-PCR (Fig 4B) using our previously established GBM cell lines. We also determined sAxl

- 200 levels in the cell culture supernatants using ELISA. No or low Axl expression was seen in 55% of cell
- 201 lines by Western blot and 33% of cell lines by qRT-PCR. The sAxl levels in the supernatants were not
- **202** detected or low in 40% of cell lines. (Table 2)
- 203 Fig 4. The expression of Axl and soluble Axl in patient derived glioblastoma cell lines. (A) Axl
- 204 protein expression as determined by Western blot. (B) Axl mRNA expression as determined by qRT-
- **205** PCR.

206 Table 2. Axl expression and sAxl levels in patient derived glioblastoma cell lines.

Cell Line	Western Blot	qRT-PCR	sAxl (ng/ml)
7978	No		0
7715	No		
7997	No	No	0
7753	No	Low	0
7903	Low		
8034	Low	High	0.71
7754	Med	Low	4.73
7714		Med	3.24
7730	Med	Med	5.89
8049	Med	High	1.92
8035	High	High	7.73
7759	High	High	3.17

²⁰⁷ This is a tabular summary of the Axl expression data from Fig 4 with the addition of sAxl levels in

210

211 Discussion

212 Soluble Axl (sAxl) has emerged as a promising biomarker for the early detection, diagnosis,

- and monitoring of various cancers[10], including pancreatic ductal adenocarcinoma[12],
- 214 hepatocellular carcinoma[11,15], and melanoma[13]. We hypothesized that given the increased
- 215 expression of Axl in GBM[14], circulating sAxl levels would correspondingly be elevated. We

²⁰⁸ the cell culture supernatants as determined by ELISA.

²⁰⁹ Western Blot and qRT-PCR expression were qualitatively categorized as No, Low, <u>Medium</u>, or High

- 216 designed this pilot study to determine if sAxl levels were elevated in patients with GBM and if levels
- 217 correlated with tumor burden. Though the sAxl levels in our GBM cohort were comparable to levels
- 218 reported in the literature for other cancers, we did not find a difference in sAxl levels between
- 219 healthy controls and GBM patients. (Table 3) Nor did we find a correlation between sAxl levels and
- tumor volume.

Cohort	Number	sAXL (ng/ml)	p value	Reference
Pancreas				Martinez-Bosch, et al 10.1016/j.
Hmar cohort		Median, IQR		ebiom.2021.103797
Normal	7	39.45, 13.03	0.002	
Chr Pancreatitis	21	44.82, 21.75	0.003	
PDAC	31	59.78, 25.38	ref	
HClinic cohort		Median, IQR		
Normal	46	40.03, 14.13	< 0.0001	
Chr Pancreatitis	16	36.34, 11.05	< 0.0001	
PDAC	80	52.66, 30.08	ref	
Liver Cancer		Median		Fu, et al
НСС	190	33.55	< 0.05	10.14218/JCTH.2022.00285
Cirrhosis	128	29.98		
Hepatitis	75	20.82		
Healthy Control	82	11.39		
Melanoma		Mean, 95% CI		Flem-Karlsen, et al
Stage III	160	26.6, 24.3-28.9	< 0.0001	10.1371/journal. pone.0227187
Stage IV	50	54.1, 50.7-57.6		
GBM		Mean ± SD		Current Study
Patient	20	30.74±1.96	0.27	
Healthy Control	40	30.16±1.88		

221 Table 3. Serum levels of soluble Axl in several cancers.

- 222 The serum levels of soluble Axl from patients in the current study (glioblastoma and healthy control
- 223 cohorts) are compared to those reported for patients with cirrhosis, hepatocellular carcinoma
- 224 (HCC), chronic pancreatitis (Chr Pancreatitis), pancreatic ductal adenocarcinoma (PDAC), and
- 225 melanoma. The literature references are provided.
- As noted in Table 2 above, we found a range of Axl expression in our established GBM cell
- 227 lines, including no or low Axl expression in just over half of the specimens by Western blot.

228	Moreover, cell lines with no or low Axl expression had no or low sAxl in the cell culture				
229	supernatant. A close review of Figure 1A from the Hutterer et al., paper showed 16 of 30 GBM				
230	samples had no or low Axl mRNA expression.[14]				
231	The regulation of Axl expression is complex and involves transcriptional, post-				
232	transcriptional, and post-translational pathways.[10] The post-translational cleavage of the Axl				
233	extracellular domain by ADAM10 and ADAM17 creates the soluble Axl fragments.[9,16] It is				
234	possible, then, that in our small cohort, no or low Axl expressing GBMs were over represented,				
235	lowering the mean sAxl level.				
236	We further hypothesized that sAxl levels would decline following cytoreduction.				
237	Unexpectedly, we found postoperative sAxl levels were significantly higher than preoperative. The				
238	reason for this is unclear.				
239	In the hope of using sAxl as a proxy for tumor burden[17], we determined total tumor				
240	volume, volume of enhancing (and presumably viable) tumor, and volume of necrotic tumor. We				
241	found no correlation between these tumor metrics and sAxl levels.				
242	Though our findings that sAxl levels in GBM do not discriminate healthy controls from				
243	patients with tumor and do not reflect tumor burden are different from findings in other cancers,				
244	they are not unique. Gustafsson et al., found that sAxl levels in patients with renal cell carcinoma				
245	(RCC) were lower than in healthy controls, did not correlate with tumor Axl expression, nor tumor				
246	size.[18] This suggests that tumor type and its microenvironment impact Axl regulation and sAxl				
247	production.				
248					

249 Conclusion

250	While this study does not support sAxl as a biomarker for GBM, it is not fair to make a
251	definitive statement given our small sample size. As identifying a GBM biomarker for detection,
252	monitoring, and prognostication, is important, a larger study can be considered.
253	

254 Acknowledgements

255 The authors thank the Aurora St Luke's BSRC department for biospecimen management256 and deidentification of MRI scans.

257 **References**

Levin VA, Crafts DC, Norman DM, Hoffer PB, Spire JP, Wilson CB. Criteria for evaluating
 patients undergoing chemotherapy for malignant brain tumors. J Neurosurg. 1977
 Sep;47(3):329–35.

261 2. Wen PY, van den Bent M, Youssef G, Cloughesy TF, Ellingson BM, Weller M, et al. RANO

262 2.0: Update to the Response Assessment in Neuro-Oncology Criteria for High- and Low-

263 Grade Gliomas in Adults. J Clin Oncol. 2023;41(33):5187–99.

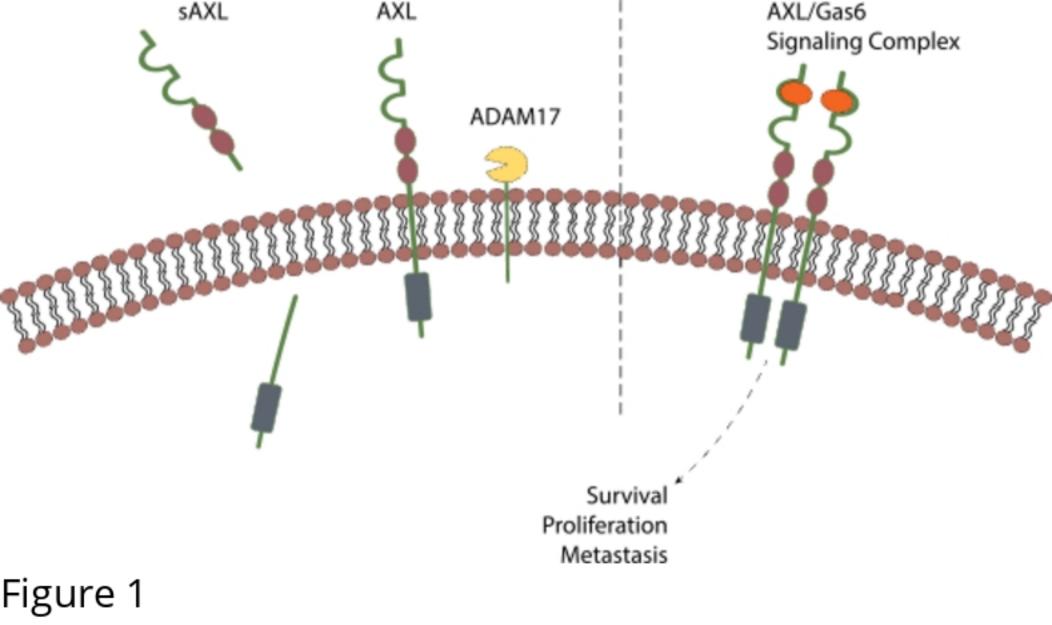
264 3. Dawson S-J, Tsui DWY, Murtaza M, Biggs H, Rueda OM, Chin S-F, et al. Analysis of

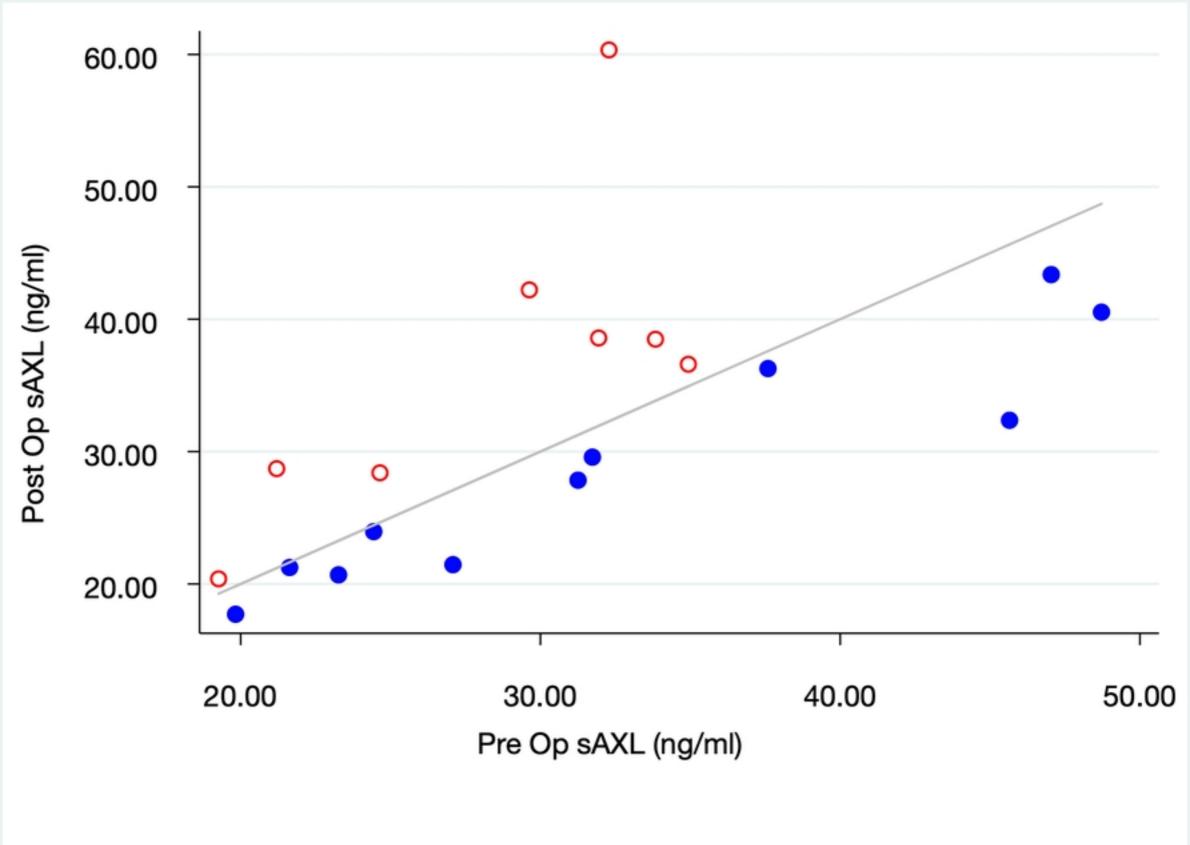
circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013

266 Mar;368(13):1199–209.

267 4. Oxnard GR, Paweletz CP, Kuang Y, Mach SL, O'Connell A, Messineo MM, et al.

268 Noninvasive detection of response and resistance in EGFR-mutant lung cancer using


269 quantitative next-generation genotyping of cell-free plasma DNA. Clin cancer Res an Off J


270 Am Assoc Cancer Res. 2014 Mar;20(6):1698–705.

271	5.	Tsao SC-H, Weiss J, Hudson C, Christophi C, Cebon J, Behren A, et al. Monitoring response
272		to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for
273		BRAF and NRAS mutations. Sci Rep. 2015 Jun;5:11198.
274	6.	Hennessey DB, Lynn C, Templeton H, Chambers K, Mulholland C. The PSA tracker: a
275		computerised health care system initiative in Northern Ireland. Ulster Med J. 2013
276		Sep;82(3):146–9.
277	7.	Campos-da-Paz M, Dórea JG, Galdino AS, Lacava ZGM, de Fatima Menezes Almeida
278		Santos M. Carcinoembryonic Antigen (CEA) and Hepatic Metastasis in Colorectal Cancer:
279		Update on Biomarker for Clinical and Biotechnological Approaches. Recent Pat Biotechnol.
280		2018;12(4):269–79.
281	8.	Zwernik SD, Adams BH, Raymond DA, Warner CM, Kassam AB, Rovin RA, et al. AXL
282		receptor is required for Zika virus strain MR-766 infection in human glioblastoma cell lines.
283		Mol Ther oncolytics. 2021 Dec;23:447–57.
284	9.	Miller MA, Sullivan RJ, Lauffenburger DA. Molecular pathways: Receptor ectodomain
285		shedding in treatment, resistance, and monitoring of cancer. Clin Cancer Res.
286		2017;23(3):623–9.
287	10.	Tang Y, Zang H, Wen Q, Fan S. AXL in cancer: a modulator of drug resistance and
288		therapeutic target. J Exp Clin Cancer Res [Internet]. 2023;42(1):1-14. Available from:
289		https://doi.org/10.1186/s13046-023-02726-w
290	11.	Fu CX, Li J, Chen Z Da, Cao YP, Zhang HL, Sui HT, et al. Diagnostic Efficacy and Possible
291		Underlying Mechanisms of Noninvasive Clinical Markers in Hepatocellular Carcinoma. J Clin
292		Transl Hepatol [Internet]. 2023;11(4):889–98. Available from:

293 https://www.doi.org/10.14218/JCTH.2022.00285

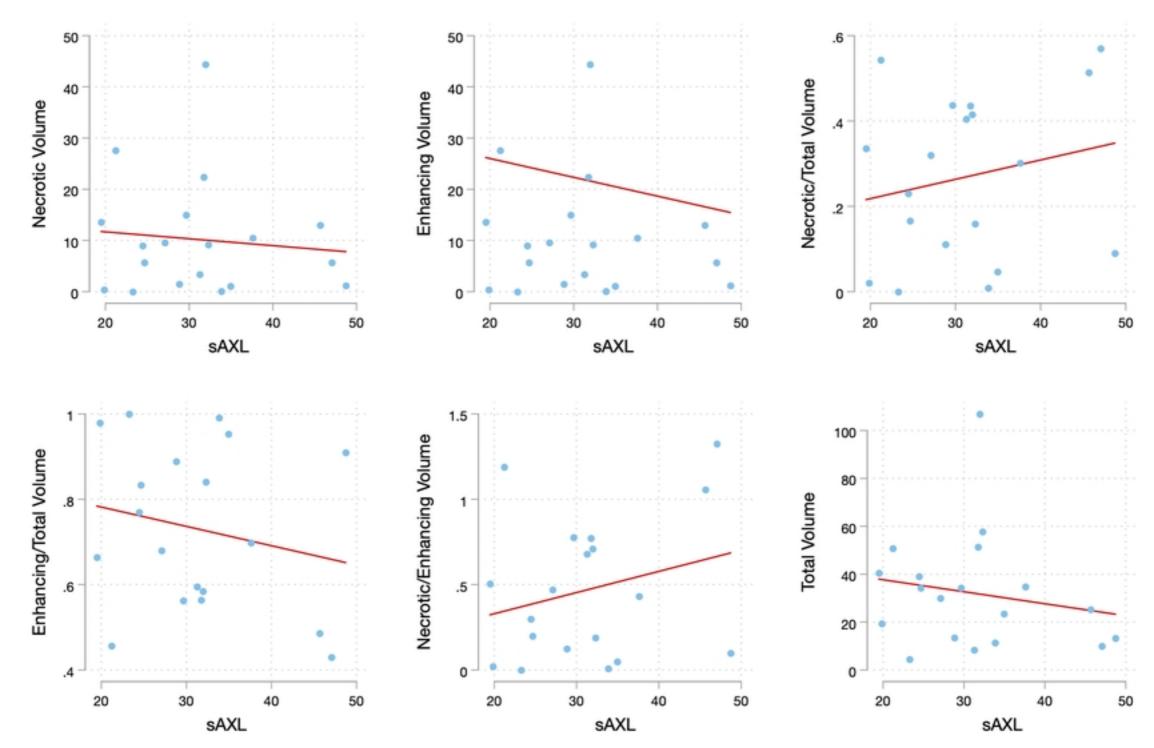

294	12.	Martínez-Bosch N, Cristóbal H, Iglesias M, Gironella M, Barranco L, Visa L, et al. Soluble
295		AXL is a novel blood marker for early detection of pancreatic ductal adenocarcinoma and
296		differential diagnosis from chronic pancreatitis. eBioMedicine. 2022;75.
297	13.	Flem-Karlsen K, Nyakas M, Farstad IN, McFadden E, Wernhoff P, Jacobsen KD, et al.
298		Soluble AXL as a marker of disease progression and survival in melanoma. PLoS One.
299		2020;15(1):1–17.
300	14.	Hutterer M, Knyazev P, Abate A, Reschke M, Maier H, Stefanova N, et al. Axl and growth
301		arrest-specific gene 6 are frequently overexpressed in human gliomas and predict poor
302		prognosis in patients with glioblastoma multiforme. Clin Cancer Res. 2008;14(1):130-8.
303	15.	Dengler M, Staufer K, Huber H, Stauber R, Weiss KH, Starlinger P, et al. Soluble Axl is an
304		accurate biomarker of cirrhosis and hepatocellular carcinoma development : results from a
305		large scale multicenter analysis. 2017;8(28):46234–48.
306	16.	Miller MA, Oudin MJ, Sullivan RJ, Wang SJ, Meyer AS, Im H, et al. Reduced proteolytic
307		shedding of receptor tyrosine kinases is a post-translational mechanism of kinase inhibitor
308		resistance. Cancer Discov. 2016;6(4):383–99.
309	17.	Johansson G, Peng PC, Huang PY, Chien HF, Hua KT, Kuo ML, et al. Soluble AXL: a
310		possible circulating biomarker for neurofibromatosis type 1 related tumor burden. PLoS One.
311		2014;9(12):e115916.
312	18.	Gustafsson A, Martuszewska D, Johansson M, Ekman C, Hafizi S, Ljungberg B, et al.
313		Differential expression of Axl and Gas6 in renal cell carcinoma reflecting tumor advancement
314		and survival. Clin Cancer Res. 2009;15(14):4742–9.

Figure 2

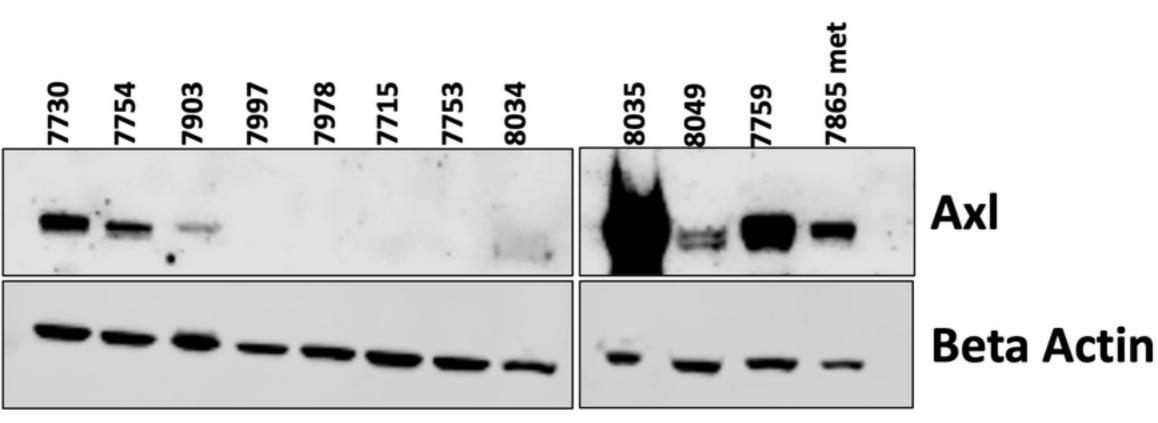


Figure 4A

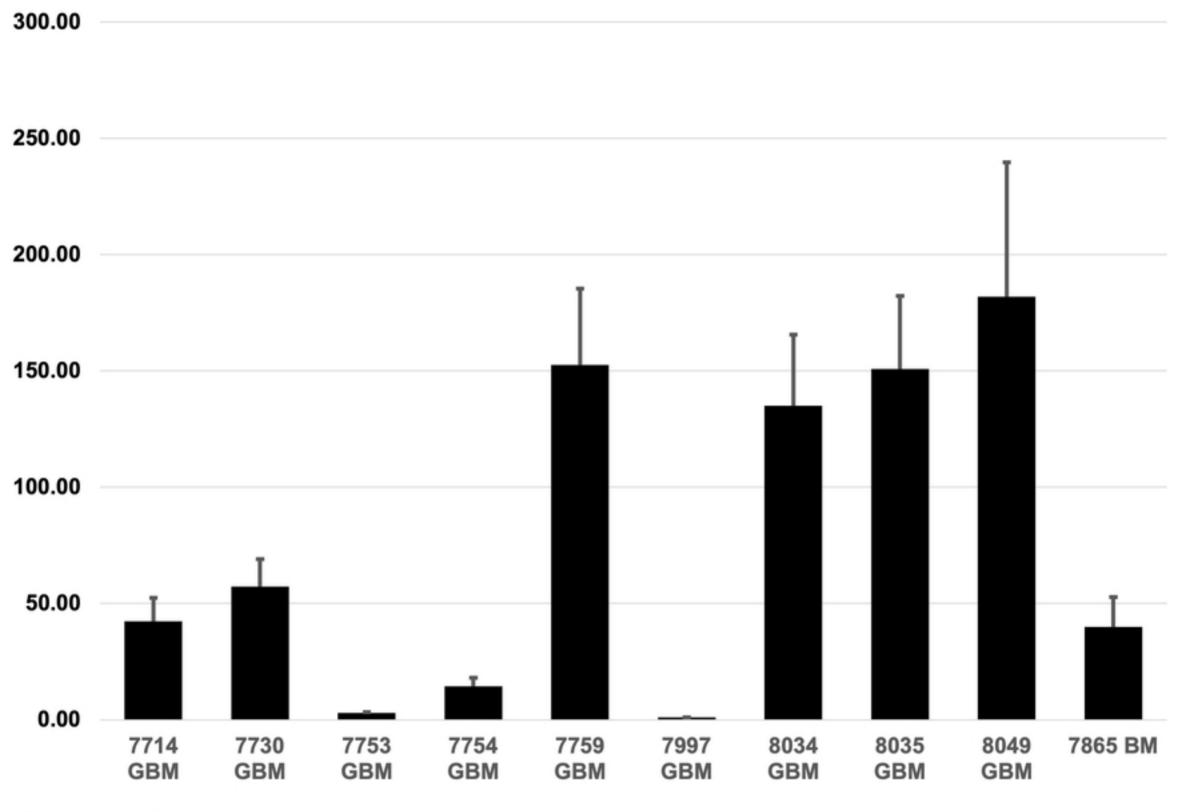


Figure 4B