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1 Abstract

2

3 Objectives: Cough dysfunction is a feature of patients with amyotrophic lateral sclerosis (ALS). The 

4 cough sounds carry information about the respiratory system and bulbar involvement. Our goal was to 

5 explore the association between cough sound characteristics and the respiratory and bulbar functions 

6 in ALS. 

7 Methods: This was a single-center, cross-sectional, and case-control study. On-demand coughs from 

8 ALS patients and healthy controls were collected with a smartphone. A total of 31 sound features were 

9 extracted for each cough recording using time-frequency signal processing analysis. Logistic regression 

10 was applied to test the differences between patients and controls, and in patients with bulbar and 

11 respiratory impairment. Support vector machines (SVM) were employed to estimate the accuracy of 

12 classifying between patients and controls and between patients with bulbar and respiratory 

13 impairment. Multiple linear regressions were applied to examine correlations between cough sound 

14 features and clinical variables. 

15 Results: Sixty ALS patients (28 with bulbar dysfunction, and 25 with respiratory dysfunction) and forty 

16 age- and gender-matched controls were recruited. Our results revealed clear differences between 

17 patients and controls, particularly within the frequency-related group of features (AUC 0.85, CI 0.79-

18 0.91). Similar results were observed when comparing patients with and without bulbar dysfunction; 

19 and with and without respiratory dysfunction. Sound features related to intensity displayed the 

20 strongest correlation with disease severity. 

21 Discussion: We found a good relationship between specific cough sound features and clinical variables 

22 related to ALS functional disability. The findings relate well with some expected impact from ALS on 

23 both respiratory and bulbar contributions to the physiology of cough. Finally, our approach could be 

24 relevant for clinical practice, and it also facilitates home-based data collection.

25
26
27
28
29
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1 1. Introduction

2

3 Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease 

4 characterized by the loss of both upper and lower motor neurons (1). The consequent motor 

5 dysfunction leads to symptoms affecting limbs, bulbar and respiratory muscles – and eventual 

6 death by respiratory insufficiency or infection (2). In general, the disease is characterized by 

7 significant variability in onset region, as well as in the pattern and rate of progression (3–7).

8 The majority of cases show either a spinal phenotype or a bulbar variant, but some 

9 patients present initial trunk or respiratory involvement (5,8,9). However, an early respiratory 

10 and bulbar impairment are associated with poor quality of life, malnutrition, and early mortality 

11 (10,11). Non-invasive pulmonary function tests, in particular forced vital capacity (FVC), has long 

12 been used for respiratory assessment and monitoring. However, they require cooperative 

13 patients, good lips strength, and repeated testing to ensure consistency of measurements (12). On 

14 the other hand, an established and comprehensive clinical scale to objectively monitor bulbar 

15 disease and respiratory progression in ALS has yet to be achieved (13). 

16 During the last few years, objective evaluation of cough sounds, in particular evaluating 

17 its quantitative characteristics in terms of sound frequency or intensity, has gained popularity for 

18 detecting and distinguishing different respiratory dysfunctions (12,14–18). The increasing 

19 evidence concerning the objective evaluation of cough is also grounded by the physiological 

20 mechanisms of coughing which require considerable coordination and timing of breathing, thus 

21 being sensitive to abnormalities in the respiratory system (19,20). Physiologically, cough involves 

22 a deep inspiration, followed by vigorous contraction of the expiratory muscles (in particular the 

23 abdominal muscles) against a closed glottis. When a certain subglottic pressure is reached, the 

24 glottis opens, producing one initial supramaximal expiratory airflow followed by a longer-lasting 

25 lower expiratory flow, generating the cough sound at the same time. Importantly, such 

26 physiological mechanisms for a normal cough also rely on a normal bulbar function, being 
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27 especially relevant for the glottis and intrinsic laryngeal muscles’ performance. The latter muscles 

28 are the ones responsible for the dimensions of the glottis rhyme (i.e., the tension regulation of the 

29 vocal ligaments) and changes in laryngeal opening and closing – which are key properties of the 

30 cough sound. In more advanced ALS, cough is generally weak and absent (21,22); this causes 

31 inability to clear secretions, eases choking and impairs protection of the respiratory system – 

32 often leading to aspiration pneumonia. Recent progress has been made to take advantage of 

33 sensors to monitor the functional state of ALS patients, including for home-based assessments 

34 (23–26). Stegmann et al. (27) used a mobile application (app) installed on the patient’s mobile 

35 device to record speech acoustics and to predict their forced vital capacity (FVC). Furthermore, 

36 Vashkevich et al. (28) proposed an approach to voice assessment for automatic systems to 

37 differentiate healthy individuals from ALS patients (based on sustained phonation of the vowels 

38 /a/ and /i/). They used a wide range of acoustic features to achieve high accuracy in this 

39 classification. A feasibility study utilizing cough sound to differentiate between healthy 

40 individuals and those with ALS was recently conducted by Cebola et al. (29). The study endorsed 

41 the viability of using coughs for remote monitoring; however, the sample size was limited and not 

42 gender-matched. Despite previous efforts focused on studying speech and cough acoustics, very 

43 few studies have comprehensively explored the potential of cough sound analysis in ALS.

44 In this study, we hypothesize that cough sound features obtained by a smartphone and 

45 using time- and frequency-domain analysis, could inform about bulbar and respiratory 

46 impairments in ALS patients. Thus, the present work aims to: 1) evaluate if the sound features of 

47 a voluntary cough in ALS patients are different from age- and gender-matched healthy controls; 

48 2) correlate cough sound features with functional status, respiratory and bulbar impairment in 

49 ALS patients; and 3) test the hypothesis that frequency sound features have a stronger association 

50 with bulbar dysfunction, while intensity sound features are more closely related to respiratory 

51 dysfunction. Furthermore, we aimed to evaluate the usefulness of machine learning for 

52 conducting future home-based assessments, by recording audio samples with a commonly 

53 available device, in an ecological setting.
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54 2. Materials and Methods

55 2.1 Study design and participants

56 This was a single-center, cross-sectional, case-control study that was part of a broader ALS 

57 project (HomeSenseALS - PTDC/MEC-NEU/6855/2020). We included consecutive ALS patients 

58 according to Gold Coast criteria (30). All patients were followed at our ALS clinic in Lisbon, and 

59 had full neurological, neurophysiological, neuroimaging and blood tests to rule out mimicking 

60 conditions (31). Patients with a previous history of lung disorders, with resting dyspnea, severe 

61 cognitive involvement impairing the understanding of the voluntary coughing task, and those 

62 declining to participate were excluded. In the control group we included healthy age- and gender-

63 matched controls (in general spouses of the ALS patients and people working in the institution). 

64 The recruitment started on April 4, 2022, and was concluded on August 31, 2023. The study was 

65 approved by the local research ethics committee of the Centro Académico de Medicina de Lisboa 

66 (CAML-Ref. 146/21). All participants gave written informed consent, which was in accordance 

67 with the declaration of Helsinki.

68

69 2.2 Clinical evaluation

70 For ALS patients, we collected demographic data including age, sex, body mass index 

71 (BMI), smoking habits, disease duration, and the region of disease onset. To evaluate the 

72 functional disability, we used the revised functional ALS rating scale (ALSFRS-R) (32). 

73 Respiratory symptoms were determined based on the ALSFRS-R respiratory subscore 

74 (which consists of questions 10 through 12 pertaining to dyspnea, orthopnea, and respiratory 

75 insufficiency); patients with a score less than 12 were considered to have respiratory dysfunction. 

76 Sitting predicted FVC (FVC%) was measured using a computer-based USB spirometer 

77 (microQuark®, Cosmed®), the best of three reliable maneuvers was used for statistics (11). In 

78 addition to FVC%, the following respiratory measures were also included: maximum expiratory 

79 and inspiratory pressures (MIP% and MEP%, respectively) and cough peak flow (CPF). Similarly, 
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80 bulbar symptoms were evaluated using the ALSFRS-R bulbar subscore (which consists of 

81 questions 1 through 3 about speech, salivation, and swallowing). Patients with a score less than 

82 12 were considered having bulbar dysfunction. This data was accessed retrospectively, between 

83 August 31, 2023, and October 31, 2023. The authors had no access to information that could 

84 identify individual participants during or after data collection. 

85

86 2.3 Cough sound: recording, signal processing and feature extraction

87 All subjects were instructed to perform, while seated in a quiet room, three voluntary 

88 coughs (to ensure a repeatable sound relationship). The sound recordings were done using a 

89 smartphone, placed approximately 20-25 cm away from the mouth and at an angle of 

90 approximately 45° (as described in (12)). These procedures aimed to remove effects of wind noise 

91 produced when one rapid expulsion of air directly hits the microphone. For patients, the cough 

92 sounds were recorded during a routine patient’s clinical visit, after ensuring that the patient was 

93 resting for a period longer than 10 minutes, and comfortable without dyspnea. 

94 After the cough data collection, the raw signal was processed with Librosa – a Python 

95 package for audio signal analysis (33). The analysis was conducted using a frame length of 2048 

96 samples per frame and a hop length of 512. In order to minimize potential biases stemming from 

97 the beginning and end of the recordings (and to ensure that the analysis was focused solely on the 

98 cough time frames) the split function of Librosa was employed with a cutoff of 20 decibels 

99 eliminating the initial and final periods of silence in the cough recordings. 

100 Once the pre-processing was completed, the generated cough sound signals were analyzed 

101 to extract audio-based features. For this, we used the Time Series Feature Extraction Library 

102 (TSFEL) that automatically extracts over 60 different features on the statistical, temporal, and 

103 spectral domains (34).

104 In light of prior research findings (12,29,35,36) and relevance in general sound analysis, 

105 we pre-selected 11 features based on the time domain and 20 features based on the frequency 

106 domain (see details in Table 1). To enhance the interpretation of the results, we subsequently 
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107 categorized these features into three distinct groups, each pertaining to specific underlying 

108 information (with potential relevance for the various physiological steps of coughing): 1) a group 

109 encompassing sound frequency-related features – the frequency group; 2) another group 

110 comprising sound intensity-related features – the intensity group; and 3) a final group that 

111 combines features of both frequency and intensity domains – the mixed group. All extracted 

112 features were normalized to their maximum value (with a range between -1 and 1) (Fig 1).

113
114 Figure 1. The workflow of feature categorization according to frequency, intensity, and mixed 
115 groups.
116
117 Table 1. List of cough sound features subjected to analysis.

Frequency group

Maximum frequency of the signal 

Fundamental frequency

Zero-crossing rate of the signal 

Number of positive turning points of the signal 

Spread of the spectrum around its mean value 

Power spectrum density bandwidth of the signal 

Spectral kurtosis: flatness of a distribution around its mean value

Spectral skewness: asymmetry of the distribution around its mean value

Spectral centroid: barycenter of the spectrum

Spectral roll-off of the signal

Number of positive turning points of the fft magnitude signal 

Intensity group

Maximum value of the signal

Mean value of the signal 

Median value of the signal

Minimum value of the signal

Standard deviation (std) of the signal

Variance of the signal

Kurtosis:  where  and  are the mean and the standard deviation of the signal

Skewness:  where  and  are the mean and the standard deviation of the signal

Centroid along the time axis

Peak to peak distance

Mixed group

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 26, 2024. ; https://doi.org/10.1101/2024.03.24.24304803doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.24.24304803
http://creativecommons.org/licenses/by/4.0/


8

Absolute energy of the signal 

Area under the curve of the signal computed with trapezoid rule

Total energy of the signal 

Root mean square of the signal (Rms)

Maximum power spectrum density of the signal 

Spectral entropy of the signal based on Fourier transform 

Entropy of the signal using Shannon Entropy

Slope of the signal 

Spectral slope

Duration of the signal 

118

119

120 2.4 Machine-learning analysis

121 After the feature extraction step, a dataset was built for the purpose of a binary 

122 classification task with the objective of distinguishing between ALS patients and control subjects, 

123 patients with and without bulbar dysfunction, and patients with and without respiratory 

124 dysfunction. The dataset was partitioned, with 75% of the data allocated to the training set and 

125 the remaining data designated for testing. The process of shuffling resulted in a well-balanced test 

126 set in terms of class, age, gender, and dataset distribution. To identify a small subset of relevant 

127 features for the objective analysis of bulbar and respiratory ALS dysfunction, the extracted cough 

128 sound features underwent feature selection using the sequential feature selection (SFS) algorithm 

129 based on a logistic regression (LR) classifier. Through SFS, we selected the cough sound features 

130 that were strongly correlated with the class, thus removing the less relevant features from the 

131 original dataset. Subsequently, the main classification task was performed by training a support 

132 vector machine (SVM) classifier based on the linear kernel. In this process, only the most relevant 

133 features, which were selected in the preceding step were considered, in an attempt to reduce the 

134 potential for overfitting. For model evaluation, ROC-AUC (area under the curve) scores were 

135 calculated over five iterations, each with a distinct random seed, so that it would be possible to 

136 estimate the 95% confidence interval. This comprehensive procedure facilitated the assessment 

137 of model stability and reliability.
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138

139 2.5 Statistical analysis

140 Data analysis was performed using Python version 3.11.2 (Python Software Foundation). 

141 For the significance level, α=0.05 was considered. Descriptive statistics consisted of frequencies 

142 (with proportions) for categorical variables and mean values (with standard deviation) for 

143 continuous variables. To compare mean values, parametric tests such as the two-sample t-test or 

144 the one-way ANOVA were applied. If the normality assumption of the continuous variable was 

145 violated (significant Kolmogorov-Smirnov test with an absolute skewness > 2), non-parametric 

146 tests such as Mann-Whitney U-test or Kruskal-Wallis test were considered and results reported, 

147 if different from parametric analysis. 

148 ROC analyses were performed to identify the ROC-AUC of the SVM, for discriminating 

149 between:

150

151 (1) controls vs. ALS – with the frequency group of features;

152 (2) controls vs. ALS – with the intensity group of features;

153 (3) controls vs. ALS – with the mixed group of features.

154

155 Similar analyses were carried out for the comparison between patients with bulbar 

156 dysfunction vs. those without; and for patients with respiratory dysfunction vs. those without. Age 

157 and gender were added into each set of features, enabling the SVM model to consider these 

158 important demographic factors.

159 Finally, we examined how each of the selected features related to the disability score and 

160 pulmonary function tests in ALS patients. For the former, multiple linear regression models were 

161 used, having the ALSFRS-R total score as dependent variable and age and gender as confounding 

162 variables. On the other hand, simple linear correlations were used to elucidate associations 

163 between sound features and pulmonary function measurements, including FVC%, MEP%, MIP% 

164 and CPF. 
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165 3. Results 

166 3.1 Demographics and clinical characteristics

167  We analyzed 300 cough sounds recordings from a total of 100 subjects (60 ALS patients 

168 and 40 controls - 3 cough sounds each). The demographic and clinical characteristics of 

169 participants are shown in Table 2. Groups had no significant differences in terms of age (p= 0.79) 

170 or sex distribution (p= 0.21).  There were no statistically significant differences between patients 

171 with vs without respiratory dysfunction, as well as between patients with vs without bulbar 

172 dysfunction, in terms of age, BMI, disease duration and percentage of smokers (all t-tests with p-

173 values > 0.05). However, the frequency of females was higher in the group with bulbar dysfunction 

174 (71% vs 34%, p< 0.001) and in the group of patients with respiratory dysfunction (72% vs 43%, 

175 p< 0.05).

176

177 Table 2. Baseline characteristics of whole ALS patients population (n=60), and controls (N=40).
178

CLINICAL CHARACTERISTICS ALS PATIENTS
N=60

CONTROLS
N=40

AGE (meanSD) 61.87  11.4 62.58  15.63

GENDER

      MEN 27 (45%) 13 (32.5%)

      WOMAN 33 (55%) 27 (64.5%)

BMI (KG/M2)  (meanSD) 26.3  4.1

SYMPTOM DURATION (MONTHS)

      MEDIAN 25

      1ST-3RD INTERQUATILE RANGE 6 – 141

DISEASE ONSET

      BULBAR ONSET 15 (25%)

      UPPER LIMB ONSET 17 (28.3%)

      LOWER LIMB ONSET 28 (46.7%)

ALSFRS-R TOTAL SCORE (0-48) (meanSD) 34.9 (7.8)

BULBAR DYSFUNCTION 28 (46.7%)

RESPIRATORY DYSFUNCTION 25 (41.7%)

179
180 BMI, body mass index; ALSFRS-R, revised amyotrophic lateral sclerosis functional rating scale.
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181

182

183 3.2 Cough sound features in ALS and healthy controls 

184 We started by comparing the frequency group of cough sound features in ALS patients vs. 

185 controls. The SFS algorithm selected six features of the thirteen initially proposed, including 

186 fundamental frequency, number of the spectrum positive turning points, spectral bandwidth, 

187 spectral roll-off, spectral dispersion, and zero-crossing rate (ZCR). Following ROC analysis (Fig 2), 

188 the prediction ROC-AUC of the final model with the seven selected features was 0.85 (IC 95%: 

189 0.79-0.91). 

190

191 Figure 2. Support vector machine (SVM) analysis of all cough sound samples. Receiver operating 
192 characteristic curves (ROC) were calculated with a SVM to differentiate ALS patients and controls for the 
193 three different groups of cough sound features. One of the five model’s iterations is demonstrated (settings: 
194 k_features = ‘best’; forward = ‘False’; scoring = ‘accuracy’; cv = ‘5’;  random_state = ‘41’). 

195
196 Similar analyses were performed for the remaining intensity and mixed groups. The SFS 

197 applied to the intensity group of features resulted in the selection of four features out of the initial 

198 twelve. Specifically, these included the temporal centroid, the mean, and the kurtosis of the signal, 

199 and presumed gender. However, the model with the four intensity features exhibited a modest 

200 performance of 0.59 (IC 95%: 0.52-0.66). Also, to note that only the temporal centroid and the 

201 kurtosis of the signal demonstrated significant discriminative capability between an ALS-related 

202 cough and a control cough.

203 Regarding the mixed group, the model comprised the following selected features: absolute 

204 energy, spectral and time entropies, maximum power of the signal, total amount of energy, and 

205 presumed gender. However, similar to the intensity group, the overall model performance was 

206 only modest, yielding an ROC-AUC of 0.6 (IC 95%: 0.52-0.68). To also note that only the time and 

207 spectral entropies exhibited significant predictive capability for distinguishing between ALS 

208 patients and healthy controls. Fig 3 shows an example where it is evident that the primary 
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209 distinctions between an ALS and a control cough lie within the frequency group of features. Table 

210 3 shows all statistical values.

211

212 Figure 3. An example of the analysis of sound waves in voluntary coughing of a healthy control 
213 (upper row) and an ALS patient (lower row). Each column of the image depicts different features of the 
214 three distinct groups of features. The first column highlights the frequency features associated with the 
215 repetition rate of one event, such as the number of times that the signal passes the zero line or the number 
216 of positive turning points. The second column emphasizes the intensity features, such as the signal 
217 amplitude or peak distance. Lastly, the third column shows features that provide information on both 
218 frequency and intensity, such as the signal power and entropy. The main differences were observed in the 
219 frequency group. To note that these cough signals did not undergo pre-processing procedures.
220
221
222 Table 3. F values from regression analyses contributing of Control vs. ALS classification to performance 
223 on each voice sound variable.

GROUP FEATURES F value P value

Frequency group Fundamental frequency 9.19** 0.0031

Number of the spectrum 

positive turning points

2.02 0.16

Spectral bandwidth 8.60** 0.0042

Spectral roll-off 4.38* 0.039

Spectral dispersion 10.23** 0.0019

ZCR 20.19*** < 0.001

Intensity group Temporal centroid 11.55*** < 0.001

Mean amplitude of the signal 0.54 0.47

Kurtosis 9.90** 0.0022

Mixed group Absolute energy 0.42 0.52

Entropy 7.25** 0.0083

Spectral entropy 10.71** 0.0015

Maximum power of the signal 0.39 0.53

Total amount of energy 1.03 0.31

224 Correlation is significant at the 0.05 level *;
225 Correlation is significant at the 0.01 level **;
226 Correlation is significant at the 0.001 level ***;

227

228 3.3 Correlations with the overall functional disability 

229 Next, we started to focus more specifically on the ALS patients, and how the cough sound 

230 features were related to the functional disability of the disease. We found that the intensity, as 
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231 well as the mixed group features, exhibited the strongest correlations with ALSFRS-R total score 

232 – indicating that patients with more severe symptoms produced cough sounds with a greater 

233 relative impact on the intensity domain (Fig 4). Broadly, patients in more advanced functional 

234 states produce less intense cough sounds.

235

236 Figure 4. Analysis of sound waves in voluntary coughing: comparison between patients in different 
237 disease states. The left image represents the cough sound of one patient in a better functional state (Female; 
238 60> years old; ALSFRS-R total score of 39) versus the right image, which represents the cough sound of one 
239 patient in a worse functional state (Female; 60> years old; ALSFRS-R total score of 20). The main differences 
240 are presented in the intensity-related group of features.  (Signal without pre-processing)
241

242 Moderate but significant correlations have been found between the ALSFRS-R total score 

243 and various intensity features, including the maximum amplitude (beta= 0.43, p= 6.85e-4), the 

244 standard deviation of the amplitude of the signal (beta= 0.33, p= 1.55e-5) and the peak-to-peak 

245 distance (beta= 0.44, p= 4.07e-4). Moreover, we found moderate to strong negatively significant 

246 correlations, with the maximum cough sound power (beta= -0.58, p= 2.54e-10); and moderate 

247 positively significant correlations with the area under the curve of the signal and the absolute 

248 energy (beta= 0.35, p= 9.76e-6; beta= 0.34, p= 1.67e-6, respectively). 

249 Despite being effective in distinguishing cough sounds from ALS and healthy controls, the 

250 frequency group of features showed weaker associations with the functional status of the disease. 

251 Our analysis revealed that ZCR (beta= 0.20, p= 3.01e-6), and the number of positive turning points 

252 (beta= 0.25, p= 1.10e-5) exhibited weak positively significant correlations with the ALSFRS-R total 

253 score. In contrast, the spectral centroid (beta= 0.38, p= 1.97e-4), and spectral bandwidth (beta= 

254 0.32, p= 8.83e-8) demonstrated stronger correlations with the functional state of the disease, 

255 making them the best-correlated features in this frequency group (see Table 4).

256
257 Table 4. Correlations between the ALSFRS-R total score and different cough sound features. Results are 
258 adjusted for age and gender.
259

METRICS

GROUP FEATURES  T VALUE P VALUE
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Maximum amplitude 0.43 3.59 <0.001

Intensity
0.59 (IC 95%: 0.52-0.66) 

model ROC-AUC
Standard deviation of the 

signal
0.33 4.73 <0.001

Peak distance 0.44 3.76 <0.001

Maximum power -0.58 7.68 <0.001

Mixed
0.60 (IC 95%: 0.52-0.68) 

model ROC-AUC
Area under the curve 0.35 4.86 <0.001

Absolute energy 0.34 5.35 <0.001

Zero-crossing rate 0.20 5.19 <0.001

Frequency 
0.85 (IC 95%: 0.79-0.91) 

model ROC-AUC
Spectral centroid 0.38 3.98 <0.001

Number of positive turning 
points

Spectrum bandwidth

0.25

0.32

4.83

6.14

<0.001

<0.001

260

261

262 3.4 Differences between ALS patients with and without respiratory dysfunction

263 We identified both intensity and mixed groups of features as the most effective in 

264 distinguishing patients with respiratory dysfunction from those without (with positive 

265 associations). In terms of intensity-related features, the predictors that remained in the final 

266 model were the maximum and standard deviation of the signal as well as peak-to-peak distance, 

267 yielding a prediction ROC-AUC of 0.67 (IC 95%: 0.56-0.78). 

268 Regarding the mixed group features, the SFS application resulted in a final model 

269 comprising maximum power, spectral entropy, and the spectral slope. The prediction ROC-AUC of 

270 this model was 0.65 (IC 95%: 0.55-0.75). 

271 Finally, the group of frequency-related features included in the final model the spectral 

272 bandwidth and centroid, the spectral skewness, and the ZCR; and yielding a prediction ROC-AUC 

273 of 0.59 (IC 95%: 0.49-0.69). Table 5 shows all statistical values.

274
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275 Table 5. F values from regression analyses contributing of with respiratory vs. without respiratory 
276 dysfunction classification to performance on each voice sound variable.

GROUP FEATURES F value P value

Frequency group Spectral bandwidth 4.07* 0.048

Spectral centroid 4.03* 0.049

Spectral skewness 6.21* 0.016

ZCR 5.24* 0.026

Intensity group Maximum amplitude of the signal 14.49*** <0.001

Standard deviation of the signal amplitude 2.60 0.11

Peak-to-peak distance 16.64*** <0.001

Mixed group Maximum power of the signal 4.31* 0.042

Spectral entropy 9.80** 0.0027

Spectral slope 7.72** 0.0074

277 Correlation is significant at the 0.05 level *;
278 Correlation is significant at the 0.01 level **;
279 Correlation is significant at the 0.001 level ***;

280

281 3.4.1 Correlations between cough sound analysis and respiratory function assessments

282 Out of the complete cohort of 60 ALS patients, 47 had respiratory function testing at the 

283 time of cough sound data recording (< 6 weeks). In this group, mean ALSFRS-R was 38, and the 

284 average FVC%, MIP%, MEP%, and CPF were 77% (18.33 SD), 93.6% (32.8 SD), 79.8% (27 SD), and 

285 288.8 L/min (109 SD), respectively.

286 Table 6 shows that the intensity and mixed groups of features exhibited a moderate 

287 (negative) significant correlations with FVC%. However, no significant correlations were 

288 observed for CPF, MIP%, and MEP%. 

289

290 Table 6. Correlations between the FVC (%), MIP (%), MEP (%), and CPF (L/min), and different cough sound 
291 features.
292

FVC % MIP% MEP% CPF

GROUP FEATURES r P 
value

r P 
value

r P 
value

r P 
value

Intensity
Absolute 
energy

-0.50** 0.0015 -0.091 0.60 -0.29 0.096 0.0060 0.97
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AUC -0.42*** <0.001 -0.093 0.59 -0.31 0.072 0.033 0.85
0.59 (IC 95%: 

0.52-0.66) 
model ROC-

AUC
Spectral 
entropy

-0.17 0.32 -0.10 0.56 -0.30 0.079 -0.044 0.80

Temporal 
centroid

-0.53*** <0.001 -0.0076 0.96 -0.26 0.13 -0.031 0.86Mixed
0.60 (IC 95%: 

0.52-0.68) 
model ROC-

AUC Peak distance -0.24 0.15 0.033 0.85 -0.14 0.42 0.20 0.24

Spectral 
dispersion 0.31 0.066 -0.066 0.70 0.11 0.54 0.20 0.26Frequency

0.85 (IC 95%: 
0.79-0.91) 

model ROC-
AUC

Spectral 
positive 
turning 
points

-0.46** 0.0039 -0.017 0.92 -0.36* 0.035 -0.032 0.085

293 Correlation is significant at the 0.05 level *;
294 Correlation is significant at the 0.01 level **;
295 Correlation is significant at the 0.001 level ***;

296

297 3.5 Differences between ALS patients with and without bulbar dysfunction

298 When comparing ALS patients with and without bulbar dysfunction, we observed that 

299 frequency-related features were the best group at this discrimination (Table 7). The frequency 

300 features that were retained in the final model included spectral bandwidth, spectral centroid, 

301 spectral roll-off, and spectral kurtosis and skewness. Despite being the most significant, the 

302 overall ROC-AUC of the model prediction was 0.53 (IC 95%: 0.44-0.61). 

303

304 Table 7. F values from regression analyses contributing of with bulbar vs. without bulbar dysfunction 
305 classification to performance on each voice sound variable.

GROUP FEATURES F value P value

Frequency group Spectral bandwidth 6.07* 0.017

Spectral centroid 11.76** 0.0011

Spectral roll-off 4.79* 0.033

Spectral Kurtosis 6.23* 0.015

Spectral Skewness 8.44** 0.0052

Intensity group Temporal centroid 1.41 0.24

Maximum amplitude of the signal 2.15 0.15
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Mean amplitude of the signal 1.35 0.25

Median amplitude of the signal 0.38 0.54

Standard deviation of the signal amplitude 0.16 0.70

Variance amplitude of the signal 0.27 0.61

Peak-to-peak distance 4.29* 0.043

Mixed group Area under the curve of the signal 0.83 0.37

Maximum power of the signal 3.86 0.054

Spectral entropy 0.66 0.42

306 Correlation is significant at the 0.05 level *;
307 Correlation is significant at the 0.01 level **;

308

309 As for the intensity-related features, the predictors found in the final model included 

310 temporal centroid, maximum, mean, median, standard deviation, variance, and kurtosis of the 

311 signal. The final ROC-AUC of the model prediction for the intensity group was 0.63 (IC 95%: 0.51-

312 0.75). 

313 Lastly, for the features related to the mixed group, the ones that remained in the model were 

314 the area under the curve of the signal, maximum power, spectral entropy, and gender. The final 

315 ROC-AUC of the model was 0.51 (IC 95%: 0.39-0.63).

316

317 4.0 Discussion 

318 Our study aimed to comprehensive investigate the potential of cough sound features, 

319 extracted from both the time and frequency domains, as discriminators for clinical diagnosis of 

320 ALS, and predictors of bulbar and respiratory impairments, at the convenience of using a simple 

321 smartphone. Based on our hypothesis, significant differences were observed in the frequency 

322 group of features between ALS patients and healthy controls, after adjustment for age and gender. 

323 This was also the group of features that demonstrated higher correlations with bulbar 

324 impairments. Conversely, the intensity and mixed groups of features were found to be highly 

325 correlated with the functional status of the disease and were the most significant in detecting 

326 respiratory impairments (Table 8). 
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327

328

329

330 Table 8. Summary of all correlations undertaken in this study. The symbol ‘check’ denotes statistical 
331 significance, α=0.05 was considered.

332
Control Alsfrs-R Bulbar Respiratory FVC% MIP% MEP% CPF

Maximum 
frequency

- - - - - -

ZCR - - - - - -

Spectral 
centroid

- - - - - -

Sp. bandwidth - - - - -

Sp. dispersion - - - - - - -

Frequency 
group

Sp. Positive 
turning points

- - - - -

Maximum 
amplitude

- - - - - -

Peak distance - - - - - -

Intensity 
group

Temporal 
centroid

- - - - - -

AUC - - - - - -

Maximum 
power

- - - - - -

Mixed 
group

Sp. entropy - - - - -

333

334 Firstly, changes in sound frequencies during any type of vocalization are primarily 

335 attributed to intrinsic modifications of the vocal cords. These variations in sound tone are 

336 intricately linked to the vocal cords’ dimension, tension, and/or thickness (37). In the present 

337 work, we noticed that the disease-related ALS cough is hoarser when compared to the controls – 

338 i.e., patients’ cough depicts lower frequencies (more specifically, lower zero-crossing rates and 

339 spectral positive turning points). These results suggest that the bulbar region of the glottis in ALS 

340 patients potentially exhibits increased tension and reduced flexibility, as higher levels of tension 

341 tend to produce lower frequency sounds (38–40).
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342 Another finding, closely related to the previous, was that the cough produced by ALS 

343 patients displays greater sound entrainment, greater noise, and reduced sound occlusion when 

344 compared to controls. Occlusive sounds result from the obstruction or blockage of airflow in the 

345 vocal tract, and they are representative of functional cough sounds. In ALS, the adductor muscles 

346 of the arytenoid cartilages become dysfunctional (41), the glottis is not rapidly coordinated and 

347 fails to close effectively, leading to an abnormal compressive cough phase. Consequently, the 

348 typical peak in cough sound amplitude is not succeeded by a period of silence, but it is rather 

349 followed by an entrainment of the expiratory airflow. This was broadly represented by higher 

350 spectral dispersion and bandwidths. In fact, the cough sound properties of ALS patients resemble 

351 the characteristics of a sustainable vowel sound – a monophonic sound characterized by a 

352 continuous flow of air through the vocal cords. Moreover, as an alternative, the representation of 

353 the cough sound (presented in Fig 3) can also be explained by the varying properties of the 

354 medium through which the sound wave travels, such as different pressures and tensions, resulting 

355 in differing wave speeds and wave spread.

356 As a whole, the above-mentioned observations are in line with the evidence reported in 

357 cough airflow studies and cough waveforms visual analysis in patients with motor neuron 

358 diseases (42,43). Chaudri et al. (43) characterized the absence of distinct “peak expiratory spikes” 

359 and associated this with reduced cough strength and increased mortality. Recently, Plowman et 

360 al. (44) demonstrated that ALS patients showed lower peak expiratory flow rates and a longer 

361 time to generate maximum expiratory flow during a voluntary cough. They observed that this less 

362 efficient expulsive cough (as indexed by a lower cough volume acceleration) is predictive of poor 

363 airway safety during swallowing. Moreover, Korpáš et al. (45) have reported that, in laryngeal 

364 inflammation, the cough record consists of a large and long mono sound, where both sound 

365 intensity and duration may be increased. Thus, the cough sound in ALS may be associated with a 

366 secondary inflammation as well. All the aforementioned attributes collectively rendered this set 

367 of features superior in discriminating between cough sounds of patients and controls, resulting in 

368 a final model ROC-AUC  of 0.85 (IC 95%: 0.79-0.91). 
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369 Emphasizing these primary distinctions in cough sounds between patients and controls, it 

370 is noteworthy that the observed differences between the two groups also manifested when 

371 comparing patients with and without bulbar symptoms. In this particular analysis, even though 

372 the machine-learning classifier did not exhibit exceptional robustness (with comparable results 

373 among frequency, intensity, and mixed feature groups), the most impactful features in 

374 distinguishing the two groups were maximum frequency, spectral bandwidth, and spectral 

375 centroid. Notably, these features are easily perceptible to the human ear, as healthy cough sounds 

376 typically display a clear quality, even when accounting for variations in age and gender. This 

377 enables clinicians to develop early suspicions regarding disease progression.

378 Furthermore, the intensity and mixed groups of features did not exhibit many significant 

379 differences between patients and healthy subjects. It is established that intense or louder sounds 

380 are related to higher air volumes in the lungs and consequently higher subglottic pressures. 

381 Despite 25 out of the 60 patients presenting respiratory dysfunction, as defined by scores less 

382 than 12 in the three respiratory-related questions of the ALSFRS- R (although many patients only 

383 presented with one less point) and a moderate to low FVC in the population, we speculate that 

384 these characteristics were insufficient to detect changes in intensity features, such as signal 

385 amplitude or peak distance, when compared to the cough sound of controls.  Additionally, bulbar 

386 impairments such as a narrowed glottis are more likely to become clinically symptomatic when 

387 respiratory muscles are still strong enough to generate negative airway pressure(46). 

388 Nonetheless, patients exhibited higher spectral sound entropies and temporal centroids, meaning 

389 that the cough sounds are more variable and difficult to predict, and the average energy of the 

390 sound, occurs later in time (also related to wave spread and power). For these reasons, the sets of 

391 intensity and mixed features exhibited the lowest level of ROC-AUC, with the latter outperforming 

392 the former (ROC-AUC of 0.62, 95% CI: 0.55-0.69 and 0.70, 95% CI: 0.64-0.76, respectively), 

393 primarily due to the presence of features associated with sound frequency. 
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394 To verify the relationships between cough sound features and the respiratory system, the 

395 same approach was utilized, first to assess correlations with variables from respiratory function 

396 tests, and second to evaluate differences in patients with and without respiratory dysfunctions.

397 In ALS patients, coughing is impaired during both the inspiratory and expiratory phases, 

398 with lower volumes of inspired air during a prolonged inspiratory phase and a longer time period 

399 to generate a lower peak expiratory airflow during the expulsive phase (as reported by (41)). 

400 Additionally, studies have demonstrated that the volume of air achieved at the initiation of the 

401 cough has the greatest influence on the volume expelled during cough (47). In sound analysis, 

402 loudness and intense sounds are related to volume. This relationship further reinforces the 

403 significance of the intensity-based cough sound features as the most reliable indicators of 

404 respiratory impairment in patients. Furthermore, the cough sound pattern exhibited by ALS 

405 patients is consistent with that observed in patients with restrictive respiratory disease, 

406 characterized by reduced lung elasticity or limitations in chest wall expansion (16). In these 

407 patients, there is a gradual reduction in the intensity of cough attempts over time, leading to a 

408 negative slope of the signal amplitude (Fig 4). This is in contrast to obstructive respiratory 

409 diseases, where such a phenomenon is not observed. In the machine learning analysis, the model 

410 that demonstrated the highest ROC-AUC (although also not particularly robust overall), in 

411 distinguishing between patients with and without respiratory symptoms was the one trained with 

412 intensity-related features (0.67; IC 95%: 0.56-0.78). However, and despite these findings, the 

413 exact role of different respiratory muscles and their association with these cough sound features 

414 remains unclear. To understand this relation, we performed linear regressions between the cough 

415 sound features and FVC% values. FVC is highly associated with CPF measurements in ALS patients 

416 (Matsuda et al. 2019). Sharan et al. (12), demonstrated the potential for cough sound analysis to 

417 predict spirometry results in patients with different respiratory diseases. In this work, the 

418 intensity and mixed group of features, specifically the temporal centroid and absolute energy, 

419 exhibited stronger correlations with FVC%. These findings provide support for the association 

420 between sound energy, intensity, and lung function. Notably, the correlations between FVC% and 
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421 energy features are negative. This finding may indicate that patients with respiratory 

422 dysfunctions often experienced increased efforts to move air in and out of the lungs and even that, 

423 as it becomes difficult to fully exhale air, leading to air trapping, the trapped air during the 

424 subsequent cough bouts has contributed to higher sound energies. It was also anticipated that 

425 stronger correlations would be observed between cough sound features and MEP%, in 

426 comparison to MIP%, given that pulmonary exhalation is the primary source of energy for sound 

427 production. 

428 MEP represents the highest achievable pressure during forceful expiration against a 

429 closed airway and indicates the strength of the abdominal muscles and other expiratory muscles. 

430 Conversely, MIP assesses the strength of inspiratory muscles, primarily the diaphragm, and 

431 enables the evaluation of ventilatory insufficiency. Although only the spectral positive turning 

432 points showed a significant correlation with MEP%, sound energy exhibited the potential to serve 

433 as a valuable distinguishing feature as well. Moreover, no significant associations were observed 

434 between cough sound features and CPF. This test involves coughing forcefully into a face mask 

435 connected to a small peak flow meter, and it measures the expelled airflow. We speculate that its 

436 precision may be limited by acoustic variations, particularly considering that cough sounds were 

437 captured laterally from the mouth, rather than directly by the smartphone microphone, to 

438 mitigate interference from wind noise. This represents a distinct analytic approach. 

439 Some limitations of this study must be acknowledged. Specifically, voluntary coughs 

440 bypass the sensory system and previous research has demonstrated that maximum voluntary 

441 cough function tends to overestimate reflexive cough function among healthy volunteers (47,48). 

442 Moreover, the current study includes patients with mild-moderate disease severity. As a result, 

443 the generalization of these findings to airway defense in the event of aspiration as well as to 

444 individuals in a more advanced disease state may be limited. Further, given the clinical 

445 heterogeneity of ALS, it would be beneficial to document upper versus lower motor neuron 

446 involvement, and slow versus fast progress to develop more homogenous groups for comparison. 

447 It is also possible that more appropriate features (as well as other machine learning models) may 
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448 be extracted from the data, even when features that do not contribute to the model prediction 

449 ROC-AUC were eliminated. Performing a longitudinal cough sound analysis, recording cough 

450 sounds in a lying position, making clinical correlations with phrenic nerve conduction measures 

451 and muscle strength of cervical muscles, and adjusting the results for other motor neuron diseases 

452 are future perspectives that could help elucidate the results of this paper.

453 5.0 Conclusion 

454 The present study demonstrates that analyzing cough sounds can serve as a valuable 

455 technique for evaluating and monitoring ALS patients, particularly those with respiratory and 

456 bulbar impairments. However, it is important to note that cough sound analysis should not be the 

457 only indicator utilized to evaluate respiratory and bulbar health, as ALS is a multifaceted and 

458 intricate disease. Rather, it can be used as an adjunct measure, supplementing commonly used 

459 ways of disease progression. It is also noteworthy that the method used in this study was a 

460 convenient smartphone-based approach, which facilitates data collection in home-based settings 

461 without requiring specialized careers or equipment.

462

463

464
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