Cerebrovascular reactivity impairment in genetic frontotemporal dementia

Ivana Kancheva^{*},^{1,2} Arabella Bouzigues,³ Lucy L. Russell,³ Phoebe H. Foster,³ Eve Ferry-Bolder,³ John van Swieten,⁴ Lize Jiskoot,⁴ Harro Seelaar,⁴ Raquel Sanchez-Valle,⁵ Robert Laforce Jr,⁶ Caroline Graff,^{7,8} Daniela Galimberti,^{9,10} Rik Vandenberghe,^{11,12,13} Alexandre de Mendonça,¹⁴ Pietro Tiraboschi,¹⁵ Isabel Santana,^{16,17} Alexander Gerhard, ^{18,19,20} Johannes Levin,^{21,22,23} Sandro Sorbi,^{24,25} Markus Otto,²⁶ Florence Pasquier,^{27,28,29} Simon Ducharme,^{30,31} Chris R. Butler,^{32,33} Isabelle Le Ber,^{34,35,36} Elizabeth Finger,³⁷ Maria Carmela Tartaglia,³⁸ Mario Masellis,³⁹ Matthis Synofzik,^{40,41} Fermin Moreno,^{42,43} Barbara Borroni,⁴⁴ Jonathan D. Rohrer,³ Louise van der Weerd,^{2,45} James B. Rowe[†],^{1,46} and Kamen A. Tsvetanov^{†1,47} on behalf of The GENFI consortium^{*}.

1 Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK

2 Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
3 Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square
Institute of Neurology, London, UK.

4 Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands 5 Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain

6 Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, QC, Canada

7 Department of Neurobiology, Care Sciences and Society, Centre for Alzheimer Research, Division of Neurogeriatrics, Bioclinicum, Karolinska Institutet, Solna, Sweden

8 Unit for Hereditary Dementias, Theme Inflammation and Ageing, Karolinska University Hospital, Solna, Sweden

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

9 Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy

10 University of Milan, Centro Dino Ferrari, Milan, Italy

11 Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven,

Belgium

12 Neurology Service, University Hospitals Leuven, Leuven, Belgium

13 Leuven Brain Institute, KU Leuven, Leuven, Belgium

14 Faculty of Medicine, University of Lisbon, Lisbon, Portugal

15 Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy

16 University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University

of Coimbra, Coimbra, Portugal

17 Centre for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra,

Coimbra, Portugal

18 Division of Psychology Communication and Human Neuroscience, Wolfson Molecular

Imaging Centre, University of Manchester, Manchester, UK

19 Department of Nuclear Medicine, Centre for Translational Neuro- and Behavioural Sciences,

University Medicine Essen, Essen, Germany

20 Department of Geriatric Medicine, Klinikum Hochsauerland, Arnsberg, Germany

21 Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany

22 German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany

23 Munich Cluster of Systems Neurology (SyNergy), Munich, Germany

24 Department of Neurofarba, University of Florence, Italy

25 IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy

26 Department of Neurology, University of Ulm, Germany

27 Univ Lille, France

28 Inserm 1172, Lille, France

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

29 CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, France

30 Department of Psychiatry, McGill University Health Centre, McGill University, Montreal,

Québec, Canada

31 McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University,

Montreal, Québec, Canada

32 Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of

Oxford, Oxford, UK

33 Department of Brain Sciences, Imperial College London, UK

34 Sorbonne Université, Paris Brain Institute – Institut du Cerveau – ICM, Inserm U1127, CNRS

UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France

35 Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-

HP - Hôpital Pitié-Salpêtrière, Paris, France

36 Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France

37 Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada

38 Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto,

ON, Canada

39 Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada

40 Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Centre of Neurology, University of Tübingen, Tübingen, Germany

41 Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany

42 Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain

43 Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

44 Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy

45 Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands 46 MRC Cognition and Brain Science Unit, University of Cambridge, Cambridge, UK

47 Department of Psychology, University of Cambridge, Cambridge, UK

† Joint senior authors

*Corresponding author: Ivana Kancheva, MSc, Leiden University Medical Centre, Department

of Radiology, Room C-03-119, Leiden, The Netherlands; Phone number: +31(6) 870 35 106,

Email address: i.k.kancheva@lumc.nl; ik413@cam.ac.uk

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

Abstract

2	INTRODUCTION: Cerebrovascular reactivity (CVR) is an indicator of cerebrovascular
3	health and its signature in hereditary frontotemporal dementia (FTD) remains unknown. We
4	investigated CVR in genetic FTD and its relationship to cognition.
5	
6	METHODS: CVR differences were assessed between 284 pre-symptomatic and 124
7	symptomatic mutation carriers, and 265 non-carriers, using resting-state fluctuation
8	amplitudes (RSFA) on component-based and voxel-level RSFA maps. Associations and
9	interactions between RSFA, age, genetic status, and cognition were examined using
10	generalised linear models.
11	
12	RESULTS: Compared to non-carriers, mutation carriers exhibited greater RSFA reductions,
13	predominantly in frontal cortex. These reductions increased with age. The RSFA in these
14	regions correlated with cognitive function in symptomatic and, to a lesser extent, pre-
15	symptomatic individuals, independent of disease stage.
16	
17	DISCUSSION: CVR impairment in genetic FTD predominantly affects frontal cortical areas,
18	and its preservation may yield cognitive benefits for at-risk individuals. Cerebrovascular
19	health may be a potential target for biomarker identification and disease-modifying efforts.
20	
21	Keywords: genetic frontotemporal dementia, functional magnetic resonance imaging, resting-
22	state fluctuation amplitudes, cerebrovascular reactivity, cognitive impairment

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

24

25 **1. Background**

26

27 Frontotemporal dementia (FTD) encompasses a clinically heterogeneous group of 28 neurodegenerative diseases [1]. About a third of FTD cases present an autosomal dominant 29 family history, commonly caused by mutations in three genes: chromosome 9 open reading 30 frame 72 (C9orf72), progranulin (GRN), and microtubule-associated protein tau (MAPT) [2]. 31 The study of prodromal FTD has identified neuropathological changes and biomarker 32 abnormalities decades before disease onset, including brain atrophy, reduced white matter 33 (WM) integrity, and disrupted functional connectivity, predominantly affecting the fronto-34 temporo-parietal regions [3].

35

36 In addition to the tau and TDP-43-associated molecular pathologies, and secondary 37 inflammation, the pathophysiology of FTD involves cerebrovascular dysregulation [4]. It is 38 characterised by impairments in the brain's neurovascular unit (NVU) and blood-brain barrier 39 (BBB), with damaged endothelial cells, dysfunctional pericytes, and adjacent reactive 40 microglia, in people carrying FTD-related mutations [5, 6]. Furthermore, reductions in 41 cerebral blood flow (CBF) are found in both sporadic and genetic FTD, especially in frontal 42 cortex [7, 8]. The changes in cerebral blood flow correlate with impaired performance on 43 neuropsychological tests [9]. Combined with evidence of small-vessel pathology in autopsy-44 confirmed cases with frontotemporal lobar degeneration (FTLD) [10], these findings suggest 45 a synergistic contribution of neurodegeneration and cerebrovascular impairment to the 46 pathophysiology of FTD [4].

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

48 An important aspect of cerebrovascular function is cerebrovascular reactivity (CVR). 49 CVR denotes the capacity of cerebral blood vessels to constrict or dilate in response to 50 physiological modulators, such as carbon dioxide concentration [11]. CVR regulates regional 51 blood flow via pH-dependent modulation of vascular smooth muscle tone [12-14]. It is 52 compromised by ageing [15], impaired endothelial function [16], and hypertension [17]. The 53 blood oxygenation-level dependent (BOLD) contrast reveals CVR alterations in Alzheimer's 54 disease (AD) and its prodrome [18, 19], leading to the hypothesis of comparable FTD-related 55 changes in CVR.

56

57 In this study, we investigated CVR in pre-symptomatic and symptomatic genetic FTD. 58 We used existing resting-state functional magnetic resonance imaging (rs-fMRI) data that are 59 based on exploiting naturally occurring fluctuations in carbon dioxide, induced by variations 60 in the cardiac and respiratory cycles, which moderate the BOLD signal [20, 21]. Resting-state 61 fluctuation amplitudes (RSFA) of the BOLD signal is a safe, scalable, and robust alternative 62 to the standard MRI approaches [22-24]. It is especially suitable for large-scale applications 63 with frail subjects, as it does not require hypercapnic gas inhalation, breath-holding, or 64 vasodilatory drugs [24-25], for a review, see Tsvetanov et al. (2021) [26]. RSFA has already 65 been used to assess differences in cerebrovascular and cardiovascular function associated 66 with ageing [27-29], cerebrovascular disorders [30], stroke [31], AD [32], as well as other 67 acute conditions that might heighten the risk of dementia [33].

68

69 The principal aim was to determine the CVR signature of pre-symptomatic and 70 symptomatic genetic FTD. A corollary was to assess CVR correlations with age and clinical 71 status. We predicted reductions in RSFA in at-risk mutation carriers compared to mutation-

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

- negative family members; and that these differences would increase with disease progression
- and relate to impaired cognitive performance.
- 74

75 **2. Methods**

- 76
- 77 **2.1. Participants**
- 78

79 Data were drawn from the fifth data freeze of the Genetic Frontotemporal Dementia 80 Initiative (GENFI, www.genfi.org), which included 31 research sites across Europe and 81 Canada. The study was approved by the institutional review boards at each site and written 82 informed consent was provided by participants. A total of 680 subjects were recruited 83 between January 30, 2012, and May 28, 2019, from families with a confirmed pathogenic 84 genetic mutation in C9orf72, GRN, or MAPT. They were either (i) symptomatic mutation 85 carriers, (ii) first-degree relatives of mutation carriers who were carrying a mutation, but did 86 not exhibit any symptoms (that is, pre-symptomatic), or (iii) mutation-negative family 87 members who served as a control group, termed non-carriers. Subjects were classified as 88 symptomatic if their clinician judged the presence of symptoms consistent with the diagnosis 89 of a progressive in nature degenerative disorder. Seven datasets were excluded due to motion-90 related or other imaging artifacts (three symptomatic subjects with C9orf72 mutations; three 91 pre-symptomatic *GRN* carriers, and one mutation-negative individual from a family with a 92 GRN mutation). This resulted in 673 usable fMRI scans from 124 symptomatic mutation 93 carriers (61 C9orf72, 40 GRN, 23 MAPT), 284 pre-symptomatic mutation carriers (107 94 C9orf72, 123 GRN, 54 MAPT), and 265 mutation-negative controls.

- 95
- 96

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

97

2.2. Neurocognitive Assessment and Indices of Cognitive Function

98

99 All participants underwent the standardised GENFI clinical evaluation consisting of 100 family and medical history, functional status, and physical examination in corroboration with 101 collateral history from a close contact. Subjects also completed a neuropsychological battery, 102 which included behavioural measures of cognitive function from the Uniform Data Set [34]. 103 From this test battery, we used scores related to executive function (Digit Span Forwards and 104 Backwards from the Wechsler Memory Scale-Revised; Parts A and B of the Trail Making 105 Test; a Digit Symbol Task) and language (the short version of the Boston Naming Test; 106 Category Fluency (animals and combined)), as well as the Wechsler Abbreviated Scale of 107 Intelligence Block Design Task. More details on the recruitment procedure and clinical 108 assessment protocol can be found in Rohrer et al. (2015) [35].

109

110 As a proxy of cognitive function for subsequent statistical analysis, we used Principal 111 Component Analysis (PCA) to derive a latent variable from a set of cognitive performance 112 assessments. This enabled us to obtain a composite summary score characterising the 113 complexity of cognition whilst minimising the statistical problem of multiple comparisons 114 when investigating associations between genetic status, RSFA, and cognitive function. Thus, 115 we conducted PCA on subjects' performance measures from the Digit Span Forwards and 116 Backwards task, Parts A and B of the Trail Making Test, the Digit Symbol Task, Boston 117 Naming Test, Category Fluency (animals and combined), and Block Design Task to reduce 118 the dimensionality of cognitive function into one latent variable summarising the largest 119 portion of shared variance as the first principal component (PC 1). In cases of missing values 120 for some of the metrics, multivariate Markov Chain Monte Carlo imputation was performed

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

121 using the default settings of the multivariate imputation by chained equations (MICE) in R

122 [36].

- 123 **2.3. Image Acquisition and Pre-processing**
- 124

125 A three-dimensional (3D) structural MRI was obtained for each participant using a 126 T1-weighted Magnetic Prepared Rapid Gradient-Echo (MPRAGE) sequence on 3T scanners 127 available from various vendors. The scanning protocols at each GENFI site were optimised to 128 accommodate different manufacturers and field strengths [35]. The following acquisition 129 parameters were used: median isotropic resolution of 1 mm; repetition time (TR) of 2000 ms 130 (6.6 to 2400 ms); echo time (TE) of 2.9 ms (2.8 to 4.6 ms); inversion time (TI) of 8 ms (8 to 9 131 ms); field of view (FOV) of $256 \times 256 \times 208$ mm, with a minimum scanning time of at least 132 283 s (283 to 462 s).

133

The T1-weighted images were analysed using FSL pipelines [37, 38] and modules, which called relevant functions from Statistical Parametric Mapping (SPM12, Wellcome 112 Department of Imaging Neuroscience, London, UK; www.fil.ion.ucl.ac.uk/spm) [39]. Nativespace segmentation of grey matter (GM), WM, and cerebrospinal fluid (CSF) tissue classes and warps for normalisation to the Montreal Neurological Institute (MNI) template space were estimated using FSL.

140

For resting-state fMRI measurements, Echo-planar imaging (EPI) data were obtained with at least six minutes of scanning. Analogous imaging sequences were developed by the GENFI Imaging Core team and used at each GENFI study site to account for different scanner models and field strengths. EPI data were acquired over a minimum of 308 s (median 500 s) and had a median TR of 2500 ms (2200 to 2500 ms); TE of 30 ms; flip angle of 80 ms

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

146 (80 to 85 ms); in-plane resolution of 2.72×2.72 mm (2.72-3.50 \times 2.72-3.25 mm); slice 147 thickness of 3.5 mm (2.72 to 3.5 mm). Participants were instructed to lie still with their eyes 148 closed. The initial six volumes were discarded to enable T1 equilibration. To quantify the 149 total motion for each participant, the root mean square volume-to-volume displacement was 150 computed using the approach of Jenkinson et al. (2002) [40].

151

152 The pre-processing was carried out using SPM12 running under MATLAB R2021b 153 (MathWorks, https://uk.mathworks.com/). The pre-processing steps comprised (i) spatial 154 realignment to correct for head motion and movement by distortion interactions, (ii) slice-155 time correction to the middle slice, (iii) co-registration of the EPI to the participants' T1 156 anatomical scans. The normalisation parameters from the T1 image processing were then 157 applied to warp the functional images to MNI space. After that, the spatially normalised 158 images were smoothed with a Gaussian kernel of Full Width at Half Maximum (FWHM) of 8 159 mm to meet the lattice assumption of random field theory and account for residual inter-160 participant structural variability.

161

162 Further processing procedures of the resting-state time-series for estimation of RSFA 163 involved the application of data-driven Independent Component Analysis (ICA) of single-164 subject time-series denoising, with noise components selected and removed automatically 165 using a priori heuristics from the ICA-based Automatic Removal of Motion Artifacts 166 (AROMA) toolbox [41]. A general linear model (GLM) of the time-course at each voxel was 167 computed to further diminish any residual effects of noise confounds [42]. This included 168 linear and quadratic detrending of the fMRI signal, covarying out the motion parameters, 169 WM, and CSF signals, as well as their squares and first derivative [43], and a band-pass filter 170 (0.0078-0.01 Hz). Signals from WM and CSF were estimated for each volume from the

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

171	mean value of WM and CSF masks derived by thresholding SPM's corresponding tissue
172	probability maps at 0.75. The normalised variance (i.e., the temporal standard deviation (SD)
173	of the EPI signal amplitudes over the mean signal intensity) of these filtered time-series was
174	calculated on a voxel-wise basis to define RSFA.
175	

176**2.4. Indices of Cerebrovascular Function using RSFA**

177

2.4.1. Component-based Analysis

178 To implement ICA, the pre-processed RSFA maps were decomposed into a set of 179 spatially independent sources using the Source-Based Morphometry toolbox [44] in the 180 Group ICA for fMRI Toolbox (GIFT; http://mialab.mrn.org/software/gift). Briefly, the 181 fastICA algorithm was applied after the optimal number of sources explaining the variance in 182 the data was identified by PCA with Minimum Description Length (MDL) criterion [45-47]. 183 By combining PCA and ICA, one can decompose an n-by-m matrix of subjects-by-voxels 184 into a source matrix that maps independent components (ICs) to voxels (here referred to as 185 'IC maps'), and a mixing matrix that maps ICs to participants. The mixing matrix indicates 186 the degree to which an individual expresses a defined IC, known as the subject scores in the 187 mixing matrix. These scores were scaled to standardised values (z-scores) prior to between-188 group analyses. The algorithmic and statistical reliability of the extracted components was 189 confirmed with 128 ICASSO (tool for investigating the reliability of ICA estimates by 190 clustering and visualisation) iterations [48]. Components showing high reliability across 191 multiple ICASSO iterations and comprising GM areas were deemed relevant and used in 192 subsequent analyses. This decision was based on the understanding that RSFA alterations 193 within GM areas are indicative of cerebrovascular reactivity (CVR) [29] and are shown to be 194 sensitive to cognitive function [49].

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

195

196

197

2.4.2. Voxel-based Univariate Analysis

To understand the spatial distribution of CVR effects further, we performed a sensitivity voxel-wise analysis on the RSFA maps using SPM12 in MATLAB. Clusters where between-group RSFA differences were observed after correction for multiple testing were used to define regions of interest (ROIs) for visualisation of effects across subjects.

202

2.5. Statistical Analysis

203 **2.5.1.** Descriptive Statistics

204 Demographic characteristics were compared with SPSS (IBM Corp. Released 2021. 205 IBM SPSS Statistics for Windows, Version 29.0. Armonk, NY: IBM Corp). Due to unequal 206 sample sizes and variances between groups, Welch's ANOVA with Games-Howell post hoc 207 tests were employed for continuous data. Chi-square tests were used for categorical variables. 208 The significance level was defined as two-tailed, and the threshold was set at p = 0.05 for all 209 statistical procedures. In keeping with other GENFI reports, years to expected onset (EYO) 210 was defined as the difference between age at assessment and mean age at onset within the 211 family [35]. EYO is only provided for completeness and should be interpreted with caution, 212 noting that age of symptom onset cannot be reliably predicted based on family history in 213 GRN and C9orf72 mutation carriers [50].

214

2.5.2. FTD-related Effects on Cerebrovascular Indices using RSFA

Figure 1 gives a schematic overview of the processing pipeline and analytic approach used in the study. RSFA differences between symptomatic and pre-symptomatic mutation

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

217 carriers (all genetic mutations combined) and non-carriers were examined on component-218 based estimates of RSFA using multiple linear regression (MLR) with a robust fitting 219 algorithm (MATLAB function *fitlm.m*). In these models, the IC subject scores for each 220 component (termed RSFA_{IC \Box}, where *n* denotes the corresponding number of the selected 221 component) were entered as a dependent variable, with age, sex, and handedness as 222 covariates of no interest. Although scanning protocols within the cohort were designed to 223 maximise comparability across GENFI scanners and sites [35], distinct scanning platforms 224 can introduce systematic differences, potentially confounding true effects of interest [51]. 225 Thus, scanning site was also inserted as a covariate of no interest.

We also tested the moderating effect of age on the case-control differences to explore disease progression-related effects across genetic status groups, i.e., whether the age effect in pre-symptomatic carriers would be stronger than the 'normal' age effect in non-carriers, due to the development of latent, pre-symptomatic pathology. This enabled us to assess the variance explained by genetic status beyond that accounted for by age and other covariates in the MLR.

232 All models' formulas were specified by Wilkinson's notation, e.g., 'RSFA_{IC} ~ 1 +233 Genetic status*Age + Sex + Handedness + Scanning Site', providing a flexible way to test 234 for main effects of predictors of interest (i.e., genetic status and age) and their interaction 235 (genetic status*age), whilst adjusting the models for confounders of no interest (sex, 236 handedness, scanning site). To account for issues related to multiple testing, the overall 237 model fit was corrected using the Benjami-Hochberg procedure to control the false discovery 238 rate (FDR) at the 0.05 level. To better understand the nature of the observed effects in the 239 models surviving multiple comparisons, post hoc tests were performed across sub-groups of

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

240	interest	(e.g.,	comparing	non-carriers	to	symptomatic	carriers,	non-carriers	to	pre-
241	sympton	natic ca	arriers, and p	re-symptomati	ic ca	rriers to sympt	omatic car	rriers).		

242 A sensitivity analysis was also conducted on the voxel-wise RSFA maps to further 243 explore the spatial distribution of CVR effects within the same statistical model ('RSFAvoxel ~ 244 1 + Genetic status * Age + Sex + Handedness + Scanning Site'). This included the following 245 comparisons: (i) non-carriers versus symptomatic carriers, (ii) non-carriers versus pre-246 symptomatic carriers, and (iii) pre-symptomatic carriers versus symptomatic carriers. The 247 primary cluster-forming threshold was set at p = 0.05. To correct for the multiple 248 comparisons problem inherent in mass univariate statistical analysis, we controlled for the 249 voxel-level FDR at p < 0.05. For transparency, in cases where results did not reach statistical 250 significance at FDR-level, the patterns are reported at an uncorrected level of p < 0.01 with a 251 minimum cluster size of 10 voxels. To visualise the nature of the observed effects and any 252 further between-group RSFA differences, ROIs were defined by selecting the voxels in an 8-253 mm sphere at the peak of significant clusters from the MLR analysis. The average value 254 across voxels in each ROI was used to illustrate the relationship between RSFA and age for 255 different genetic status groups. The voxel-based level regions were labelled according to their 256 overlap with the Johns Hopkins University (JHU) atlas [52].

257

2.5.3. Behavioural Relevance of Cerebrovascular Impairment

A secondary objective of this study was to evaluate the behavioural relevance of the RSFA changes observed in the previous analyses for subjects' cognitive function. To assess differences in cognitive performance scores between genetic status groups, we first carried out a Kruskal-Wallis test, followed by Mann-Whitney post hoc tests. We subsequently ran a further series of regression models where cognitive function, as represented by subjects' scores for PC 1 from the PCA analysis, was the dependent variable. Independent variables

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

264	included the $RSFA_{IC}$ for each neurocognitively meaningful component (see Methods, 2.4.
265	Indices of Cerebrovascular Function using RSFA, sub-section 2.4.1. Component-based
266	Analysis), and its interaction with genetic status, to test whether the relationship between
267	cognitive performance and RSFA levels would vary across genetic status groups. Covariates
268	of no interest were age, sex, handedness, and scanning site.

Models' formulas, as specified by Wilkinson's notation, took the form: '*Cognition*_{PC1} $\sim 1 + Genetic status*RSFA_{IC/Voxel} + Age + Sex + Handedness + Scanning Site'. FDR$ correction was applied (FDR < 0.05) and post hoc tests across sub-groups of interest wereconducted in cases where main effects were found (Figure 1).

3. Results

3.1. Demographics

275 Demographic characteristics of the sample and descriptive statistics are provided in 276 Table 1. Mutation-negative family members and pre-symptomatic mutation carriers were 277 younger than symptomatic carriers (mean difference between non-carriers and symptomatic 278 carriers was 16.68 years (p < 0.001) and 18.71 years between pre-symptomatic carriers and 279 symptomatic carriers, respectively, (p < 0.001)). The pre-symptomatic carriers were age-280 matched to non-carriers (p = 0.132). There was a higher proportion of females, relative to 281 males, in asymptomatic individuals (non-carriers and pre-symptomatic carriers) compared to 282 symptomatic carriers, and these two groups had also spent more years in education. No 283 significant differences were observed between the non-carriers and pre-symptomatic carriers 284 for any of the remaining demographic variables.

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

Table 1. Demographic information of participants included in the analysis, grouped by genetic status as non-carriers, pre-

symptomatic carriers, and symptomatic carriers

Demographi	ics	Sample	NC	PSC	SC		Group comparison,					
								P value*				
						Sample	NC vs SCP	SC vs SC	NC vs PSC			
Total N		673	265 (39.38)	284 (42.2)	124 (18.42)							
Family mutati	on					.126						
C9orf72		264 (39.23)		107	61							
GRN		276 (41.01)		123	40							
MAPT		133 (19.76)		54	23							
GRN MAPT Age (years) Sex ratio f:m Estimated years from onset Education (years)		48.17±13.43	45.95±13.09	43.93±11.4	62.64±7.43	<.001	<.001	<.001	.132			
Sex ratio f:m		371:302	153:112	165:119	53:71	.009 .006		.004	.931			
Estimated years		-10.62±13.40	-13.21±13.47	-14.30±11.63	3.32±6.24	<.001	<.001	<.001	.569			
from onset												
Education (ye	ars)	14.18±3.45	14.51±3.35	14.50±3.36	12.72±3.53	<.001	<.001	<.001	.998			
285 Valu	ues indic	cate count (perce	entage) or mean	± standard devia	tion.							
286 *P	alues ar	re the result of F	test or χ^2 test as	appropriate. Bol	ld numbers der	note statist	ical significan	ce at p < 0.	05			
287 leve	1.											
288 Abb	reviatio	ns: <i>C9orf</i> 72, c	hromosome 9	open reading fr	rame 72; GRN	, progran	ulin; <i>MAPT</i> ,	microtubul	e-			
289 asso	ciated p	orotein tau. NC	, non-carrier; P	SC, pre-sympton	matic mutatior	n carrier;	SC, symptom	atic mutati	on			
290 carr	ier. f, fei	male; m, male.										
291												
292												
293												
294												

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

295

3.2. Regional Differences in RSFA based on Independent Component Analysis

296 Applying ICA to the RSFA data yielded 24 components based on the MDL criterion. 297 The spatial patterns indicated signal origins within GM regions, as well as origins associated 298 with vascular aetiology, CSF, or other non-physiological factors (Appendix A, Figure A.1). A 299 total of 20 components were excluded from further analysis; these included non-GM 300 components proximal to vascular and CSF territories or components exhibiting characteristics 301 of physiological noise signals (Appendix A, Table A.1). Additionally, GM components that 302 did not survive correction for multiple comparisons were also classified as irrelevant. The 303 overall model fit of four GM components remained significant after FDR correction (Figure 304 2). These components included strong contributions of voxels within the posterior cingulate 305 cortex (PCC)/precuneus (IC 4), posterior association and parieto-occipital association areas, 306 more pronounced on the right side (IC 17), right and left lateral prefrontal cortex (IC 21 and 307 IC 23, respectively). A tendency of FTD-dependent decrease in RSFA was found in 308 symptomatic and pre-symptomatic carriers, compared to non-carriers, for all components, but 309 only reached statistical significance for component IC 21. Post hoc tests revealed that this 310 effect was driven by differences between the non-carriers and symptomatic mutation carriers, 311 as well as between the pre-symptomatic and symptomatic carriers. In addition, in analyses 312 across the entire sample, a significant main effect of genetic status x age interaction was 313 shown for components IC 17, IC 21, and IC 23, whereby symptomatic carriers showed the 314 most pronounced age-related RSFA reductions, followed by the presymtompatic carriers, and 315 then mutation-negative individuals. This suggests a greater age-related RSFA decline in at-316 risk or affected mutation carriers relative to non-carriers, which likely further exacerbates 317 downstream effects of the disease over time, as indicated by the steeper negative slopes of the 318 regression lines observed in these groups. Spatial maps of these components, accompanied by 319 scatter plots showing IC subject score values in relation to age and genetic status group, are

320	presented in Figure 2. Table 2 summarises the numerical output of the MLR models
321	conducted on the RSFA-IC subject scores for these GM components across the entire sample.
322	The output of post hoc tests across sub-groups of interest for this analysis is provided in
323	Appendix A, Table A.2.
324	ICA also revealed components with spatial distribution originating from large blood
325	vessels and CSF (Appendix A, Figure A.1). For example, components 2 and 3 reflected
326	signals from the fluid-filled ventricles and cerebral aqueduct. Component 11 indicated signals
327	originating close to sites of venous drainage, including superior and inferior sagittal sinus,
328	and transverse sinuses. Other vascular components comprised territories of major blood
329	vessels, including the Circle of Willis, internal carotid artery, anterior cerebral artery, and
330	middle cerebral artery. These vascular and CSF components tended to display higher subject
331	scores in older (symptomatic) individuals, reflecting differences in vascular health and other
332	physiological factors [26, 28, 29].
333	
334	
335	
336	
337	
338	
339	
340	
341	
342	
343	
344	

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

Table 2. Multiple regression analysis results of independent component (IC) subject loadings from independent

component analysis (model ' $RSFA_{IC} \sim 1 + Genetic \ status * Age + Sex + Handedness + Scanning \ Site'$)

Predictor of interest	Model	β	Т	Uncorrected	FDR-
	Adjusted R ²			Р	corrected P*
IC 4 – Posterior cingulate	cortex/precuneus		-		
	0.62				
Age		-0.09	-3.59	<.001	.001
Genetic status		-0.05	-1.77	.078	.124
Genetic status*Age		-0.05	-2.00	.046	.085
IC 17 – Posterior parietal	association areas		-		
	0.54				
Age		-0.13	-4.27	<.001	<.001
Genetic status		-0.06	-1.80	.072	.098
Genetic status*Age		-0.06	-2.17	.030	.048
IC 21 – Right lateral prefi	ontal cortex				
	0.44				
Age		-0.11	-3.33	<.001	.004
Genetic status		-0.10	-2.68	.008	.021
Genetic status*Age		-0.07	-2.31	.021	.046
IC 23 – Left lateral prefro	ntal cortex		<u>.</u>		
	0.49				
Age		-0.22	-7.22	<.001	<.001
Genetic status		-0.06	-1.87	.062	.168
Genetic status*Age		-0.08	-2.52	.012	.044

RSFA differences across groups of interest following robust multiple linear regression analysis on component-based RSFA maps.

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

Estimated regression parameters, t values, and *p* values are shown for main effects across the entire sample. Outcomes of interest are the RSFA-IC loadings associated with ICA components within GM regions where case-control differences are found. Models are adjusted for sex, handedness, and scanning site.

*P values are FDR-corrected at the 0.05 level in comparisons across the whole sample (all genetic status groups combined). Bold numbers indicate that p values are statistically significant.

346

347

348

3.3. Spatial Distribution and Voxel-wise Univariate Differences in RSFA

349 Overall, voxel-based analysis results were consistent with component-based analysis, 350 particularly in frontal cortical regions (Error! Reference source not found. 3). Group-level 351 analysis across all genetic groups revealed a consistent pattern of RSFA decreases in frontal 352 midline areas, cuneus, precuneus, and cerebellum. Moreover, a comparable tendency 353 emerged in relation to disease progression informed by the interaction between genetic status 354 and age. Specifically, the inverse relationship between RSFA and age was stronger across the 355 spectrum from non-carriers to pre-symptomatic carriers to symptomatic carriers. The spatial 356 distribution of voxel-based RSFA effects, including four representative ROIs where the 357 strongest effects were demonstrated, is illustrated in Figure 3. The output from the MLR 358 models performed on the RSFA-ROI estimates across the entire sample is provided in Table 359 3. The results of post hoc tests across sub-groups of interest conducted subsequently are 360 provided in Appendix A, Table A.3.

- 361
- 362
- 363
- 364
- 365

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

Table 3. Multiple regression analysis results following voxel-based region of interest analysis (model ' $RSFA_{Voxel} \sim 1 + Genetic Status * Age + Sex + Handedness + Scanning Site'$)

Predictor of interest	Model	β	Т	Uncorrected	FDR-
	Adjusted R ²			Р	corrected <i>P</i> *
Left middle frontal gyrus	0.23		-		
Age		-0.09	-2.51	.012	.034
Genetic status		-0.14	-3.25	.001	.005
Genetic status*Age		-0.16	-4.28	<.001	<.001
Right middle frontal gyrus	0.25				
Age		-0.13	-3.72	<.001	.002
Genetic status		-0.15	-3.72	<.001	.002
Genetic status*Age		-0.08	-2.25	.025	.041
Left superior frontal gyrus	0.17				
Age		-0.05	-1.37	.170	.320
Genetic status		-0.19	-4.45	<.001	<.001
Genetic status*Age		-0.08	-2.16	.031	.093
Right superior frontal gyrus	0.26				
Age		-0.10	-2.79	.005	.013
Genetic status		-0.17	-4.09	<.001	<.001
Genetic status*Age		0.06	-1.54	.123	.148

RSFA differences across groups of interest following robust multiple linear regression analysis in several representative ROIs based on voxel-wise univariate analysis on RSFA maps. Estimated regression parameters, t values, and p values are shown for main effects across the entire sample. Outcomes of interest are the RSFA-ROI values associated with each ROI where case-control differences are found. Models are adjusted for sex, handedness, and scanning site.

*P values are FDR-corrected at the 0.05 level across the whole sample (all genetic status groups combined). Bold numbers indicate

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

that *p* values are statistically significant.

366

367 Regarding genetic status effects on voxel-wise RSFA, there were several clusters 368 where symptomatic carriers exhibited significant reductions, compared to non-carriers, 369 including bilateral middle frontal gyrus (MFG), right superior frontal gyrus (SFG), right 370 superior temporal gyrus (STG), and bilateral PCC. Symptomatic carriers also displayed 371 greater age-related RSFA decline in the same areas, as well as in the left SFG, left dorsal 372 anterior cingulate cortex (ACC), and right insula. Similar clusters displayed RSFA decreases 373 when symptomatic carriers were compared to pre-symptomatic counterparts. In contrast, the 374 differences between pre-symptomatic carriers and non-carriers did not reach statistical 375 significance at FDR-levels. However, pre-symptomatic carriers showed a tendency for 376 reduced RSFA in posterior parietal cortex and more pronounced age-related decline in RSFA 377 over the parietal and frontal cortex compared to non-carriers, similar to the trend observed in 378 the symptomatic group. A detailed description of the anatomical localisation of the voxel-379 based analysis derived clusters where RSFA differences were noted can be consulted in 380 Appendix A, Table A.4.

Finally, to evaluate differences in RSFA values across different gene mutations, we compared RSFA-IC loadings and RSFA-ROI estimates in mutation carriers stratified by gene mutation using MLR. No between-group differences were detected based on mutated gene in any of the ICs or ROIs where differences between asymptomatic and symptomatic carriers were encountered in the previous analyses (data are shown in Appendix A, Table A.5).

387

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

389

3.4. Relationship between RSFA and Cognition

390 PCA analysis estimated PC 1 to explain approximately 62 % of the variance across 391 the nine measures of cognitive performance, PC 2 - 9 %, and PC 3 - 7 %. We therefore focus 392 on the relationship between genetic status, RSFA, and PC 1 as a proxy for cognitive function. 393 The cognitive variables that loaded most prominently on this component included the Trail 394 Making Test Parts A and B, Digit Symbol Task, and Verbal Fluency, suggesting that PC 1 395 captures most strongly the cognitive domain of executive function. More detailed information 396 about each PC, with explained variance and corresponding coefficients, is provided in 397 Appendix A, Table A.6, and Figures A.2 and A.3, respectively. Kruskal-Wallis test showed a 398 statistically significant difference in PC 1 subject scores between genetic status groups ($\chi^2(2)$) 399 = 256.02, p < 0.001). As anticipated, post hoc Mann-Whitney tests confirmed significantly 400 lower PC 1 subject scores, indicative of lower cognitive function, in symptomatic carriers 401 compared to both pre-symptomatic carriers (U = 1461, p < 0.001) and non-carriers (U =402 1182, p < 0.001). No significant difference was observed between pre-symptomatic carriers 403 and non-carriers ($U = 36\ 318, p = 0.480$).

404

405 Further regression analysis revealed a positive relationship between RSFA and 406 cognitive function, specifically in IC 23, suggesting that individuals with higher CVR levels 407 in left PFC performed better overall on a range of cognitive tests. In addition, a genetic status 408 x RSFA interaction was observed in left PFC (IC 23), as well as in posterior parietal 409 association areas (IC 17) and right lateral PFC (IC 21). The interaction effects, presented in 410 Figure 4, highlight a stronger positive relationship between RSFA and cognitive function in 411 mutation carriers, particularly in symptomatic individuals, than in non-carriers. ROIs analysis 412 was overall consistent with component-based analysis (Figure 4). The output from the MLR

- 413 models assessing cognitive function in relation to RSFA indices across the sample and sub-
- 414 groups of interest can be consulted in Table 4.

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

Table 4. Multiple regression analysis results of cognition as a function of RSFA (model '*Cognition*_{PC1} ~ 1 + Genetic

status*RSFA_{IC/Voxel} + Age + Sex + Handedness + Scanning Site')

			Sample		NC versus SC			PSC versus SC			NC versus PSC		
Predictor	Model												
	Adjusted I	R^2 β	Т	P *	β	Т	P *	β	Т	P *	β	Т	P *
ICs based on Independent Component Analysis													
IC 4 – Posterior cingulate cortex/precuneus													
	0.52												
Age		-0.43	-14.10	<.001	-0.23	-6.36	<.001	-0.30	-7.69	<.001	-0.37	-9.45	<.001
Genetic sta	itus	-0.40	-13.07	<.001	-0.68	-18.09	<.001	-0.61	-15.28	<.001	-0.01	-0.19	.851
RSFA		0.04	0.80	.600									
Genetic		0.04	1.43	.339									
status*RSF	FA												
IC 17 – P	IC 17 – Posterior association areas												
	0.52												
Age		-0.44	-14.23	<.001	-0.23	-6.46	<.001	-0.30	-7.67	<.001	-0.37	-9.38	<.001
Genetic sta	itus	-0.40	-13.05	<.001	-0.68	18.21	<.001	-0.61	-15.28	<.001	-0.01	-0.29	.769
RSFA		-0.01	-0.04	.980									
Genetic		-0.08	2.84	.029	0.04	1.33	.183	0.02	0.53	.600	0.07	1.77	.078
status*RSF	FA												
IC 21 – R	ight lateral	prefro	ntal corte	x									
	0.53												
Age		-0.43	-14.08	<.001	-0.23	-6.55	<.001	-0.30	-7.76	<.001	-0.37	-9.40	<.001
Genetic sta	itus	-0.39	-12.61	<.001	-0.67	-17.74	<.001	-0.60	-14.73	<.001	-0.01	- 0.16	.869
RSFA		0.08	2.06	.124									
Genetic		0.09	3.40	.008	0.05	1.91	.057	0.02	0.64	.523	0.05	1.26	.207
status*RSF	FA												

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

IC 23 – Left lateral	prefrontal cortex
----------------------	-------------------

RSFA

0.08

2.49

	0.52												
Age		-0.40	-12.85	<.001	0.22	-6.05	<.001	-0.29	-7.24	<.001	-0.36	-8.92	<.001
Genetic status		-0.38	-12.33	<.001	0.67	-17.51	<.001	-0.59	-14.28	<.001	-0.01	-0.19	.846
RSFA		0.11	2.88	.029	0.07	1.69	.091	0.07	1.76	.079	0.07	1.38	.169
Genetic		0.08	2.83	.030	0.01	0.21	.831	0.03	1.06	.289	-0.04	-0.90	.367
status*RSFA													

ROIs based on Voxel-wise Analysis

Left middle frontal gyrus												
0.57												
Age	-0.38	-12.92	<.001	-0.20	-6.01	<.001	-0.28	-7.58	<.001	-0.36	-9.17	<.001
Genetic status	-0.35	-11.51	<.001	-0.60	-15.18	<.001	0.53	-12.82	<.001	-0.003	-0.07	.944
RSFA	0.13	4.42	<.001	0.10	2.95	.003	0.14	4.35	<.001	-0.03	-0.82	.412
Genetic	0.23	8.02	<.001	0.22	6.60	<.001	0.16	4.84	<.001	0.07	1.73	.085
status*RSFA												
Right middle frontal gyrus												
0.54												
Age	-0.41	-13.76	<.001	-0.24	-6.61	<.001	-0.30	-7.63	<.001	-0.37	-9.26	<.001
Genetic status	-0.37	-11.84	<.001	-0.64	-15.63	<.001	-0.58	-14.04	<.001	-0.003	-0.07	.943
RSFA	0.11	3.59	.003	0.07	2.11	.036	0.07	2.15	.032	0.05	1.12	.261
Genetic	0.15	5.25	<.001	0.07	2.06	.040	0.04	1.30	.195	0.05	1.23	.220
status*RSFA												
Left superior fronta	l gyrus											
0.54												
Age	-0.42	-13.88	<.001	-0.23	-6.47	<.001	-0.30	-7.98	<.001	-0.37	-9.36	<.001
Genetic status	-0.38	-12.10	<.001	-0.64	-16.37	<.001	-0.58	-13.94	<.001	-0.01	-0.17	.861

0.06

.054

1.85

0.05

.065

1.67

-0.85

.398

-0.04

.096

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

Genetic	0.14	4.83	<.001	0.12	3.57	<.001	0.09	2.99	.003	0.002	0.06	.951
status*RSFA												
Right superior front	al gyrus											
0.54												
Age	-0.42	-14.05	<.001	-0.23	-6.59	<.001	-0.30	-7.72	<.001	-0.37	-9.43	<.001
Genetic status	-0.39	-12.64	<.001	-0.67	-17.30	<.001	-0.60	-14.64	<.001	-0.01	-0.29	.769
RSFA	0.03	0.82	.610									
Genetic	0.15	5.29	<.001	0.09	2.91	.004	0.04	1.28	.201	0.07	1.90	.058
status*RSFA												

Cognitive function differences as a function of RSFA and genetic status following robust multiple linear regression analysis in ICAbased components (top panel) and several representative ROIs based on voxel-wise univariate analysis on RSFA maps (bottom panel). Cognitive function is represented by subjects' loading values for PC 1 following PCA on nine cognitive measures. Estimated regression parameters, t values, and *p* values are shown for main effects across the entire sample and sub-groups of interest where relevant. Models are adjusted for age, sex, handedness, and scanning site.

**P*-values are FDR-corrected at the 0.05 level across the whole sample (all genetic status groups combined). Bold numbers indicate that *p* values are statistically significant.

Abbreviations: NC, non-carrier; PSC, pre-symptomatic mutation carrier; SC, symptomatic mutation carrier.

416 **4. Discussion**

415

We confirmed that cerebrovascular function, as measured by the resting-state fluctuation amplitudes, is reduced by mutations associated with frontotemporal dementia even in the long pre-symptomatic period. The RSFA differences worsened with disease progression and correlated with cognition in mutation carriers, over and above the effects of ageing. We propose that cerebrovascular dysfunction in genetic FTD represents an early dysregulated feature in the disease's pathophysiology, which may interact with neurodegenerative changes.

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

424

425

4.1. Regional Distribution of Cerebrovascular Reactivity Impairment in FTD

426 Progressive reductions in RSFA were observed in mutation carriers versus non-427 carriers in ventromedial and dorsolateral prefrontal cortical areas, cingulate and parietal 428 cortex. Comparable CVR decreases using the RSFA approach are reported in healthy ageing 429 and acute conditions of microvascular impairment, particularly in prefrontal and superior-430 parietal cortical areas [28, 29, 33] that are vulnerable to lower cerebral blood flow [26, 53, 431 54] and the principal FTD-specific pathological burden. This regional vulnerability aligns 432 with the observation of abnormal vasoreactivity in the default mode network (DMN) in AD 433 [18, 19, 32, 55]. In genetic FTD, we found consistent CVR reductions in frontal cortex, 434 anterior cingulate, and insula – regions accordant with atrophy [2, 35, 56, 57] and cerebral 435 perfusion decreases [8, 9, 58] in pre-symptomatic and symptomatic carriers. These areas are 436 part of the salience network, which underlies cognitive, sensory, and affective regulation, 437 language, motor control, and social conduct, each functionally impaired in symptomatic FTD 438 [59, 60].

439 We argue that the observed cerebrovascular dysfunction in FTD represents an early 440 dysregulated pathophysiology, interacting with regional neurodegenerative changes, as 441 postulated in AD [61-63]. Potential causes for the CVR decreases include pH dysregulation 442 and impaired modulation of nitric oxide, which may diminish endothelium-dependent dilator 443 responses and the dynamic range of the BOLD signal [16, 64, 65]. Alterations in the 444 neurovascular unit, including dysfunctional vascular endothelium, hypercontractile vascular 445 smooth muscle cells [62], depleted pericytes [5], and activated microglia [6] have been 446 documented in familial FTD. Given the close interrelatedness between neurons and cerebral 447 microvessels, such changes likely compromise the function of the blood-brain barrier,

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

448 diminish brain perfusion, and trigger the aggregation of aberrant circulating proteins and 449 secretion of pro-inflammatory factors, accelerating neurodegeneration [61, 62]. These 450 findings underscore the need for further research to discern the relationship between 451 cerebrovascular dysfunction and neurodegenerative processes in FTD and other 452 neurodegenerative pathologies.

453 While the RSFA variances in inferior frontal, parietal, and precuneus (IC 4 and IC 17) 454 accord with FTD-related hypoperfusion and atrophy profiles, the notable RSFA reductions in 455 dorsolateral prefrontal cortex (IC 21 and IC 23) are intriguing. These regions are not 456 commonly associated with hypoperfusion and atrophy in early FTD. This discrepancy implies 457 a shared pathway leading to CVR impairment, hypoperfusion, and atrophy in inferior frontal 458 and parietal regions. However, the mechanisms underlying the distinct CVR effects in 459 dorsolateral frontal regions in FTD and the processes that interact with these changes prompt 460 further investigation.

461 Such CVR alterations develop in the long pre-symptomatic window and increase with 462 age in mutation carriers faster than in non-carriers. This suggests less effective dampening of 463 arterial pressure pulsations through the vascular tree (i.e., diminished Windkessel effect) 464 owing to increased arterial stiffening [26], which could influence the BOLD signal 465 fluctuation in neighbouring tissue, including WM and CSF [66]. Such an interpretation 466 supports previously reported RSFA increases near cerebral ventricles and vascular territories, 467 and likely reflects the cardiovascular contribution to the RSFA signal in ageing [26, 28]. It is 468 also plausible that the RSFA signal in ICA-identified regions captures multiple sources with 469 different aetiology, particularly at boundaries of large vessels and adjacent perivascular 470 space, that may exhibit different spontaneous brain activity at rest [67]. The latter illustrates 471 the challenge of dissociating spatially overlapping sources of signal using univariate methods

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

472 and motivate the use of data-driven and multimodal approaches [68], as underscored by our

473 findings.

474 Although we observed diminished CVR in signature FTD frontal and parietal areas, 475 no substantial RSFA decreases in temporal regions were found. Given the involvement of the 476 temporal lobes, especially in *MAPT* mutations [8, 35, 56], this result may be due to type II 477 error or the much smaller size of the MAPT group than the C9orf72 and GRN groups. We 478 compared the RSFA-IC loadings and RSFA-ROI estimates based on gene mutation but did 479 not discover any significant between-group effects. This null result may be caused by small 480 and unbalanced sub-groups per mutated gene but may also imply true commonalities in the 481 vascular pathology downstream of the mutations' molecular pathology. Previous 482 neuroimaging studies have revealed gene mutation-specific brain changes in FTD [56, 69]. 483 The CVR changes in frontal regions may reflect distinct mechanisms from the atrophy and 484 perfusion alterations in temporal areas discovered in earlier FTD investigations. In line with 485 this assumption, different CVR and CBF patterns have been documented in AD, with CVR 486 deficits in prefrontal, anterior cingulate, and insular cortex proposed as direct indicators of 487 vascular dysfunction, and CBF decreases in temporal and parietal cortices attributed to 488 atrophy-related lower metabolic demand [55]. Our results could denote a similar mechanism 489 whereby CVR impairment contributes to FTD disease progression both independently and 490 conjointly with other pathophysiological processes.

491

4.2. Relationship between Cerebrovascular Impairment and Cognition

492 As a secondary objective, we examined the behavioural relevance of CVR alterations 493 and found a relationship between RSFA reductions in mutation carriers and diminished 494 cognitive function. This broadly confirmed the link between CVR decreases and impaired 495 overall cognitive status, as previously shown in mild cognitive impairment (MCI) and AD

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

496 [19], and conditions that may alter the risk of dementia [33]. Furthermore, CVR impairment 497 predicts global cognitive performance independently of AD pathological markers, such as 498 CSF-derived β -amyloid42 (A β 42) and tau in healthy elderly and subjects with mixed 499 Alzheimer's and vascular cognitive impairment and dementia [70].

500 We observed an association between higher RSFA and better global cognitive 501 function, especially in symptomatic mutation carriers, pronounced in prefrontal cortical areas 502 – an effect that remained after adjusting for age and disease progression effects. This accords 503 with evidence from ageing, AD, and FTD studies about the increased dependence of 504 successful cognition on precisely regulated function within and between large-scale brain 505 networks [71-74]. Furthermore, progressively stronger coupling between function and 506 cognition is described in pre-symptomatic mutation carriers from the GENFI cohort as they 507 approached their expected age of disease onset, in the absence of differences in cognitive 508 performance relative to non-carriers [57]. Therefore, our observations support previous 509 research and suggest that CVR may benefit cognition in FTD at-risk individuals.

510 CVR impairment in DMN regions did not correlate with cognition. This implies that 511 the CVR changes in default network may not relate directly to the neuropathological 512 processes or disease progression and may instead be influenced by other factors that 513 modulate CVR, such as medications, as shown in ageing [75]. The nature of default network 514 CVR changes and its implications for DMN suppression in neurodegeneration remains to be 515 fully defined. However, findings on default network from fMRI BOLD studies should not be 516 interpreted independently of cerebrovascular variations induced by physiological modulators 517 [26].

518 **4.3. Methodological Considerations and Future Directions**

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

519 Several methodological remarks warrant consideration. Firstly, our design was cross-520 sectional, so any causal inferences about the associations remain to be addressed in 521 longitudinal analyses. Second, several of the described effects only approached statistical 522 significance, which could imply that the FDR multiple comparison correction was 523 conservative. In the voxel-based analysis, no differences emerged between pre-symptomatic 524 carriers and non-carriers. Despite that, the distribution of CVR effects in pre-symptomatic 525 carriers resembled that of symptomatic cases, highlighting the vulnerability of the middle 526 frontal and posterior cortical areas. Third, we recognise that RSFA-CVR is just one measure 527 of cerebrovascular health. Previous examinations using the RSFA method have documented 528 that RSFA relates to CBF effects, white matter hyperintensities (WMHs), and cardiovascular 529 factors [26]. Thus, future investigations in the GENFI sample should clarify which vascular 530 factors drive the RSFA changes reported here by adopting other means to quantify 531 cerebrovascular function, such as resting arterial-spin labelling (ASL)-CBF and WMH 532 burden on MRI. Another avenue for future efforts is to complement current analyses with 533 estimates of functional and WM integrity, as well as CSF and blood markers in relation to 534 cognitive decline [29] in a multi-modal manner [68, 75]. On a clinical level, using integrative 535 approaches to uncover protective factors in prodromal stages of disease may improve 536 prognosis and inform stratification procedures, future triallists, patients, and carers.

537

5. Concluding Remarks

Using the RSFA approach, we found CVR alterations in pre-symptomatic and symptomatic FTD with a pronounced frontal cortical predilection, concordant across component-based and voxel-level analyses. We also showed that higher CVR yields a cognitive benefit, especially in subjects at elevated FTD risk. These results demonstrate that RSFA can be used as a safe, tolerable, and clinically informative signal that can aid the

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

543 quantification of cerebrovascular health in large-scale population studies among frail 544 participants. We suggest that there is a vascular contribution that interacts with FTD 545 pathology in driving disease expression and progression. Cerebrovascular health may be a 546 potential target for biomarker identification and a modifiable factor, to mitigate against 547 clinical deterioration in people at genetic risk of frontotemporal dementia.

549	Acknowledgements
550	The authors would like to thank the participant volunteers and their families for
551	their contribution to this research. We also thank Hamid Azimi for technical assistance,
552	as well as all radiographers/technicians and research nurses from all research sites
553	involved in this study for their invaluable support in data acquisition.
554	
555	Declaration of Interest
556	All authors have no conflicts of interest. Untreated to this there are several
557	disclosures.
558	
559	Sources of Funding
560	K.A.T. was supported by Fellowship awards from the Guarantors of Brain
561	(G101149) and Alzheimer's Society, UK (grant number 602). J.B.R. has received
562	funding from the Welcome Trust (103838; 220258) and is supported by the Cambridge
563	University Centre for Frontotemporal Dementia, the Medical Research Council
564	(MC_UU_00030/14; MR/T033371/1) and the National Institute for Health Research
565	Cambridge Biomedical Research Centre (NIHR203312: BRC-1215-20014) and the Holt
566	Fellowship. The views expressed are those of the authors and not necessarily those of
567	the NIHR or the Department of Health and Social Care. J.C.V.S., L.C.J. and H.S. are
568	supported by the Dioraphte Foundation grant 09-02-03-00, Association for
569	Frontotemporal Dementias Research Grant 2009, Netherlands Organisation for
570	Scientific Research grant HCMI 056-13-018, ZonMw Memorabel (Deltaplan Dementie,
571	project number 733 051 042), ZonMw Onderzoeksprogramma Dementie (YOD-
572	INCLUDED, project number 10510032120002), EU Joint Programme-
573	Neurodegenerative Disease Research-GENFI-PROX, Alzheimer Nederland and the

574	Bluefield Project. R.S-V. is supported by Alzheimer's Research UK Clinical Research
575	Training Fellowship (ARUK-CRF2017B-2) and has received funding from Fundació
576	Marató de TV3, Spain (grant no. 20143810). C.G. received funding from EU Joint
577	Programme-Neurodegenerative Disease Research-Prefrontals Vetenskapsrådet Dnr 529-
578	2014-7504, EU Joint Programme-Neurodegenerative Disease Research-GENFI-PROX,
579	Vetenskapsrådet 2019-0224, Vetenskapsrådet 2015-02926, Vetenskapsrådet 2018-
580	02754, the Swedish FTD Inititative-Schörling Foundation, Alzheimer Foundation, Brain
581	Foundation, Dementia Foundation and Region Stockholm ALF-project. D.G. received
582	support from the EU Joint Programme-Neurodegenerative Disease Research and the
583	Italian Ministry of Health (PreFrontALS) grant 733051042. R.V. has received funding
584	from the Mady Browaeys Fund for Research into Frontotemporal Dementia. J.L.
585	received funding for this work by the Deutsche Forschungsgemeinschaft German
586	Research Foundation under Germany's Excellence Strategy within the framework of the
587	Munich Cluster for Systems Neurology (EXC 2145 SyNergy-ID 390857198). M.O.
588	has received funding from Germany's Federal Ministry of Education and Research
589	(BMBF). E.F. has received funding from a Canadian Institute of Health Research grant
590	#327387. M.M. has received funding from a Canadian Institute of Health Research
591	operating grant and the Weston Brain Institute and Ontario Brain Institute. F.M. is
592	supported by the Tau Consortium and has received funding from the Carlos III Health
593	Institute (PI19/01637). J.D.R. is supported by the Bluefield Project and the National
594	Institute for Health and Care Research University College London Hospitals Biomedical
595	Research Centre and has received funding from an MRC Clinician Scientist Fellowship
596	(MR/M008525/1) and a Miriam Marks Brain Research UK Senior Fellowship. Several
597	authors of this publication (J.C.V.S., M.S., R.V., A.d.M., M.O., R.V., J.D.R.) are
598	members of the European Reference Network for Rare Neurological Diseases (ERN-

599	RND) - Project ID No 739510. This work was also supported by the EU Joint
600	Programme-Neurodegenerative Disease Research GENFI-PROX grant [2019-02248; to
601	J.D.R., M.O., B.B., C.G., J.C.V.S. and M.S. For the purpose of open access, the author
602	has applied a CC BY public copyright licence to any Author Accepted Manuscript
603	version arising from this submission.
604	
605	
606	JBR is a non-remunerated trustee of the Guarantors of Brain, Darwin College,
607	and the PSP Association; he provides consultancy to Alzheimer Research UK,
608	Asceneuron, Alector, Biogen, CuraSen, CumulusNeuro, UCB, SV Health, and Wave,
609	and has research grants from AZ-Medimmune, Janssen, Lilly as industry partners in the
610	Dementias Platform UK.
611	
612	
613	
614	
615	
616	
617	
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634	

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

635

636 **References:**

- Coyle-Gilchrist IT, Dick KM, Patterson K, Vázquez Rodríquez P, Wehmann E, Wilcox A, Lansdall CJ, Dawson KE, Wiggins J, Mead S, Brayne C. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology. 2016 May 3;86(18):1736-43. <u>https://doi.org/10.1007/S00415-019-</u>09363-4
 Greaves CV, Rohrer JD. An update on genetic frontotemporal dementia. Journal
- 643
 of
 neurology.
 2019
 Aug
 1;266(8):2075-86.

644 <u>https://doi.org/10.1007/s00415-019-09363-4</u>

- Meeter LH, Kaat LD, Rohrer JD, Van Swieten JC. Imaging and fluid biomarkers
 in frontotemporal dementia. Nature Reviews Neurology. 2017 Jul;13(7):406-19.
 https://doi.org/10.1038/nrneurol.2017.75
- 4. Raz L, Knoefel J, Bhaskar K. The neuropathology and cerebrovascular
 mechanisms of dementia. Journal of Cerebral Blood Flow & Metabolism. 2016
 Jan;36(1):172-86. https://doi.org/10.1038/jcbfm.2015.164
- 651
 5. Gerrits E, Giannini LA, Brouwer N, Melhem S, Seilhean D, Le Ber I, Brainbank
 652 Neuro-CEB Neuropathology Network, Kamermans A, Kooij G, de Vries HE,
 653 Boddeke EW. Neurovascular dysfunction in GRN-associated frontotemporal
 654 dementia identified by single-nucleus RNA sequencing of human cerebral cortex.
 655 Nature neuroscience. 2022 Aug;25(8):1034-48. https://doi.org/10.1038/s41593-
- 6. Malpetti M, Rittman T, Jones PS, Cope TE, Passamonti L, Bevan-Jones WR,
 Patterson K, Fryer TD, Hong YT, Aigbirhio FI, O'Brien JT. In vivo PET imaging
 of neuroinflammation in familial frontotemporal dementia. Journal of Neurology,

- 660 Neurosurgery & Psychiatry. 2020 Oct 29. <u>https://doi.org/10.1136/jnnp-2020-</u>
 661 323698
- Du AT, Jahng GH, Hayasaka S, Kramer JH, Rosen HJ, Gorno-Tempini ML,
 Rankin KP, Miller BL, Weiner MW, Schuff N. Hypoperfusion in frontotemporal
 dementia and Alzheimer disease by arterial spin labeling MRI. Neurology. 2006
 Oct 10;67(7):1215-20.
- 8. Mutsaerts HJ, Mirza SS, Petr J, Thomas DL, Cash DM, Bocchetta M, De Vita E,
 Metcalfe AW, Shirzadi Z, Robertson AD, Tartaglia MC. Cerebral perfusion
 changes in presymptomatic genetic frontotemporal dementia: a GENFI study.
 Brain. 2019 Apr 1;142(4):1108-20. <u>https://doi.org/10.1093/brain/awz039</u>
- 9. Dopper EG, Chalos V, Ghariq E, den Heijer T, Hafkemeijer A, Jiskoot LC, de
 Koning I, Seelaar H, van Minkelen R, van Osch MJ, Rombouts SA. Cerebral
 blood flow in presymptomatic MAPT and GRN mutation carriers: a longitudinal
 arterial spin labeling study. NeuroImage: Clinical. 2016 Feb 1;12:460-5.
 https://doi.org/10.1016/j.nicl.2016.08.001
- 10. Thal DR, von Arnim CA, Griffin WS, Mrak RE, Walker L, Attems J, Arzberger
 T. Frontotemporal lobar degeneration FTLD-tau: preclinical lesions, vascular, and
 Alzheimer-related co-pathologies. Journal of neural transmission. 2015
 Jul;122:1007-18. https://doi.org/10.1007/s00702-014-1360-6
- 679 11. Willie CK, Tzeng YC, Fisher JA, Ainslie PN. Integrative regulation of human
 680 brain blood flow. The Journal of physiology. 2014 Mar 1;592(5):841-59.
 681 https://doi.org/10.1113/jphysiol.2013.268953
- 682 12. Jensen KE, Thomsen C, Henriksen O. In vivo measurement of intracellular pH in
 683 human brain during different tensions of carbon dioxide in arterial blood. A

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

684	31P NMR study. Acta physiologica scandinavica. 1988 Oct;134(2):295-8.
685	https://doi.org/10.1111/j.1748-1716.1988.tb08492.x
686	13. Lassen NA. Brain extracellular pH: the main factor controlling cerebral blood
687	flow. Scandinavian journal of clinical and laboratory investigation. 1968 Jan
688	1;22(4):247-51.
689	14. Reich T, Rusinek H. Cerebral cortical and white matter reactivity to carbon
690	dioxide. Stroke. 1989 Apr;20(4):453-7. https://doi.org/10.1161/01.STR.20.4.453
691	15. Tsuda Y, Hartmann A. Changes in hyperfrontality of cerebral blood flow and
692	carbon dioxide reactivity with age. Stroke. 1989 Dec;20(12):1667-73.
693	https://doi.org/10.1161/01.STR.20.12.1667
694	16. Brandes RP, Fleming I, Busse R. Endothelial aging. Cardiovascular research.
695	2005 May 1;66(2):286-94. https://doi.org/10.1016/j.cardiores.2004.12.027
696	17. Haight TJ, Bryan RN, Erus G, Davatzikos C, Jacobs DR, D'Esposito M, Lewis
697	CE, Launer LJ. Vascular risk factors, cerebrovascular reactivity, and the default-
698	mode brain network. Neuroimage. 2015 Jul 15;115:7-16.
699	https://doi.org/10.1016/j.neuroimage.2015.04.039
700	18. Cantin S, Villien M, Moreaud O, Tropres I, Keignart S, Chipon E, Le Bas JF,
701	Warnking J, Krainik A. Impaired cerebral vasoreactivity to CO2 in Alzheimer's
702	disease using BOLD fMRI. Neuroimage. 2011 Sep 15;58(2):579-87.
703	https://doi.org/10.1016/j.neuroimage.2011.06.070
704	19. Richiardi J, Monsch AU, Haas T, Barkhof F, Van de Ville D, Radü EW, Kressig
705	RW, Haller S. Altered cerebrovascular reactivity velocity in mild cognitive
706	impairment and Alzheimer's disease. Neurobiology of aging. 2015 Jan
707	1;36(1):33-41. https://doi.org/10.1016/j.neurobiolaging.2014.07.020

708	20. Birn RM, Diamond JB, Smith MA, Bandettini PA. Separating respiratory-
709	variation-related fluctuations from neuronal-activity-related fluctuations in fMRI.
710	Neuroimage. 2006 Jul 15;31(4):1536-48.
711	https://doi.org/10.1016/j.neuroimage.2006.02.048
712	21. Shmueli K, van Gelderen P, de Zwart JA, Horovitz SG, Fukunaga M, Jansma JM,
713	Duyn JH. Low-frequency fluctuations in the cardiac rate as a source of variance
714	in the resting-state fMRI BOLD signal. Neuroimage. 2007 Nov 1;38(2):306-20.
715	Shmueli K, van Gelderen P, de Zwart JA, Horovitz SG, Fukunaga M, Jansma JM,
716	Duyn JH. Low-frequency fluctuations in the cardiac rate as a source of variance
717	in the resting-state fMRI BOLD signal. Neuroimage. 2007 Nov 1;38(2):306-20.
718	https://doi.org/10.1016/j.neuroimage.2007.07.037
719	22. Golestani AM, Wei LL, Chen JJ. Quantitative mapping of cerebrovascular
720	reactivity using resting-state BOLD fMRI: validation in healthy adults.
721	Neuroimage. 2016 Sep 1;138:147-63.
722	https://doi.org/10.1016/j.neuroimage.2016.05.025
723	23. Kannurpatti SS, Biswal BB. Detection and scaling of task-induced fMRI-BOLD
724	response using resting state fluctuations. Neuroimage. 2008 May 1;40(4):1567-
725	74. https://doi.org/10.1016/j.neuroimage.2007.09.040
726	24. Liu P, Li Y, Pinho M, Park DC, Welch BG, Lu H. Cerebrovascular reactivity
727	mapping without gas challenges. Neuroimage. 2017 Feb 1;146:320-6.
728	25. Rostrup E, Larsson HB, Toft PB, Garde K, Thomsen C, Ring P, Søndergaard L,
729	Henriksen O. Functional MRI of CO2 induced increase in cerebral perfusion.
730	NMR in Biomedicine. 1994 Mar; $7(1 \Box 2)$:29-34.
731	https://doi.org/10.1002/nbm.1940070106

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

732	26. Tsvetanov KA, Henson RN, Rowe JB. Separating vascular and neuronal effects
733	of age on fMRI BOLD signals. Philosophical Transactions of the Royal Society
734	B. 2021 Jan 4;376(1815):20190631. https://doi.org/10.1098/rstb.2019.0631
735	27. Kannurpatti SS, Motes MA, Biswal BB, Rypma B. Assessment of unconstrained
736	cerebrovascular reactivity marker for large age-range FMRI studies. PloS one.
737	2014 Feb 13;9(2):e88751. https://doi.org/10.1371/journal.pone.0088751
738	28. Tsvetanov KA, Henson RN, Tyler LK, Davis SW, Shafto MA, Taylor JR,
739	Williams N, Rowe JB. The effect of ageing on fMRI: Correction for the
740	confounding effects of vascular reactivity evaluated by joint fMRI and MEG in
741	335 adults. Human brain mapping. 2015 Jun;36(6):2248-69.
742	https://doi.org/10.1002/hbm.22768
743	29. Tsvetanov KA, Henson RN, Jones PS, Mutsaerts H, Fuhrmann D, Tyler LK,
744	Cam \square CAN, Rowe JB. The effects of age on resting \square state BOLD signal
745	variability is explained by cardiovascular and cerebrovascular factors.
746	Psychophysiology. 2021 Jul;58(7):e13714. https://doi.org/10.1111/psyp.13714
747	30. Su J, Wang M, Ban S, Wang L, Cheng X, Hua F, Tang Y, Zhou H, Zhai Y, Du X,
748	Liu J. Relationship between changes in resting-state spontaneous brain activity
749	and cognitive impairment in patients with CADASIL. The Journal of Headache
750	and Pain. 2019 Dec;20:1-1. https://doi.org/10.1186/s10194-019-0982-3
751	31. Nair VA, Raut RV, Prabhakaran V. Investigating the blood oxygenation level-
752	dependent functional MRI response to a verbal fluency task in early stroke before
753	and after hemodynamic scaling. Frontiers in Neurology. 2017 Jun 19;8:283.
754	https://doi.org/10.3389/fneur.2017.00283
755	

32. Millar PR, Ances BM, Gordon BA, Benzinger TL, Fagan AM, Morris JC, Balota 755 756 DA. Evaluating resting-state BOLD variability in relation to biomarkers of

757	preclinical Alzheimer's disease. Neurobiology of aging. 2020 Dec 1;96:233-45.
758	https://doi.org/10.1016/j.neurobiolaging.2020.08.007
759	33. Tsvetanov KA, Spindler LR, Stamatakis EA, Newcombe VF, Lupson VC,
760	Chatfield DA, Manktelow AE, Outtrim JG, Elmer A, Kingston N, Bradley JR.
761	Hospitalisation for COVID-19 predicts long lasting cerebrovascular impairment:
762	A prospective observational cohort study. NeuroImage: Clinical. 2022 Jan
763	1;36:103253. https://doi.org/10.1016/j.nicl.2022.103253
764	34. Morris JC, Weintraub S, Chui HC, Cummings J, DeCarli C, Ferris S, Foster NL,
765	Galasko D, Graff-Radford N, Peskind ER, Beekly D. The Uniform Data Set
766	(UDS): clinical and cognitive variables and descriptive data from Alzheimer
767	Disease Centers. Alzheimer Disease & Associated Disorders. 2006 Oct
768	1;20(4):210-6. https://doi.org/10.1097/01.wad.0000213865.09806.92
769	35. Rohrer JD, Nicholas JM, Cash DM, Van Swieten J, Dopper E, Jiskoot L, Van
770	Minkelen R, Rombouts SA, Cardoso MJ, Clegg S, Espak M. Presymptomatic
771	cognitive and neuroanatomical changes in genetic frontotemporal dementia in the
772	Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional
773	analysis. The Lancet Neurology. 2015 Mar 1;14(3):253-62.
774	https://doi.org/10.1016/S1474-4422(14)70324-2
775	36. Van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate imputation by
776	chained equations in R. Journal of statistical software. 2011 Dec 12;45:1-67.
777	https://doi.org/10.18637/jss.v045.i03
778	37. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl.
779	Neuroimage. 2012 Aug 15;62(2):782-90.
780	https://doi.org/10.1016/j.neuroimage.2011.09.015

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

781	38. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-						
782	Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK. Advances						
783	in functional and structural MR image analysis and implementation as FSL.						
784	Neuroimage. 2004 Jan 1;23:S208-19.						
785	https://doi.org/10.1016/j.neuroimage.2004.07.051						
786	39. Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, editors. Statistical						
787	parametric mapping: the analysis of functional brain images. Elsevier; 2011 Apr						
788	28.						
789	40. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the						
790	robust and accurate linear registration and motion correction of brain images.						
791	Neuroimage. 2002 Oct 1;17(2):825-41. https://doi.org/10.1006/nimg.2002.1132						
792	41. Pruim RH, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA-						
793	AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI						
794	data. Neuroimage. 2015 May 15;112:267-77.						
795	https://doi.org/10.1016/j.neuroimage.2015.02.064						
796	42. Geerligs L, Tsvetanov KA, Henson RN. Challenges in measuring individual						
797	differences in functional connectivity using fMRI: the case of healthy aging.						
798	Human brain mapping. 2017 Aug;38(8):4125-56.						
799	https://doi.org/10.1002/hbm.23653						
800	43. Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME,						
801	Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH. An improved						
802	framework for confound regression and filtering for control of motion artifact in						
803	the preprocessing of resting-state functional connectivity data. Neuroimage. 2013						
804	Jan 1;64:240-56. https://doi.org/10.1016/j.neuroimage.2012.08.052						

805	44. Xu L, Groth KM, Pearlson G, Schretlen DJ, Calhoun VD. Source based							
806	morphometry: The use of independent component analysis to identify gray matter							
807	differences with application to schizophrenia. Human brain mapping. 2009							
808	Mar;30(3):711-24. <u>https://doi.org/10.1002/hbm.20540</u>							
809	45. Hui M, Li J, Wen X, Yao L, Long Z. An empirical comparison of information-							
810	theoretic criteria in estimating the number of independent components of fMRI							
811	data. PloS one. 2011 Dec 27;6(12):e29274.							
812	https://doi.org/10.1371/journal.pone.0029274							
813	46. Li YO, Adalı T, Calhoun VD. Estimating the number of independent components							
814	for functional magnetic resonance imaging data. Human brain mapping. 2007							
815	Nov;28(11):1251-66. https://doi.org/10.1002/hbm.20359							
816	47. Rissanen J. Modeling by shortest data description. Automatica. 1978 Sep							
817	1;14(5):465-71. https://doi.org/10.1016/0005-1098(78)90005-5							
818	48. Himberg J, Hyvärinen A, Esposito F. Validating the independent components of							
819	neuroimaging time series via clustering and visualization. Neuroimage. 2004 Jul							
820	1;22(3):1214-22. https://doi.org/10.1016/j.neuroimage.2004.03.027							
821	49. Millar PR, Petersen SE, Ances BM, Gordon BA, Benzinger TL, Morris JC,							
822	Balota DA. Evaluating the sensitivity of resting-state BOLD variability to age and							
823	cognition after controlling for motion and cardiovascular influences: a network-							
824	based approach. Cerebral Cortex. 2020 Nov;30(11):5686-701.							
825	https://doi.org/10.1093/cercor/bhaa138							
826	50. Moore KM, Nicholas J, Grossman M, McMillan CT, Irwin DJ, Massimo L, Van							
827	Deerlin VM, Warren JD, Fox NC, Rossor MN, Mead S. Age at symptom onset							
828	and death and disease duration in genetic frontotemporal dementia: an							

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

- 829 international retrospective cohort study. The Lancet Neurology. 2020 Feb
 830 1;19(2):145-56. https://doi.org/10.1016/S1474-4422(19)30394-1
- **51.** Chen J, Liu J, Calhoun VD, Arias-Vasquez A, Zwiers MP, Gupta CN, Franke B,
- 832 Turner JA. Exploration of scanning effects in multi-site structural MRI studies.
- 833 Journal of neuroscience methods. 2014 Jun 15;230:37-50.
 834 https://doi.org/10.1016/j.jneumeth.2014.04.023
- 835 52. Faria AV, Joel SE, Zhang Y, Oishi K, van Zjil PC, Miller MI, Pekar JJ, Mori S. 836 Atlas-based analysis of resting-state functional connectivity: Evaluation for 837 reproducibility multi-modal anatomy-function and correlation studies. 838 2012 Jul Neuroimage. 2;61(3):613-21.
- 839 https://doi.org/10.1016/j.neuroimage.2012.03.078
- Flück D, Beaudin AE, Steinback CD, Kumarpillai G, Shobha N, McCreary CR,
 Peca S, Smith EE, Poulin MJ. Effects of aging on the association between
 cerebrovascular responses to visual stimulation, hypercapnia and arterial stiffness.
 Frontiers in physiology. 2014 Feb 19;5:49.

844 <u>https://doi.org/10.3389/fphys.2014.00049</u>

- 54. Hosp JA, Dressing A, Blazhenets G, Bormann T, Rau A, Schwabenland M,
 Thurow J, Wagner D, Waller C, Niesen WD, Frings L. Cognitive impairment and
 altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain.
- 848 2021 Apr 1;144(4):1263-76.
- 55. Yezhuvath US, Uh J, Cheng Y, Martin-Cook K, Weiner M, Diaz-Arrastia R, van
 Osch M, Lu H. Forebrain-dominant deficit in cerebrovascular reactivity in
 Alzheimer's disease. Neurobiology of aging. 2012 Jan 1;33(1):75-82.
 https://doi.org/10.1016/j.neurobiolaging.2010.02.005

Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia

853	56. Cash DM, Bocchetta M, Thomas DL, Dick KM, van Swieten JC, Borroni B,
854	Galimberti D, Masellis M, Tartaglia MC, Rowe JB, Graff C. Patterns of gray
855	matter atrophy in genetic frontotemporal dementia: results from the GENFI study.
856	Neurobiology of aging. 2018 Feb 1;62:191-6.
857	https://doi.org/10.1016/j.neurobiolaging.2017.10.008
858	57. Tsvetanov KA, Gazzina S, Jones PS, van Swieten J, Borroni B, Sanchez Valle
859	R, Moreno F, Laforce Jr R, Graff C, Synofzik M, Galimberti D. Brain functional
860	network integrity sustains cognitive function despite atrophy in presymptomatic
861	genetic frontotemporal dementia. Alzheimer's & Dementia. 2021 Mar;17(3):500-
862	14. <u>https://doi.org/10.1002/alz.12209</u>
863	58. Mutsaerts HJ, Petr J, Thomas DL, De Vita E, Cash DM, van Osch MJ, Golay X,
864	Groot PF, Ourselin S, van Swieten J, Laforce Jr R. Comparison of arterial spin
865	labeling registration strategies in the multi center GENetic frontotemporal
866	dementia initiative (GENFI). Journal of Magnetic Resonance Imaging. 2018
867	Jan;47(1):131-40. https://doi.org/10.1002/jmri.25751
868	59. Menon V, Uddin LQ. Saliency, switching, attention and control: a network model
869	of insula function. Brain structure and function. 2010 Jun;214:655-67.
870	https://doi.org/10.1007/s00429-010-0262-0
871	60. Seeley WW. Anterior insula degeneration in frontotemporal dementia. Brain
872	Structure and Function. 2010 Jun;214:465-75. https://doi.org/10.1007/s00429-
873	<u>010-0263-z</u>
874	61. De la Torre JC. Alzheimer disease as a vascular disorder: nosological evidence.
875	Stroke. 2002 Apr 1;33(4):1152-62.
876	https://doi.org/10.1161/01.STR.0000014421.15948.67

- 877 62. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's
 878 disease. Nature Reviews Neuroscience. 2004 May 1;5(5):347-60.
 879 https://doi.org/10.1038/nrn1387
- 63. Chun MY, Jang H, Kim SJ, Park YH, Yun J, Lockhart SN, Weiner M, De Carli
 C, Moon SH, Choi JY, Nam KR. Emerging role of vascular burden in AT (N)
 classification in individuals with Alzheimer's and concomitant cerebrovascular
- burdens. Journal of Neurology, Neurosurgery & Psychiatry. 2024 Jan 1;95(1):44-
- 884 51. <u>https://doi.org/10.1136/jnnp-2023-331603</u>
- 64. Claassen JA, Jansen RW. Cholinergically mediated augmentation of cerebral
 perfusion in alzheimer's disease and related cognitive disorders: the cholinergic–
 vascular hypothesis. The Journals of Gerontology Series A: Biological Sciences
 and Medical Sciences. 2006 Mar 1;61(3):267-71.
- 889 https://doi.org/10.1093/gerona/61.3.267
- 65. Lyons D, Roy S, Patel M, Benjamin N, Swift CG. Impaired nitric oxide-mediated
 vasodilatation and total body nitric oxide production in healthy old age. Clinical
 Science. 1997 Dec 1:93(6):519-25. https://doi.org/10.1042/cs0930519
- 89366. Makedonov I, Black SE, MacIntosh BJ. BOLD fMRI in the white matter as a894marker of aging and small vessel disease. PloS one. 2013 Jul 2;8(7):e67652.
- 895 <u>https://doi.org/10.1371/journal.pone.0067652</u>
- 67. Premi E, Calhoun VD, Diano M, Gazzina S, Cosseddu M, Alberici A, Archetti S,
 Paternicò D, Gasparotti R, van Swieten J, Galimberti D. The inner fluctuations of
 the brain in presymptomatic frontotemporal dementia: the chronnectome
 fingerprint. Neuroimage. 2019 Apr 1;189:645-54.
 https://doi.org/10.1016/j.neuroimage.2019.01.080

- 68. Liu X, Tyler LK, Cam CAN, Rowe JB, Tsvetanov KA. Multimodal fusion
 analysis of functional, cerebrovascular, and structural neuroimaging in healthy
 aging subjects. Human brain mapping. 2022 Dec 15;43(18):5490-508.
 https://doi.org/10.1002/hbm.26025
- 905 69. Rohrer JD, Ridgway GR, Modat M, Ourselin S, Mead S, Fox NC, Rossor MN,
 906 Warren JD. Distinct profiles of brain atrophy in frontotemporal lobar
 907 degeneration caused by progranulin and tau mutations. Neuroimage. 2010 Nov
 908 15;53(3):1070-6. https://doi.org/10.1016/j.neuroimage.2009.12.088
- 909
 70. Sur S, Lin Z, Li Y, Yasar S, Rosenberg P, Moghekar A, Hou X, Kalyani R, Hazel
 910
 K, Pottanat G, Xu C. Association of cerebrovascular reactivity and Alzheimer
 911
 911
 912
 25;95(8):e962-72. https://doi.org/10.1212/WNL.00000000010133
- 913 71. Liu X, Tyler LK, Davis SW, Rowe JB, Tsvetanov KA. Cognition's dependence
 914 on functional network integrity with age is conditional on structural network
 915 integrity. Neurobiology of Aging. 2023 Sep 1;129:195-208.
 916 https://doi.org/10.1016/j.neurobiolaging.2023.06.001
- 917 **72.** Passamonti L, Tsvetanov KA, Jones PS, Bevan-Jones WR, Arnold R, Borchert
- RJ, Mak E, Su L, O'brien JT, Rowe JB. Neuroinflammation and functional
 connectivity in Alzheimer's disease: interactive influences on cognitive
 performance. Journal of Neuroscience. 2019 Sep 4;39(36):7218-26.
 https://doi.org/10.1523/JNEUROSCI.2574-18.2019
- 73. Tsvetanov KA, Henson RN, Tyler LK, Razi A, Geerligs L, Ham TE, Rowe JB.
 Extrinsic and intrinsic brain network connectivity maintains cognition across the
 lifespan despite accelerated decay of regional brain activation. Journal of

925	Neuroscience.	2016	Mar	16;36(11):3115-26.
926	https://doi.org/10.152	23/JNEUROSCI.2	2733-15.2016	
927	74. Tsvetanov KA, Ye Z	, Hughes L, Sam	u D, Treder MS, V	Wolpe N, Tyler LK, Rowe
928	JB. Activity and con	nectivity differen	ces underlying in	hibitory control across the
929	adult life span. Jo	ournal of Neur	oscience. 2018	Sep 5;38(36):7887-900.
930	https://doi.org/10.152	23/JNEUROSCI.2	2919-17.2018	
931	75. Wu S, Tyler LK, H	enson RN, Row	e JB, Tsvetanov	KA. Cerebral blood flow
932	predicts multiple der	nand network act	tivity and fluid in	telligence across the adult
933	lifespan. Neurob	biology of	aging. 202	23 Jan 1;121:1-4.
934	https://doi.org/10.101	16/j.neurobiolagir	ng.2022.09.006	
935				
936				

Cerebrovascular reactivity impairment in genetic frontotemporal dementia

 Table 1. Demographic information of participants included in the analysis, grouped by genetic status as noncarriers, pre-symptomatic carriers, and symptomatic carriers

Demographics	Sample	NC	PSC	SC	Group comparison,					
							P value*			
					Sample	NC vs SC1	PSC vs SC	NC vs PSC		
Total N	673	265 (39.38)	284 (42.2)	124 (18.42)						
Family mutation					.126					
C9orf72	264 (39.23)		107	61						
GRN	276 (41.01)		123	40						
MAPT	133 (19.76)		54	23						
Age (years)	48.17±13.43	45.95±13.09	43.93±11.4	62.64±7.43	<.001	<.001	<.001	.132		
Sex ratio f:m	371:302	153:112	165:119	53:71	.009	.006	.004	.931		
Estimated years	-10.62±13.40	-13.21±13.47	-14.30±11.63	3.32±6.24	<.001	<.001	<.001	.569		
from onset										
Education (years)	14.18±3.45	14.51±3.35	14.50±3.36	12.72±3.53	<.001	<.001	<.001	.998		

Values indicate count (percentage) or mean \pm standard deviation.

**P* values are the result of F test or χ^2 test as appropriate. Bold numbers denote statistical significance at p < 0.05 level.

Abbreviations: *C9orf*72, chromosome 9 open reading frame 72; *GRN*, progranulin; *MAPT*, microtubule-associated protein tau. NC, non-carrier; PSC, pre-symptomatic mutation carrier; SC, symptomatic mutation carrier; f, female; m, male.

Cerebrovascular reactivity impairment in genetic frontotemporal dementia

Table 2. Multiple regression analysis results of independent component (IC) subject loadings from independentcomponent analysis (model ' $RSFA_{IC} \sim 1 + Genetic status*Age + Sex + Handedness + Scanning Site')$

Predictor of interest	Model	β	Т	Uncorrected	FDR-
	Adjusted R ²			Р	corrected P*
IC 4 – Posterior cingulat	e cortex/precuneus			-	
	0.62				
Age		-0.09	-3.59	<.001	.001
Genetic status		-0.05	-1.77	.078	.124
Genetic status*Age		-0.05	-2.00	.046	.085
IC 17 – Posterior parieta	l association areas				
	0.54				
Age		-0.13	-4.27	<.001	<.001
Genetic status		-0.06	-1.80	.072	.098
Genetic status*Age		-0.06	-2.17	.030	.048
IC 21 – Right lateral pre	frontal cortex				
	0.44				
Age		-0.11	-3.33	<.001	.004
Genetic status		-0.10	-2.68	.008	.021
Genetic status*Age		-0.07	-2.31	.021	.046
IC 23 – Left lateral prefr	contal cortex				
	0.49				
Age		-0.22	-7.22	<.001	<.001

Genetic status	-0.06	-1.87	.062	.168
Genetic status*Age	-0.08	-2.52	.012	.044

RSFA differences across groups of interest following robust multiple linear regression analysis on component-based RSFA maps. Estimated regression parameters, t values, and *p* values are shown for main effects across the entire sample. Outcomes of interest are the RSFA-IC loadings associated with ICA components within GM regions where case-control differences are found. Models are adjusted for sex, handedness, and scanning site.

*P values are FDR-corrected at the 0.05 level in comparisons across the whole sample (all genetic status groups combined). Bold numbers indicate that p values are statistically significant.

Cerebrovascular reactivity impairment in genetic frontotemporal dementia

Table 3. Multiple regression analysis results following voxel-based region of interest analysis (model' $RSFA_{Voxel} \sim 1 + Genetic Status*Age + Sex + Handedness + Scanning Site'$)

Predictor of interest	Model	β	Т	Uncorrected	FDR-
	Adjusted R ²			Р	corrected P*
Left middle frontal gyrus	0.23				
Age		-0.09	-2.51	.012	.034
Genetic status		-0.14	-3.25	.001	.005
Genetic status*Age		-0.16	-4.28	<.001	<.001
Right middle frontal gyrus	0.25		•		
Age		-0.13	-3.72	<.001	.002
Genetic status		-0.15	-3.72	<.001	.002
Genetic status*Age		-0.08	-2.25	.025	.041
Left superior frontal gyrus	0.17				
Age		-0.05	-1.37	.170	.320
Genetic status		-0.19	-4.45	<.001	<.001
Genetic status*Age		-0.08	-2.16	.031	.093
Right superior frontal gyrus	0.26				
Age		-0.10	-2.79	.005	.013
Genetic status		-0.17	-4.09	<.001	<.001
Genetic status*Age		0.06	-1.54	.123	.148

RSFA differences across groups of interest following robust multiple linear regression analysis in several representative ROIs based on voxel-wise univariate analysis on RSFA maps. Estimated regression parameters, t values, and p values are shown for main effects across the entire sample. Outcomes of interest are the RSFA-ROI values associated with each ROI where case-control

differences are found. Models are adjusted for sex, handedness, and scanning site.

*P values are FDR-corrected at the 0.05 level across the whole sample (all genetic status groups combined). Bold numbers indicate

that *p* values are statistically significant.

Cerebrovascular reactivity impairment in genetic frontotemporal dementia

Table 4. Multiple regression analysis results of cognition as a function of RSFA (model '*Cognition*_{PC1} ~ 1 + Geneticstatus*RSFA_{IC/Vaxel} + Age + Sex + Handedness + Scanning Site')

		Sample		NC	versus S	С	PSC versus SC			NC versus PSC		
Predictor Model												
Adjusted	\mathbf{R}^2 $\boldsymbol{\beta}$	Т	P *	β	Т	P *	β	Т	P *	β	Т	P *
		ICs	based o	n Indep	endent C	ompone	ent And	ılysis				
IC 4 – Posterior cin	gulate co	ortex/prec	uneus									
0.52	8	Ĩ										
Age.	-0 43	-14 10	< 001	-0 23	-6 36	< 001	-0 30	-7 69	< 001	-0 37	-9 45	< 001
Genetic status	-0.40	-13.07	< 001	-0.25	-0.50	< 001	-0.50	-15.28	< 001	-0.01	-0.19	851
RSFA	0.04	0.80	600	-0.00	-10.09	<.001	-0.01	-13.20		-0.01	-0.17	.051
Genetic	0.04	1.43	339									
status*RSFA	0.04	1.+5	.557									
	•											
IC 17 – Posterior as	sociation	1 areas										
0.52												
Age	-0.44	-14.23	<.001	-0.23	-6.46	<.001	-0.30	-7.67	<.001	-0.37	-9.38	<.001
Genetic status	-0.40	-13.05	<.001	-0.68	18.21	<.001	-0.61	-15.28	<.001	-0.01	-0.29	.769
RSFA	-0.01	-0.04	.980									
Genetic	-0.08	2.84	.029	0.04	1.33	.183	0.02	0.53	.600	0.07	1.77	.078
status*RSFA												
IC 21 – Right latera	al prefroi	ntal corte	X									
0.53												
Age	-0.43	-14.08	<.001	-0.23	-6.55	<.001	-0.30	-7.76	<.001	-0.37	-9.40	<.001
Genetic status	-0.39	-12.61	<.001	-0.67	-17.74	<.001	-0.60	-14.73	<.001	-0.01	- 0.16	.869
RSFA	0.08	2.06	.124									

Genetic	0.09	3.40	.008	0.05	1.91	.057	0.02	0.64	.523	0.05	1.26	.207
status*RSFA												
IC 23 – Left lateral	prefronta	al cortex										
0.52												
Age	-0.40	-12.85	<.001	0.22	-6.05	<.001	-0.29	-7.24	<.001	-0.36	-8.92	<.001
Genetic status	-0.38	-12.33	<.001	0.67	-17.51	<.001	-0.59	-14.28	<.001	-0.01	-0.19	.846
RSFA	0.11	2.88	.029	0.07	1.69	.091	0.07	1.76	.079	0.07	1.38	.169
Genetic	0.08	2.83	.030	0.01	0.21	.831	0.03	1.06	.289	-0.04	-0.90	.367
status*RSFA												
ROIs based on Voxel-wise Analysis												
Left middle frontal	gyrus											
0.57												
Age	-0.38	-12.92	<.001	-0.20	-6.01	<.001	-0.28	-7.58	<.001	-0.36	-9.17	<.001
Genetic status	-0.35	-11.51	<.001	-0.60	-15.18	<.001	0.53	-12.82	<.001	-0.003	-0.07	.944
RSFA	0.13	4.42	<.001	0.10	2.95	.003	0.14	4.35	<.001	-0.03	-0.82	.412
Genetic	0.23	8.02	<.001	0.22	6.60	<.001	0.16	4.84	<.001	0.07	1.73	.085
status*RSFA												
Right middle fronta	lovrus											
	i gji us											
0.54	0.41	12 84	. 0.01	0.04	((1	.001	0.20	- ()	. 001	0.25	0.04	. 001
Age	-0.41	-13.76	<.001	-0.24	-0.01	<.001	-0.30	-/.03	<.001	-0.37	-9.20	<.001
Genetic status	-0.37	-11.84	<.001	-0.64	-15.63	<.001	-0.58	-14.04	<.001	-0.003	-0.07	.943
RSFA	0.11	3.59	.003	0.07	2.11	.036	0.07	2.15	.032	0.05	1.12	.261
Genetic	0.15	5.25	<.001	0.07	2.06	.040	0.04	1.30	.195	0.05	1.23	.220
status*RSFA												
Left superior fronta	l gyrus											
0.54												
Age	-0.42	-13.88	<.001	-0.23	-6.47	<.001	-0.30	-7.98	<.001	-0.37	-9.36	<.001

Genetic status	-0.38	-12.10	<.001	-0.64	-16.37	<.001	-0.58	-13.94	<.001	-0.01	-0.17	.861
RSFA	0.08	2.49	.054	0.06	1.85	.065	0.05	1.67	.096	-0.04	-0.85	.398
Genetic	0.14	4.83	<.001	0.12	3.57	<.001	0.09	2.99	.003	0.002	0.06	.951
status*RSFA												
Right superior front	al gyrus	5										
0.54												
Age	-0.42	-14.05	<.001	-0.23	-6.59	<.001	-0.30	-7.72	<.001	-0.37	-9.43	<.001
Genetic status	-0.39	-12.64	<.001	-0.67	-17.30	<.001	-0.60	-14.64	<.001	-0.01	-0.29	.769
RSFA	0.03	0.82	.610									
Genetic	0.15	5.29	<.001	0.09	2.91	.004	0.04	1.28	.201	0.07	1.90	.058

Cognitive function differences as a function of RSFA and genetic status following robust multiple linear regression analysis in ICAbased components (top panel) and several representative ROIs based on voxel-wise univariate analysis on RSFA maps (bottom panel). Cognitive function is represented by subjects' loading values for PC 1 following PCA on nine cognitive measures. Estimated regression parameters, t values, and *p* values are shown for main effects across the entire sample and sub-groups of interest where relevant. Models are adjusted for age, sex, handedness, and scanning site.

**P*-values are FDR-corrected at the 0.05 level across the whole sample (all genetic status groups combined). Bold numbers indicate that *p* values are statistically significant.

Abbreviations: NC, non-carrier; PSC, pre-symptomatic mutation carrier; SC, symptomatic mutation carrier.

Figure 1. Schematic representation of the pre-processing pipeline and analytic approach used

in the study.

Cerebrovascular reactivity impairment in genetic frontotemporal dementia

Cerebrovascular reactivity impairment in genetic frontotemporal dementia

Figure 2. Spatial distribution of 4 independent components (ICs) within neurocognitively meaningful areas (i.e., GM regions) based on ICA on RSFA maps across subjects where differences in IC loading values are found in association with genetic status, age, and genetic status x age interaction. Robust general linear model regression lines for each IC are presented in scatter plots with respective r values on the right side of each IC map. P values are FDR-corrected at the 0.05 level across the whole sample. Group-level spatial maps are overlaid onto the Colin-27 (ch2.nii) structural template of the MNI brain, where intensity values correspond to z-values.

Cerebrovascular reactivity impairment in genetic frontotemporal dementia

Figure 3. Panel A. Regional distribution of RSFA effects based on voxel-wise univariate analysis. Cold colours denote RSFA decreases as a function of genetic status and their interaction with age. Statistical parametric maps are displayed at an uncorrected level of p < 0.01 to better visualise regional CVR patterns. Images are overlaid onto the Colin-27 (ch2.nii) structural template of the MNI brain. Panel B. Differences in RSFA in association with genetic status, age, and genetic status x age interaction across groups of interest in several representative ROIs based on voxel-wise univariate analysis. Robust general linear model regression lines for each ROI are presented in scatter plots with respective r values on the right side of each ROI map. P values are FDR-corrected at the 0.05 level across the whole sample. NC, non-carrier; PSC, pre-symptomatic mutation carrier; SC, symptomatic mutation carrier. MFG, middle frontal gyrus; SFG, superior frontal gyrus. ROI, region of interest; VOI, volume of interest.

Cerebrovascular reactivity impairment in genetic frontotemporal dementia

Figure 4. Differences in cognitive function in association with genetic status, RSFA, and genetic status x RSFA interaction across groups of interest. Cognitive function is denoted by subjects' loading values for PC 1 following PCA on nine cognitive measures. Effects are illustrated for ICA-based components within GM areas (top panel) and several representative ROIs based on voxel-wise analysis (bottom panel). Robust general linear model regression lines for each respective IC and ROI are presented in scatter plots with corresponding r values on the right side of a representative slice depicting each IC/ROI map. P values are

FDR-corrected at the 0.05 level across the whole sample. MFG, middle frontal gyrus; SFG,

superior frontal gyrus. ROI, region of interest; VOI, volume of interest.