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Abstract 

 1 

INTRODUCTION: Cerebrovascular reactivity (CVR) is an indicator of cerebrovascular 2 

health and its signature in hereditary frontotemporal dementia (FTD) remains unknown. We 3 

investigated CVR in genetic FTD and its relationship to cognition.  4 

 5 

METHODS: CVR differences were assessed between 284 pre-symptomatic and 124 6 

symptomatic mutation carriers, and 265 non-carriers, using resting-state fluctuation 7 

amplitudes (RSFA) on component-based and voxel-level RSFA maps. Associations and 8 

interactions between RSFA, age, genetic status, and cognition were examined using 9 

generalised linear models.  10 

 11 

RESULTS: Compared to non-carriers, mutation carriers exhibited greater RSFA reductions, 12 

predominantly in frontal cortex. These reductions increased with age. The RSFA in these 13 

regions correlated with cognitive function in symptomatic and, to a lesser extent, pre-14 

symptomatic individuals, independent of disease stage. 15 

 16 

DISCUSSION: CVR impairment in genetic FTD predominantly affects frontal cortical areas, 17 

and its preservation may yield cognitive benefits for at-risk individuals. Cerebrovascular 18 

health may be a potential target for biomarker identification and disease-modifying efforts.   19 

 20 

Keywords: genetic frontotemporal dementia, functional magnetic resonance imaging, resting-21 

state fluctuation amplitudes, cerebrovascular reactivity, cognitive impairment 22 

  23 
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 24 

1. Background 25 

 26 

Frontotemporal dementia (FTD) encompasses a clinically heterogeneous group of 27 

neurodegenerative diseases [1]. About a third of FTD cases present an autosomal dominant 28 

family history, commonly caused by mutations in three genes: chromosome 9 open reading 29 

frame 72 (C9orf72), progranulin (GRN), and microtubule-associated protein tau (MAPT) [2]. 30 

The study of prodromal FTD has identified neuropathological changes and biomarker 31 

abnormalities decades before disease onset, including brain atrophy, reduced white matter 32 

(WM) integrity, and disrupted functional connectivity, predominantly affecting the fronto-33 

temporo-parietal regions [3].  34 

 35 

  In addition to the tau and TDP-43-associated molecular pathologies, and secondary 36 

inflammation, the pathophysiology of FTD involves cerebrovascular dysregulation [4]. It is 37 

characterised by impairments in the brain’s neurovascular unit (NVU) and blood-brain barrier 38 

(BBB), with damaged endothelial cells, dysfunctional pericytes, and adjacent reactive 39 

microglia, in people carrying FTD-related mutations [5, 6]. Furthermore, reductions in 40 

cerebral blood flow (CBF) are found in both sporadic and genetic FTD, especially in frontal 41 

cortex [7, 8]. The changes in cerebral blood flow correlate with impaired performance on 42 

neuropsychological tests [9]. Combined with evidence of small-vessel pathology in autopsy-43 

confirmed cases with frontotemporal lobar degeneration (FTLD) [10], these findings suggest 44 

a synergistic contribution of neurodegeneration and cerebrovascular impairment to the 45 

pathophysiology of FTD [4].  46 

 47 
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  An important aspect of cerebrovascular function is cerebrovascular reactivity (CVR). 48 

CVR denotes the capacity of cerebral blood vessels to constrict or dilate in response to 49 

physiological modulators, such as carbon dioxide concentration [11]. CVR regulates regional 50 

blood flow via pH-dependent modulation of vascular smooth muscle tone [12-14]. It is 51 

compromised by ageing [15], impaired endothelial function [16], and hypertension [17]. The 52 

blood oxygenation-level dependent (BOLD) contrast reveals CVR alterations in Alzheimer’s 53 

disease (AD) and its prodrome [18, 19], leading to the hypothesis of comparable FTD-related 54 

changes in CVR.  55 

 56 

  In this study, we investigated CVR in pre-symptomatic and symptomatic genetic FTD. 57 

We used existing resting-state functional magnetic resonance imaging (rs-fMRI) data that are 58 

based on exploiting naturally occurring fluctuations in carbon dioxide, induced by variations 59 

in the cardiac and respiratory cycles, which moderate the BOLD signal [20, 21]. Resting-state 60 

fluctuation amplitudes (RSFA) of the BOLD signal is a safe, scalable, and robust alternative 61 

to the standard MRI approaches [22-24]. It is especially suitable for large-scale applications 62 

with frail subjects, as it does not require hypercapnic gas inhalation, breath-holding, or 63 

vasodilatory drugs [24-25], for a review, see Tsvetanov et al. (2021) [26]. RSFA has already 64 

been used to assess differences in cerebrovascular and cardiovascular function associated 65 

with ageing [27-29], cerebrovascular disorders [30], stroke [31], AD [32], as well as other 66 

acute conditions that might heighten the risk of dementia [33]. 67 

 68 

  The principal aim was to determine the CVR signature of pre-symptomatic and 69 

symptomatic genetic FTD. A corollary was to assess CVR correlations with age and clinical 70 

status. We predicted reductions in RSFA in at-risk mutation carriers compared to mutation-71 
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negative family members; and that these differences would increase with disease progression 72 

and relate to impaired cognitive performance.  73 

 74 

2. Methods 75 

 76 

2.1. Participants 77 

 78 

Data were drawn from the fifth data freeze of the Genetic Frontotemporal Dementia 79 

Initiative (GENFI, www.genfi.org), which included 31 research sites across Europe and 80 

Canada. The study was approved by the institutional review boards at each site and written 81 

informed consent was provided by participants. A total of 680 subjects were recruited 82 

between January 30, 2012, and May 28, 2019, from families with a confirmed pathogenic 83 

genetic mutation in C9orf72, GRN, or MAPT. They were either (i) symptomatic mutation 84 

carriers, (ii) first-degree relatives of mutation carriers who were carrying a mutation, but did 85 

not exhibit any symptoms (that is, pre-symptomatic), or (iii) mutation-negative family 86 

members who served as a control group, termed non-carriers. Subjects were classified as 87 

symptomatic if their clinician judged the presence of symptoms consistent with the diagnosis 88 

of a progressive in nature degenerative disorder. Seven datasets were excluded due to motion-89 

related or other imaging artifacts (three symptomatic subjects with C9orf72 mutations; three 90 

pre-symptomatic GRN carriers, and one mutation-negative individual from a family with a 91 

GRN mutation). This resulted in 673 usable fMRI scans from 124 symptomatic mutation 92 

carriers (61 C9orf72, 40 GRN, 23 MAPT), 284 pre-symptomatic mutation carriers (107 93 

C9orf72, 123 GRN, 54 MAPT), and 265 mutation-negative controls. 94 

 95 

 96 
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2.2. Neurocognitive Assessment and Indices of Cognitive Function 97 

 98 

All participants underwent the standardised GENFI clinical evaluation consisting of 99 

family and medical history, functional status, and physical examination in corroboration with 100 

collateral history from a close contact. Subjects also completed a neuropsychological battery, 101 

which included behavioural measures of cognitive function from the Uniform Data Set [34]. 102 

From this test battery, we used scores related to executive function (Digit Span Forwards and 103 

Backwards from the Wechsler Memory Scale-Revised; Parts A and B of the Trail Making 104 

Test; a Digit Symbol Task) and language (the short version of the Boston Naming Test; 105 

Category Fluency (animals and combined)), as well as the Wechsler Abbreviated Scale of 106 

Intelligence Block Design Task. More details on the recruitment procedure and clinical 107 

assessment protocol can be found in Rohrer et al. (2015) [35]. 108 

 109 

As a proxy of cognitive function for subsequent statistical analysis, we used Principal 110 

Component Analysis (PCA) to derive a latent variable from a set of cognitive performance 111 

assessments. This enabled us to obtain a composite summary score characterising the 112 

complexity of cognition whilst minimising the statistical problem of multiple comparisons 113 

when investigating associations between genetic status, RSFA, and cognitive function. Thus, 114 

we conducted PCA on subjects’ performance measures from the Digit Span Forwards and 115 

Backwards task, Parts A and B of the Trail Making Test, the Digit Symbol Task, Boston 116 

Naming Test, Category Fluency (animals and combined), and Block Design Task to reduce 117 

the dimensionality of cognitive function into one latent variable summarising the largest 118 

portion of shared variance as the first principal component (PC 1). In cases of missing values 119 

for some of the metrics, multivariate Markov Chain Monte Carlo imputation was performed 120 
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using the default settings of the multivariate imputation by chained equations (MICE) in R 121 

[36].  122 

2.3. Image Acquisition and Pre-processing 123 

 124 

A three-dimensional (3D) structural MRI was obtained for each participant using a 125 

T1-weighted Magnetic Prepared Rapid Gradient-Echo (MPRAGE) sequence on 3T scanners 126 

available from various vendors. The scanning protocols at each GENFI site were optimised to 127 

accommodate different manufacturers and field strengths [35]. The following acquisition 128 

parameters were used: median isotropic resolution of 1 mm; repetition time (TR) of 2000 ms 129 

(6.6 to 2400 ms); echo time (TE) of 2.9 ms (2.8 to 4.6 ms); inversion time (TI) of 8 ms (8 to 9 130 

ms); field of view (FOV) of 256 × 256 × 208 mm, with a minimum scanning time of at least 131 

283 s (283 to 462 s). 132 

 133 

The T1-weighted images were analysed using FSL pipelines [37, 38] and modules, 134 

which called relevant functions from Statistical Parametric Mapping (SPM12, Wellcome 112 135 

Department of Imaging Neuroscience, London, UK; www.fil.ion.ucl.ac.uk/spm) [39]. Native-136 

space segmentation of grey matter (GM), WM, and cerebrospinal fluid (CSF) tissue classes 137 

and warps for normalisation to the Montreal Neurological Institute (MNI) template space 138 

were estimated using FSL. 139 

 140 

For resting-state fMRI measurements, Echo-planar imaging (EPI) data were obtained 141 

with at least six minutes of scanning. Analogous imaging sequences were developed by the 142 

GENFI Imaging Core team and used at each GENFI study site to account for different 143 

scanner models and field strengths. EPI data were acquired over a minimum of 308 s (median 144 

500 s) and had a median TR of 2500 ms (2200 to 2500 ms); TE of 30 ms; flip angle of 80 ms 145 
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(80 to 85 ms); in-plane resolution of 2.72 × 2.72 mm (2.72-3.50 × 2.72-3.25 mm); slice 146 

thickness of 3.5 mm (2.72 to 3.5 mm). Participants were instructed to lie still with their eyes 147 

closed. The initial six volumes were discarded to enable T1 equilibration. To quantify the 148 

total motion for each participant, the root mean square volume-to-volume displacement was 149 

computed using the approach of Jenkinson et al. (2002) [40]. 150 

 151 

The pre-processing was carried out using SPM12 running under MATLAB R2021b 152 

(MathWorks, https://uk.mathworks.com/). The pre-processing steps comprised (i) spatial 153 

realignment to correct for head motion and movement by distortion interactions, (ii) slice-154 

time correction to the middle slice, (iii) co-registration of the EPI to the participants’ T1 155 

anatomical scans. The normalisation parameters from the T1 image processing were then 156 

applied to warp the functional images to MNI space. After that, the spatially normalised 157 

images were smoothed with a Gaussian kernel of Full Width at Half Maximum (FWHM) of 8 158 

mm to meet the lattice assumption of random field theory and account for residual inter-159 

participant structural variability. 160 

 161 

Further processing procedures of the resting-state time-series for estimation of RSFA 162 

involved the application of data-driven Independent Component Analysis (ICA) of single-163 

subject time-series denoising, with noise components selected and removed automatically 164 

using a priori heuristics from the ICA-based Automatic Removal of Motion Artifacts 165 

(AROMA) toolbox [41]. A general linear model (GLM) of the time-course at each voxel was 166 

computed to further diminish any residual effects of noise confounds [42]. This included 167 

linear and quadratic detrending of the fMRI signal, covarying out the motion parameters, 168 

WM, and CSF signals, as well as their squares and first derivative [43], and a band-pass filter 169 

(0.0078–0.01 Hz). Signals from WM and CSF were estimated for each volume from the 170 
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mean value of WM and CSF masks derived by thresholding SPM’s corresponding tissue 171 

probability maps at 0.75. The normalised variance (i.e., the temporal standard deviation (SD) 172 

of the EPI signal amplitudes over the mean signal intensity) of these filtered time-series was 173 

calculated on a voxel-wise basis to define RSFA.  174 

 175 

2.4. Indices of Cerebrovascular Function using RSFA 176 

2.4.1. Component-based Analysis 177 

To implement ICA, the pre-processed RSFA maps were decomposed into a set of 178 

spatially independent sources using the Source-Based Morphometry toolbox [44] in the 179 

Group ICA for fMRI Toolbox (GIFT; http://mialab.mrn.org/software/gift). Briefly, the 180 

fastICA algorithm was applied after the optimal number of sources explaining the variance in 181 

the data was identified by PCA with Minimum Description Length (MDL) criterion [45-47]. 182 

By combining PCA and ICA, one can decompose an n-by-m matrix of subjects-by-voxels 183 

into a source matrix that maps independent components (ICs) to voxels (here referred to as 184 

‘IC maps’), and a mixing matrix that maps ICs to participants. The mixing matrix indicates 185 

the degree to which an individual expresses a defined IC, known as the subject scores in the 186 

mixing matrix. These scores were scaled to standardised values (z-scores) prior to between-187 

group analyses. The algorithmic and statistical reliability of the extracted components was 188 

confirmed with 128 ICASSO (tool for investigating the reliability of ICA estimates by 189 

clustering and visualisation) iterations [48]. Components showing high reliability across 190 

multiple ICASSO iterations and comprising GM areas were deemed relevant and used in 191 

subsequent analyses. This decision was based on the understanding that RSFA alterations 192 

within GM areas are indicative of cerebrovascular reactivity (CVR) [29] and are shown to be 193 

sensitive to cognitive function [49].  194 
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 195 

 196 

2.4.2. Voxel-based Univariate Analysis 197 

To understand the spatial distribution of CVR effects further, we performed a 198 

sensitivity voxel-wise analysis on the RSFA maps using SPM12 in MATLAB. Clusters 199 

where between-group RSFA differences were observed after correction for multiple testing 200 

were used to define regions of interest (ROIs) for visualisation of effects across subjects. 201 

2.5. Statistical Analysis 202 

2.5.1. Descriptive Statistics 203 

Demographic characteristics were compared with SPSS (IBM Corp. Released 2021. 204 

IBM SPSS Statistics for Windows, Version 29.0. Armonk, NY: IBM Corp). Due to unequal 205 

sample sizes and variances between groups, Welch's ANOVA with Games-Howell post hoc 206 

tests were employed for continuous data. Chi-square tests were used for categorical variables. 207 

The significance level was defined as two-tailed, and the threshold was set at p = 0.05 for all 208 

statistical procedures. In keeping with other GENFI reports, years to expected onset (EYO) 209 

was defined as the difference between age at assessment and mean age at onset within the 210 

family [35]. EYO is only provided for completeness and should be interpreted with caution, 211 

noting that age of symptom onset cannot be reliably predicted based on family history in 212 

GRN and C9orf72 mutation carriers [50]. 213 

2.5.2. FTD-related Effects on Cerebrovascular Indices using RSFA 214 

Figure 1 gives a schematic overview of the processing pipeline and analytic approach 215 

used in the study. RSFA differences between symptomatic and pre-symptomatic mutation 216 
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carriers (all genetic mutations combined) and non-carriers were examined on component-217 

based estimates of RSFA using multiple linear regression (MLR) with a robust fitting 218 

algorithm (MATLAB function fitlm.m). In these models, the IC subject scores for each 219 

component (termed RSFAIC�, where n denotes the corresponding number of the selected 220 

component) were entered as a dependent variable, with age, sex, and handedness as 221 

covariates of no interest. Although scanning protocols within the cohort were designed to 222 

maximise comparability across GENFI scanners and sites [35], distinct scanning platforms 223 

can introduce systematic differences, potentially confounding true effects of interest [51]. 224 

Thus, scanning site was also inserted as a covariate of no interest. 225 

We also tested the moderating effect of age on the case-control differences to explore 226 

disease progression-related effects across genetic status groups, i.e., whether the age effect in 227 

pre-symptomatic carriers would be stronger than the ‘normal’ age effect in non-carriers, due 228 

to the development of latent, pre-symptomatic pathology. This enabled us to assess the 229 

variance explained by genetic status beyond that accounted for by age and other covariates in 230 

the MLR.  231 

All models’ formulas were specified by Wilkinson’s notation, e.g., ‘RSFAIC ~ 1 + 232 

Genetic status*Age + Sex + Handedness + Scanning Site’, providing a flexible way to test 233 

for main effects of predictors of interest (i.e., genetic status and age) and their interaction 234 

(genetic status*age), whilst adjusting the models for confounders of no interest (sex, 235 

handedness, scanning site). To account for issues related to multiple testing, the overall 236 

model fit was corrected using the Benjami-Hochberg procedure to control the false discovery 237 

rate (FDR) at the 0.05 level. To better understand the nature of the observed effects in the 238 

models surviving multiple comparisons, post hoc tests were performed across sub-groups of 239 
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interest (e.g., comparing non-carriers to symptomatic carriers, non-carriers to pre-240 

symptomatic carriers, and pre-symptomatic carriers to symptomatic carriers).  241 

A sensitivity analysis was also conducted on the voxel-wise RSFA maps to further 242 

explore the spatial distribution of CVR effects within the same statistical model (‘RSFAVoxel ~ 243 

1 + Genetic status*Age + Sex + Handedness + Scanning Site’). This included the following 244 

comparisons: (i) non-carriers versus symptomatic carriers, (ii) non-carriers versus pre-245 

symptomatic carriers, and (iii) pre-symptomatic carriers versus symptomatic carriers. The 246 

primary cluster-forming threshold was set at p = 0.05. To correct for the multiple 247 

comparisons problem inherent in mass univariate statistical analysis, we controlled for the 248 

voxel-level FDR at p < 0.05. For transparency, in cases where results did not reach statistical 249 

significance at FDR-level, the patterns are reported at an uncorrected level of p < 0.01 with a 250 

minimum cluster size of 10 voxels. To visualise the nature of the observed effects and any 251 

further between-group RSFA differences, ROIs were defined by selecting the voxels in an 8-252 

mm sphere at the peak of significant clusters from the MLR analysis. The average value 253 

across voxels in each ROI was used to illustrate the relationship between RSFA and age for 254 

different genetic status groups. The voxel-based level regions were labelled according to their 255 

overlap with the Johns Hopkins University (JHU) atlas [52]. 256 

2.5.3. Behavioural Relevance of Cerebrovascular Impairment 257 

A secondary objective of this study was to evaluate the behavioural relevance of the 258 

RSFA changes observed in the previous analyses for subjects’ cognitive function. To assess 259 

differences in cognitive performance scores between genetic status groups, we first carried 260 

out a Kruskal-Wallis test, followed by Mann-Whitney post hoc tests. We subsequently ran a 261 

further series of regression models where cognitive function, as represented by subjects’ 262 

scores for PC 1 from the PCA analysis, was the dependent variable. Independent variables 263 
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included the RSFAIC for each neurocognitively meaningful component (see Methods, 2.4. 264 

Indices of Cerebrovascular Function using RSFA, sub-section 2.4.1. Component-based 265 

Analysis), and its interaction with genetic status, to test whether the relationship between 266 

cognitive performance and RSFA levels would vary across genetic status groups. Covariates 267 

of no interest were age, sex, handedness, and scanning site. 268 

Models’ formulas, as specified by Wilkinson’s notation, took the form: ‘CognitionPC1 269 

~ 1 + Genetic status*RSFAIC/Voxel + Age + Sex + Handedness + Scanning Site’. FDR 270 

correction was applied (FDR < 0.05) and post hoc tests across sub-groups of interest were 271 

conducted in cases where main effects were found (Figure 1).  272 

3. Results 273 

3.1. Demographics  274 

Demographic characteristics of the sample and descriptive statistics are provided in 275 

Table 1. Mutation-negative family members and pre-symptomatic mutation carriers were 276 

younger than symptomatic carriers (mean difference between non-carriers and symptomatic 277 

carriers was 16.68 years (p < 0.001) and 18.71 years between pre-symptomatic carriers and 278 

symptomatic carriers, respectively, (p < 0.001)). The pre-symptomatic carriers were age-279 

matched to non-carriers (p = 0.132). There was a higher proportion of females, relative to 280 

males, in asymptomatic individuals (non-carriers and pre-symptomatic carriers) compared to 281 

symptomatic carriers, and these two groups had also spent more years in education. No 282 

significant differences were observed between the non-carriers and pre-symptomatic carriers 283 

for any of the remaining demographic variables. 284 
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Values indicate count (percentage) or mean ± standard deviation.  285 

*P values are the result of F test or χ2 test as appropriate. Bold numbers denote statistical significance at p < 0.05 286 

level. 287 

Abbreviations: C9orf72, chromosome 9 open reading frame 72; GRN, progranulin; MAPT, microtubule-288 

associated protein tau. NC, non-carrier; PSC, pre-symptomatic mutation carrier; SC, symptomatic mutation 289 

carrier. f, female; m, male.  290 

 291 

 292 

 293 

 294 

Table 1. Demographic information of participants included in the analysis, grouped by genetic status as non-carriers, pre-

symptomatic carriers, and symptomatic carriers 

Demographics Sample          NC      PSC       SC Group comparison, 

 P value* 

     Sample NC vs SC PSC vs SCCNC vs PSC 

Total N        673 265 (39.38) 284 (42.2)  124 (18.42)     

Family mutation          .126  

   C9orf72       264 (39.23)  107 61  

   GRN    276 (41.01)  123 40  

  MAPT  133 (19.76)  54 23  

Age (years) 48.17±13.43 45.95±13.09 43.93±11.4 62.64±7.43 <.001 <.001 <.001 .132 

Sex ratio f:m 371:302 153:112 165:119 53:71       .009             .006           .004 .931 

Estimated years 

from onset 

-10.62±13.40 -13.21±13.47 -14.30±11.63 3.32±6.24 <.001 <.001  <.001 .569 

Education (years) 14.18±3.45 14.51±3.35 14.50±3.36 12.72±3.53 <.001 <.001  <.001  .998 
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3.2. Regional Differences in RSFA based on Independent Component Analysis 295 

Applying ICA to the RSFA data yielded 24 components based on the MDL criterion. 296 

The spatial patterns indicated signal origins within GM regions, as well as origins associated 297 

with vascular aetiology, CSF, or other non-physiological factors (Appendix A, Figure A.1). A 298 

total of 20 components were excluded from further analysis; these included non-GM 299 

components proximal to vascular and CSF territories or components exhibiting characteristics 300 

of physiological noise signals (Appendix A, Table A.1). Additionally, GM components that 301 

did not survive correction for multiple comparisons were also classified as irrelevant. The 302 

overall model fit of four GM components remained significant after FDR correction (Figure 303 

2). These components included strong contributions of voxels within the posterior cingulate 304 

cortex (PCC)/precuneus (IC 4), posterior association and parieto-occipital association areas, 305 

more pronounced on the right side (IC 17), right and left lateral prefrontal cortex (IC 21 and 306 

IC 23, respectively). A tendency of FTD-dependent decrease in RSFA was found in 307 

symptomatic and pre-symptomatic carriers, compared to non-carriers, for all components, but 308 

only reached statistical significance for component IC 21. Post hoc tests revealed that this 309 

effect was driven by differences between the non-carriers and symptomatic mutation carriers, 310 

as well as between the pre-symptomatic and symptomatic carriers. In addition, in analyses 311 

across the entire sample, a significant main effect of genetic status x age interaction was 312 

shown for components IC 17, IC 21, and IC 23, whereby symptomatic carriers showed the 313 

most pronounced age-related RSFA reductions, followed by the presymtompatic carriers, and 314 

then mutation-negative individuals. This suggests a greater age-related RSFA decline in at-315 

risk or affected mutation carriers relative to non-carriers, which likely further exacerbates 316 

downstream effects of the disease over time, as indicated by the steeper negative slopes of the 317 

regression lines observed in these groups. Spatial maps of these components, accompanied by 318 

scatter plots showing IC subject score values in relation to age and genetic status group, are 319 
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presented in Figure 2. Table 2 summarises the numerical output of the MLR models 320 

conducted on the RSFA-IC subject scores for these GM components across the entire sample. 321 

The output of post hoc tests across sub-groups of interest for this analysis is provided in 322 

Appendix A, Table A.2. 323 

ICA also revealed components with spatial distribution originating from large blood 324 

vessels and CSF (Appendix A, Figure A.1). For example, components 2 and 3 reflected 325 

signals from the fluid-filled ventricles and cerebral aqueduct. Component 11 indicated signals 326 

originating close to sites of venous drainage, including superior and inferior sagittal sinus, 327 

and transverse sinuses. Other vascular components comprised territories of major blood 328 

vessels, including the Circle of Willis, internal carotid artery, anterior cerebral artery, and 329 

middle cerebral artery. These vascular and CSF components tended to display higher subject 330 

scores in older (symptomatic) individuals, reflecting differences in vascular health and other 331 

physiological factors [26, 28, 29].  332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 
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Table 2. Multiple regression analysis results of independent component (IC) subject loadings from independent 

component analysis (model ‘RSFAIC   ~ 1 + Genetic status*Age + Sex + Handedness + Scanning Site’) 

Predictor of interest Model 

Adjusted R2 

β T Uncorrected 

P 

        FDR- 

   corrected P* 

IC 4 – Posterior cingulate cortex/precuneus 

 0.62     

Age  -0.09 -3.59 <.001 .001 

Genetic status  -0.05 -1.77 .078 .124 

Genetic status*Age  -0.05 -2.00 .046 .085 

IC 17 – Posterior parietal association  areas 

 0.54     

Age  -0.13 -4.27 <.001 <.001 

Genetic status  -0.06 -1.80 .072 .098 

Genetic status*Age  -0.06 -2.17 .030 .048 

IC 21 – Right lateral prefrontal cortex 

 0.44     

Age  -0.11 -3.33 <.001 .004 

Genetic status  -0.10 -2.68 .008 .021 

Genetic status*Age  -0.07 -2.31 .021 .046 

IC 23 – Left lateral prefrontal cortex 

 0.49     

Age  -0.22 -7.22 <.001 <.001 

Genetic status  -0.06 -1.87 .062 .168 

Genetic status*Age  -0.08 -2.52 .012 .044 

     RSFA differences across groups of interest following robust multiple linear regression analysis on component-based RSFA maps. 
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 346 

 347 

3.3. Spatial Distribution and Voxel-wise Univariate Differences in RSFA  348 

Overall, voxel-based analysis results were consistent with component-based analysis, 349 

particularly in frontal cortical regions (Error! Reference source not found. 3). Group-level 350 

analysis across all genetic groups revealed a consistent pattern of RSFA decreases in frontal 351 

midline areas, cuneus, precuneus, and cerebellum. Moreover, a comparable tendency 352 

emerged in relation to disease progression informed by the interaction between genetic status 353 

and age. Specifically, the inverse relationship between RSFA and age was stronger across the 354 

spectrum from non-carriers to pre-symptomatic carriers to symptomatic carriers. The spatial 355 

distribution of voxel-based RSFA effects, including four representative ROIs where the 356 

strongest effects were demonstrated, is illustrated in Figure 3. The output from the MLR 357 

models performed on the RSFA-ROI estimates across the entire sample is provided in Table 358 

3. The results of post hoc tests across sub-groups of interest conducted subsequently are 359 

provided in Appendix A, Table A.3.  360 

 361 

 362 

 363 

 364 

 365 

Estimated regression parameters, t values, and p values are shown for main effects across the entire sample. Outcomes of interest are the 

RSFA-IC loadings associated with ICA components within GM regions where case-control differences are found. Models are adjusted 

for sex, handedness, and scanning site.  

     *P values are FDR-corrected at the 0.05 level in comparisons across the whole sample (all genetic status groups combined). Bold 

numbers indicate that p values are statistically significant.  
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Table 3. Multiple regression analysis results following voxel-based region of interest  analysis (model 

‘RSFAVoxel ~ 1 + Genetic Status*Age + Sex + Handedness + Scanning Site’) 

Predictor of interest Model 

Adjusted R2 

        β         T Uncorrected 

           P 

 FDR- 

  corrected P* 

Left middle frontal gyrus 0.23     

Age  -0.09 -2.51 .012  .034 

Genetic status  -0.14 -3.25 .001  .005 

Genetic status*Age  -0.16 -4.28       <.001 <.001 

Right middle frontal gyrus 0.25     

Age  -0.13 -3.72 <.001 .002 

Genetic status  -0.15 -3.72 <.001 .002 

Genetic status*Age  -0.08 -2.25  .025 .041 

Left superior frontal gyrus 0.17     

Age  -0.05 -1.37 .170 .320 

Genetic status  -0.19 -4.45       <.001         <.001 

Genetic status*Age  -0.08 -2.16 .031 .093 

Right superior frontal gyrus 0.26     

Age  -0.10 -2.79 .005 .013 

Genetic status  -0.17 -4.09 <.001 <.001 

Genetic status*Age  0.06 -1.54 .123 .148 

     RSFA differences across groups of interest following robust multiple linear regression analysis in several representative ROIs 

based on voxel-wise univariate analysis on RSFA maps. Estimated regression parameters, t values, and p values are shown for main 

effects across the entire sample. Outcomes of interest are the RSFA-ROI values associated with each ROI where case-control 

differences are found. Models are adjusted for sex, handedness, and scanning site.  

     *P values are FDR-corrected at the 0.05 level across the whole sample (all genetic status groups combined). Bold numbers indicate 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 26, 2024. ; https://doi.org/10.1101/2024.03.24.24304799doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.24.24304799


Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia 
 

 24

 366 

Regarding genetic status effects on voxel-wise RSFA, there were several clusters 367 

where symptomatic carriers exhibited significant reductions, compared to non-carriers, 368 

including bilateral middle frontal gyrus (MFG), right superior frontal gyrus (SFG), right 369 

superior temporal gyrus (STG), and bilateral PCC. Symptomatic carriers also displayed 370 

greater age-related RSFA decline in the same areas, as well as in the left SFG, left dorsal 371 

anterior cingulate cortex (ACC), and right insula. Similar clusters displayed RSFA decreases 372 

when symptomatic carriers were compared to pre-symptomatic counterparts. In contrast, the 373 

differences between pre-symptomatic carriers and non-carriers did not reach statistical 374 

significance at FDR-levels. However, pre-symptomatic carriers showed a tendency for 375 

reduced RSFA in posterior parietal cortex and more pronounced age-related decline in RSFA 376 

over the parietal and frontal cortex compared to non-carriers, similar to the trend observed in 377 

the symptomatic group. A detailed description of the anatomical localisation of the voxel-378 

based analysis derived clusters where RSFA differences were noted can be consulted in 379 

Appendix A, Table A.4. 380 

            Finally, to evaluate differences in RSFA values across different gene mutations, we 381 

compared RSFA-IC loadings and RSFA-ROI estimates in mutation carriers stratified by gene 382 

mutation using MLR. No between-group differences were detected based on mutated gene in 383 

any of the ICs or ROIs where differences between asymptomatic and symptomatic carriers 384 

were encountered in the previous analyses (data are shown in Appendix A, Table A.5). 385 

 386 

 387 

 388 

that p values are statistically significant.  
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3.4. Relationship between RSFA and Cognition  389 

PCA analysis estimated PC 1 to explain approximately 62 % of the variance across 390 

the nine measures of cognitive performance, PC 2 – 9 %, and PC 3 – 7 %. We therefore focus 391 

on the relationship between genetic status, RSFA, and PC 1 as a proxy for cognitive function. 392 

The cognitive variables that loaded most prominently on this component included the Trail 393 

Making Test Parts A and B, Digit Symbol Task, and Verbal Fluency, suggesting that PC 1 394 

captures most strongly the cognitive domain of executive function. More detailed information 395 

about each PC, with explained variance and corresponding coefficients, is provided in 396 

Appendix A, Table A.6, and Figures A.2 and A.3, respectively. Kruskal-Wallis test showed a 397 

statistically significant difference in PC 1 subject scores between genetic status groups (χ2(2)  398 

= 256.02, p < 0.001). As anticipated, post hoc Mann-Whitney tests confirmed significantly 399 

lower PC 1 subject scores, indicative of lower cognitive function, in symptomatic carriers 400 

compared to both pre-symptomatic carriers (U = 1461, p < 0.001) and non-carriers (U = 401 

1182, p < 0.001). No significant difference was observed between pre-symptomatic carriers 402 

and non-carriers (U = 36 318, p = 0.480). 403 

 404 

           Further regression analysis revealed a positive relationship between RSFA and 405 

cognitive function, specifically in IC 23, suggesting that individuals with higher CVR levels 406 

in left PFC performed better overall on a range of cognitive tests. In addition, a genetic status 407 

x RSFA interaction was observed in left PFC (IC 23), as well as in posterior parietal 408 

association areas (IC 17) and right lateral PFC (IC 21). The interaction effects, presented in 409 

Figure 4, highlight a stronger positive relationship between RSFA and cognitive function in 410 

mutation carriers, particularly in symptomatic individuals, than in non-carriers. ROIs analysis 411 

was overall consistent with component-based analysis (Figure 4). The output from the MLR 412 
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models assessing cognitive function in relation to RSFA indices across the sample and sub-413 

groups of interest can be consulted in Table 4. 414 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 26, 2024. ; https://doi.org/10.1101/2024.03.24.24304799doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.24.24304799


Impaired Cerebrovascular Reactivity in Genetic Frontotemporal Dementia 
 

 27

 

 

 

Table 4. Multiple regression analysis results of cognition as a function of RSFA (model ‘CognitionPC1 ~ 1 + Genetic 

status*RSFAIC/Voxel + Age + Sex + Handedness + Scanning Site’) 

                                    Sample                    NC versus SC             PSC versus SC           NC versus PSC          

Predictor    Model   

                   Adjusted R2     β            T           P*          β             T             P*         β            T           P*            β           T         P* 

ICs based on Independent Component Analysis 

IC 4 – Posterior cingulate cortex/precuneus 

 0.52       

Age -0.43 -14.10 <.001 -0.23 -6.36 <.001 -0.30 -7.69 <.001 -0.37 -9.45 <.001 

Genetic status -0.40 -13.07 <.001 -0.68 -18.09 <.001 -0.61 -15.28 <.001 -0.01 -0.19   .851 

RSFA  0.04  0.80  .600     

Genetic 

status*RSFA 

 0.04  1.43  .339     

IC 17 – Posterior association  areas 

 0.52       

Age -0.44 -14.23 <.001 -0.23 -6.46 <.001 -0.30 -7.67 <.001 -0.37 -9.38 <.001 

Genetic status -0.40 -13.05 <.001 -0.68 18.21 <.001 -0.61 -15.28 <.001 -0.01 -0.29  .769 

RSFA -0.01  -0.04  .980     

Genetic 

status*RSFA 

-0.08  2.84  .029  0.04  1.33  .183  0.02   0.53  .600  0.07  1.77  .078 

IC 21 – Right lateral prefrontal cortex 

 0.53       

Age -0.43 -14.08 <.001 -0.23 -6.55 <.001 -0.30 -7.76 <.001 -0.37 -9.40 <.001 

Genetic status -0.39 -12.61 <.001 -0.67 -17.74 <.001 -0.60 -14.73 <.001 -0.01 -0.16  .869 

RSFA  0.08  2.06  .124     

Genetic 

status*RSFA 

 0.09  3.40  .008  0.05  1.91  .057  0.02   0.64  .523  0.05  1.26  .207 
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IC 23 – Left lateral prefrontal cortex 

 0.52       

Age -0.40 -12.85 <.001 0.22 -6.05 <.001 -0.29 -7.24 <.001 -0.36 -8.92 <.001 

Genetic status -0.38 -12.33 <.001 0.67 -17.51 <.001 -0.59 -14.28 <.001 -0.01 -0.19  .846 

RSFA  0.11   2.88  .029 0.07  1.69  .091 0.07  1.76  .079  0.07  1.38  .169 

Genetic 

status*RSFA 

 0.08   2.83  .030 0.01   0.21  .831 0.03  1.06  .289 -0.04 -0.90  .367 

ROIs based on Voxel-wise Analysis 

Left middle frontal gyrus 

 0.57       

Age  -0.38 -12.92 <.001 -0.20 -6.01 <.001 -0.28 -7.58 <.001 -0.36 -9.17 <.001 

Genetic status -0.35 -11.51 <.001 -0.60 -15.18 <.001  0.53 -12.82 <.001 -0.003 -0.07  .944 

RSFA  0.13  4.42 <.001  0.10  2.95   .003  0.14  4.35 <.001 -0.03 -0.82  .412 

Genetic 

status*RSFA 

 0.23  8.02 <.001  0.22  6.60 <.001  0.16  4.84 <.001  0.07  1.73  .085 

Right middle frontal gyrus 

 0.54       

Age  -0.41 -13.76 <.001 -0.24 -6.61 <.001 -0.30 -7.63 <.001 -0.37 -9.26 <.001 

Genetic status -0.37 -11.84 <.001 -0.64 -15.63 <.001 -0.58 -14.04 <.001 -0.003 -0.07  .943 

RSFA  0.11   3.59   .003  0.07   2.11  .036  0.07  2.15  .032  0.05  1.12  .261 

Genetic 

status*RSFA 

 0.15   5.25 <.001  0.07   2.06  .040  0.04  1.30  .195  0.05  1.23  .220 

Left superior frontal gyrus 

 0.54       

Age  -0.42 -13.88 <.001 -0.23 -6.47 <.001 -0.30 -7.98 <.001 -0.37 -9.36 <.001 

Genetic status -0.38 -12.10 <.001 -0.64 -16.37 <.001 -0.58 -13.94 <.001 -0.01 -0.17  .861 

RSFA  0.08   2.49   .054  0.06  1.85   .065  0.05  1.67  .096 -0.04 -0.85  .398 
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 415 
4. Discussion 416 

We confirmed that cerebrovascular function, as measured by the resting-state 417 

fluctuation amplitudes, is reduced by mutations associated with frontotemporal dementia 418 

even in the long pre-symptomatic period. The RSFA differences worsened with disease 419 

progression and correlated with cognition in mutation carriers, over and above the effects of 420 

ageing. We propose that cerebrovascular dysfunction in genetic FTD represents an early 421 

dysregulated feature in the disease’s pathophysiology, which may interact with 422 

neurodegenerative changes. 423 

Genetic 

status*RSFA 

0.14   4.83 <.001  0.12  3.57 <.001  0.09  2.99  .003 0.002  0.06  .951 

Right superior frontal gyrus 

 0.54       

Age -0.42 -14.05 <.001 -0.23 -6.59 <.001 -0.30 -7.72 <.001 -0.37 -9.43 <.001 

Genetic status -0.39 -12.64 <.001 -0.67 -17.30 <.001 -0.60 -14.64 <.001 -0.01 -0.29   .769 

RSFA  0.03   0.82   .610     

Genetic 

status*RSFA 

 0.15   5.29 <.001  0.09  2.91   .004  0.04  1.28   .201  0.07  1.90  .058 

     Cognitive function differences as a function of RSFA and genetic status following robust multiple linear regression analysis in ICA-

based components (top panel) and several representative ROIs based on voxel-wise univariate analysis on RSFA maps (bottom panel). 

Cognitive function is represented by subjects’ loading values for PC 1 following PCA on nine cognitive measures. Estimated regression 

parameters, t values, and p values are shown for main effects across the entire sample and sub-groups of interest where relevant. Models are 

adjusted for age, sex, handedness, and scanning site. 

     *P-values are FDR-corrected at the 0.05 level across the whole sample (all genetic status groups combined). Bold numbers indicate that 

p values are statistically significant.  

     Abbreviations: NC, non-carrier; PSC, pre-symptomatic mutation carrier; SC, symptomatic mutation carrier. 
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 424 

4.1. Regional Distribution of Cerebrovascular Reactivity Impairment in FTD 425 

Progressive reductions in RSFA were observed in mutation carriers versus non-426 

carriers in ventromedial and dorsolateral prefrontal cortical areas, cingulate and parietal 427 

cortex. Comparable CVR decreases using the RSFA approach are reported in healthy ageing 428 

and acute conditions of microvascular impairment, particularly in prefrontal and superior-429 

parietal cortical areas [28, 29, 33] that are vulnerable to lower cerebral blood flow [26, 53, 430 

54] and the principal FTD-specific pathological burden. This regional vulnerability aligns 431 

with the observation of abnormal vasoreactivity in the default mode network (DMN) in AD 432 

[18, 19, 32, 55].  In genetic FTD, we found consistent CVR reductions in frontal cortex, 433 

anterior cingulate, and insula – regions accordant with atrophy [2, 35, 56, 57] and cerebral 434 

perfusion decreases [8, 9, 58] in pre-symptomatic and symptomatic carriers. These areas are 435 

part of the salience network, which underlies cognitive, sensory, and affective regulation, 436 

language, motor control, and social conduct, each functionally impaired in symptomatic FTD 437 

[59, 60]. 438 

We argue that the observed cerebrovascular dysfunction in FTD represents an early 439 

dysregulated pathophysiology, interacting with regional neurodegenerative changes, as 440 

postulated in AD [61-63]. Potential causes for the CVR decreases include pH dysregulation 441 

and impaired modulation of nitric oxide, which may diminish endothelium-dependent dilator 442 

responses and the dynamic range of the BOLD signal [16, 64, 65]. Alterations in the 443 

neurovascular unit, including dysfunctional vascular endothelium, hypercontractile vascular 444 

smooth muscle cells [62], depleted pericytes [5], and activated microglia [6] have been 445 

documented in familial FTD. Given the close interrelatedness between neurons and cerebral 446 

microvessels, such changes likely compromise the function of the blood-brain barrier, 447 
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diminish brain perfusion, and trigger the aggregation of aberrant circulating proteins and 448 

secretion of pro-inflammatory factors, accelerating neurodegeneration [61, 62]. These 449 

findings underscore the need for further research to discern the relationship between 450 

cerebrovascular dysfunction and neurodegenerative processes in FTD and other 451 

neurodegenerative pathologies. 452 

While the RSFA variances in inferior frontal, parietal, and precuneus (IC 4 and IC 17) 453 

accord with FTD-related hypoperfusion and atrophy profiles, the notable RSFA reductions in 454 

dorsolateral prefrontal cortex (IC 21 and IC 23) are intriguing. These regions are not 455 

commonly associated with hypoperfusion and atrophy in early FTD. This discrepancy implies 456 

a shared pathway leading to CVR impairment, hypoperfusion, and atrophy in inferior frontal 457 

and parietal regions. However, the mechanisms underlying the distinct CVR effects in 458 

dorsolateral frontal regions in FTD and the processes that interact with these changes prompt 459 

further investigation. 460 

Such CVR alterations develop in the long pre-symptomatic window and increase with 461 

age in mutation carriers faster than in non-carriers. This suggests less effective dampening of 462 

arterial pressure pulsations through the vascular tree (i.e., diminished Windkessel effect) 463 

owing to increased arterial stiffening [26], which could influence the BOLD signal 464 

fluctuation in neighbouring tissue, including WM and CSF [66]. Such an interpretation 465 

supports previously reported RSFA increases near cerebral ventricles and vascular territories, 466 

and likely reflects the cardiovascular contribution to the RSFA signal in ageing [26, 28]. It is 467 

also plausible that the RSFA signal in ICA-identified regions captures multiple sources with 468 

different aetiology, particularly at boundaries of large vessels and adjacent perivascular 469 

space, that may exhibit different spontaneous brain activity at rest [67]. The latter illustrates 470 

the challenge of dissociating spatially overlapping sources of signal using univariate methods 471 
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and motivate the use of data-driven and multimodal approaches [68], as underscored by our 472 

findings. 473 

Although we observed diminished CVR in signature FTD frontal and parietal areas, 474 

no substantial RSFA decreases in temporal regions were found. Given the involvement of the 475 

temporal lobes, especially in MAPT mutations [8, 35, 56], this result may be due to type II 476 

error or the much smaller size of the MAPT group than the C9orf72 and GRN groups. We 477 

compared the RSFA-IC loadings and RSFA-ROI estimates based on gene mutation but did 478 

not discover any significant between-group effects. This null result may be caused by small 479 

and unbalanced sub-groups per mutated gene but may also imply true commonalities in the 480 

vascular pathology downstream of the mutations’ molecular pathology. Previous 481 

neuroimaging studies have revealed gene mutation-specific brain changes in FTD [56, 69]. 482 

The CVR changes in frontal regions may reflect distinct mechanisms from the atrophy and 483 

perfusion alterations in temporal areas discovered in earlier FTD investigations. In line with 484 

this assumption, different CVR and CBF patterns have been documented in AD, with CVR 485 

deficits in prefrontal, anterior cingulate, and insular cortex proposed as direct indicators of 486 

vascular dysfunction, and CBF decreases in temporal and parietal cortices attributed to 487 

atrophy-related lower metabolic demand [55]. Our results could denote a similar mechanism 488 

whereby CVR impairment contributes to FTD disease progression both independently and 489 

conjointly with other pathophysiological processes. 490 

4.2. Relationship between Cerebrovascular Impairment and Cognition 491 

As a secondary objective, we examined the behavioural relevance of CVR alterations 492 

and found a relationship between RSFA reductions in mutation carriers and diminished 493 

cognitive function. This broadly confirmed the link between CVR decreases and impaired 494 

overall cognitive status, as previously shown in mild cognitive impairment (MCI) and AD 495 
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[19], and conditions that may alter the risk of dementia [33]. Furthermore, CVR impairment 496 

predicts global cognitive performance independently of AD pathological markers, such as 497 

CSF-derived β-amyloid42 (Aβ42) and tau in healthy elderly and subjects with mixed 498 

Alzheimer’s and vascular cognitive impairment and dementia [70]. 499 

We observed an association between higher RSFA and better global cognitive 500 

function, especially in symptomatic mutation carriers, pronounced in prefrontal cortical areas 501 

– an effect that remained after adjusting for age and disease progression effects. This accords 502 

with evidence from ageing, AD, and FTD studies about the increased dependence of 503 

successful cognition on precisely regulated function within and between large-scale brain 504 

networks [71-74]. Furthermore, progressively stronger coupling between function and 505 

cognition is described in pre-symptomatic mutation carriers from the GENFI cohort as they 506 

approached their expected age of disease onset, in the absence of differences in cognitive 507 

performance relative to non-carriers [57]. Therefore, our observations support previous 508 

research and suggest that CVR may benefit cognition in FTD at-risk individuals. 509 

CVR impairment in DMN regions did not correlate with cognition. This implies that 510 

the CVR changes in default network may not relate directly to the neuropathological 511 

processes or disease progression and may instead be influenced by other factors that 512 

modulate CVR, such as medications, as shown in ageing [75]. The nature of default network 513 

CVR changes and its implications for DMN suppression in neurodegeneration remains to be 514 

fully defined. However, findings on default network from fMRI BOLD studies should not be 515 

interpreted independently of cerebrovascular variations induced by physiological modulators 516 

[26].  517 

4.3. Methodological Considerations and Future Directions 518 
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Several methodological remarks warrant consideration. Firstly, our design was cross-519 

sectional, so any causal inferences about the associations remain to be addressed in 520 

longitudinal analyses. Second, several of the described effects only approached statistical 521 

significance, which could imply that the FDR multiple comparison correction was 522 

conservative. In the voxel-based analysis, no differences emerged between pre-symptomatic 523 

carriers and non-carriers. Despite that, the distribution of CVR effects in pre-symptomatic 524 

carriers resembled that of symptomatic cases, highlighting the vulnerability of the middle 525 

frontal and posterior cortical areas. Third, we recognise that RSFA-CVR is just one measure 526 

of cerebrovascular health. Previous examinations using the RSFA method have documented 527 

that RSFA relates to CBF effects, white matter hyperintensities (WMHs), and cardiovascular 528 

factors [26]. Thus, future investigations in the GENFI sample should clarify which vascular 529 

factors drive the RSFA changes reported here by adopting other means to quantify 530 

cerebrovascular function, such as resting arterial-spin labelling (ASL)-CBF and WMH 531 

burden on MRI. Another avenue for future efforts is to complement current analyses with 532 

estimates of functional and WM integrity, as well as CSF and blood markers in relation to 533 

cognitive decline [29] in a multi-modal manner [68, 75]. On a clinical level, using integrative 534 

approaches to uncover protective factors in prodromal stages of disease may improve 535 

prognosis and inform stratification procedures, future triallists, patients, and carers. 536 

5. Concluding Remarks 537 

Using the RSFA approach, we found CVR alterations in pre-symptomatic and 538 

symptomatic FTD with a pronounced frontal cortical predilection, concordant across 539 

component-based and voxel-level analyses. We also showed that higher CVR yields a 540 

cognitive benefit, especially in subjects at elevated FTD risk. These results demonstrate that 541 

RSFA can be used as a safe, tolerable, and clinically informative signal that can aid the 542 
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quantification of cerebrovascular health in large-scale population studies among frail 543 

participants. We suggest that there is a vascular contribution that interacts with FTD 544 

pathology in driving disease expression and progression. Cerebrovascular health may be a 545 

potential target for biomarker identification and a modifiable factor, to mitigate against 546 

clinical deterioration in people at genetic risk of frontotemporal dementia. 547 

  548 
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Table 1. Demographic information of participants included in the analysis, grouped by genetic status as non-

carriers, pre-symptomatic carriers, and symptomatic carriers 

Demographics Sample          NC      PSC       SC Group comparison, 

 P value* 

     Sample NC vs SC PSC vs SCCNC vs PSC 

Total N        673 265 (39.38) 284 (42.2)  124 (18.42)     

Family mutation          .126  

   C9orf72       264 (39.23)  107 61  

   GRN    276 (41.01)  123 40  

  MAPT  133 (19.76)  54 23  

Age (years) 48.17±13.43 45.95±13.09 43.93±11.4 62.64±7.43 <.001 <.001 <.001 .132 

Sex ratio f:m 371:302 153:112 165:119 53:71       .009             .006           .004 .931 

Estimated years 

from onset 

-10.62±13.40 -13.21±13.47 -14.30±11.63 3.32±6.24 <.001 <.001  <.001 .569 

Education (years) 14.18±3.45 14.51±3.35 14.50±3.36 12.72±3.53 <.001 <.001  <.001  .998 

     Values indicate count (percentage) or mean ± standard deviation.  

     *P values are the result of F test or χ2 test as appropriate. Bold numbers denote statistical significance at p < 0.05 level.  

     Abbreviations: C9orf72, chromosome 9 open reading frame 72; GRN, progranulin; MAPT, microtubule-associated protein tau. NC, 

non-carrier; PSC, pre-symptomatic mutation carrier; SC, symptomatic mutation carrier. f, female; m, male.  
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Table 2. Multiple regression analysis results of independent component (IC) subject loadings from independent 

component analysis (model ‘RSFAIC   ~ 1 + Genetic status*Age + Sex + Handedness + Scanning Site’) 

Predictor of interest Model 

Adjusted R2 

β T Uncorrected 

P 

 FDR- 

  corrected P* 

IC 4 – Posterior cingulate cortex/precuneus 

 0.62     

Age  -0.09 -3.59 <.001 .001 

Genetic status  -0.05 -1.77 .078 .124 

Genetic status*Age  -0.05 -2.00 .046 .085 

IC 17 – Posterior parietal association  areas 

 0.54     

Age  -0.13 -4.27 <.001 <.001 

Genetic status  -0.06 -1.80 .072 .098 

Genetic status*Age  -0.06 -2.17 .030 .048 

IC 21 – Right lateral prefrontal cortex 

 0.44     

Age  -0.11 -3.33 <.001 .004 

Genetic status  -0.10 -2.68 .008 .021 

Genetic status*Age  -0.07 -2.31 .021 .046 

IC 23 – Left lateral prefrontal cortex 

 0.49     

Age  -0.22 -7.22 <.001 <.001 
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Genetic status  -0.06 -1.87 .062 .168 

Genetic status*Age  -0.08 -2.52 .012 .044 

     RSFA differences across groups of interest following robust multiple linear regression analysis on component-based RSFA maps. 

Estimated regression parameters, t values, and p values are shown for main effects across the entire sample. Outcomes of interest are the 

RSFA-IC loadings associated with ICA components within GM regions where case-control differences are found. Models are adjusted 

for sex, handedness, and scanning site. 

     *P values are FDR-corrected at the 0.05 level in comparisons across the whole sample (all genetic status groups combined). Bold 

numbers indicate that p values are statistically significant.  
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Table 3. Multiple regression analysis results following voxel-based region of interest  analysis (model 

‘RSFAVoxel ~ 1 + Genetic Status*Age + Sex + Handedness + Scanning Site’) 

Predictor of interest Model 

Adjusted R2 

        β         T Uncorrected 

           P 

 FDR- 

 corrected P* 

Left middle frontal gyrus 0.23     

Age  -0.09 -2.51 .012  .034 

Genetic status  -0.14 -3.25 .001  .005 

Genetic status*Age  -0.16 -4.28       <.001 <.001 

Right middle frontal gyrus 0.25     

Age  -0.13 -3.72 <.001 .002 

Genetic status  -0.15 -3.72 <.001 .002 

Genetic status*Age  -0.08 -2.25  .025 .041 

Left superior frontal gyrus 0.17     

Age  -0.05 -1.37 .170 .320 

Genetic status  -0.19 -4.45       <.001         <.001 

Genetic status*Age  -0.08 -2.16 .031 .093 

Right superior frontal gyrus 0.26     

Age  -0.10 -2.79 .005 .013 

Genetic status  -0.17 -4.09 <.001 <.001 

Genetic status*Age  0.06 -1.54 .123 .148 

     RSFA differences across groups of interest following robust multiple linear regression analysis in several representative ROIs 

based on voxel-wise univariate analysis on RSFA maps. Estimated regression parameters, t values, and p values are shown for main 

effects across the entire sample. Outcomes of interest are the RSFA-ROI values associated with each ROI where case-control 
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differences are found. Models are adjusted for sex, handedness, and scanning site. 

     *P values are FDR-corrected at the 0.05 level across the whole sample (all genetic status groups combined). Bold numbers indicate 

that p values are statistically significant.  
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Table 4. Multiple regression analysis results of cognition as a function of RSFA (model ‘CognitionPC1 ~ 1 + Genetic 

status*RSFAIC/Voxel + Age + Sex + Handedness + Scanning Site’) 

                                    Sample                    NC versus SC             PSC versus SC           NC versus PSC          

Predictor    Model   

                   Adjusted R2     β            T            P*          β            T             P*         β          T           P*           β            T          P* 

ICs based on Independent Component Analysis 

IC 4 – Posterior cingulate cortex/precuneus 

 0.52       

Age -0.43 -14.10 <.001 -0.23 -6.36 <.001 -0.30 -7.69 <.001 -0.37 -9.45 <.001 

Genetic status -0.40 -13.07 <.001 -0.68 -18.09 <.001 -0.61 -15.28 <.001 -0.01 -0.19   .851 

RSFA 0.04   0.80  .600     

Genetic 

status*RSFA 

0.04   1.43  .339     

IC 17 – Posterior association  areas 

 0.52       

Age -0.44 -14.23 <.001 -0.23 -6.46 <.001 -0.30 -7.67 <.001 -0.37 -9.38 <.001 

Genetic status -0.40 -13.05 <.001 -0.68 18.21 <.001 -0.61 -15.28 <.001 -0.01 -0.29  .769 

RSFA -0.01  -0.04  .980     

Genetic 

status*RSFA 

-0.08   2.84  .029  0.04  1.33  .183  0.02   0.53  .600  0.07  1.77  .078 

IC 21 – Right lateral prefrontal cortex 

 0.53       

Age -0.43 -14.08 <.001 -0.23 -6.55 <.001 -0.30 -7.76 <.001 -0.37 -9.40 <.001 

Genetic status -0.39 -12.61 <.001 -0.67 -17.74 <.001 -0.60 -14.73 <.001 -0.01 -0.16  .869 

RSFA  0.08   2.06  .124     
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Genetic 

status*RSFA 

 0.09  3.40  .008  0.05  1.91  .057  0.02   0.64  .523  0.05  1.26  .207 

IC 23 – Left lateral prefrontal cortex 

 0.52       

Age -0.40 -12.85 <.001 0.22 -6.05 <.001 -0.29 -7.24 <.001 -0.36 -8.92 <.001 

Genetic status -0.38 -12.33 <.001 0.67 -17.51 <.001 -0.59 -14.28 <.001 -0.01 -0.19  .846 

RSFA  0.11  2.88  .029 0.07  1.69  .091 0.07   1.76  .079  0.07  1.38  .169 

Genetic 

status*RSFA 

 0.08  2.83  .030 0.01   0.21  .831 0.03   1.06  .289 -0.04 -0.90  .367 

ROIs based on Voxel-wise Analysis 

Left middle frontal gyrus 

 0.57       

Age  -0.38 -12.92 <.001 -0.20 -6.01 <.001 -0.28 -7.58 <.001 -0.36 -9.17 <.001 

Genetic status -0.35 -11.51 <.001 -0.60 -15.18 <.001  0.53 -12.82 <.001 -0.003 -0.07  .944 

RSFA  0.13 4.42 <.001  0.10  2.95   .003  0.14   4.35 <.001 -0.03 -0.82  .412 

Genetic 

status*RSFA 

 0.23 8.02 <.001  0.22  6.60 <.001  0.16   4.84 <.001  0.07  1.73  .085 

Right middle frontal gyrus 

 0.54       

Age  -0.41 -13.76 <.001 -0.24 -6.61 <.001 -0.30 -7.63 <.001 -0.37 -9.26 <.001 

Genetic status -0.37 -11.84 <.001 -0.64 -15.63 <.001 -0.58 -14.04 <.001 -0.003 -0.07  .943 

RSFA  0.11  3.59   .003  0.07   2.11  .036  0.07   2.15  .032  0.05  1.12  .261 

Genetic 

status*RSFA 

 0.15  5.25 <.001  0.07   2.06  .040  0.04   1.30  .195  0.05  1.23  .220 

Left superior frontal gyrus 

 0.54       

Age  -0.42 -13.88 <.001 -0.23 -6.47 <.001 -0.30 -7.98 <.001 -0.37 -9.36 <.001 
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Genetic status -0.38 -12.10 <.001 -0.64 -16.37 <.001 -0.58 -13.94 <.001 -0.01 -0.17  .861 

RSFA  0.08   2.49   .054  0.06  1.85   .065  0.05   1.67  .096 -0.04 -0.85  .398 

Genetic 

status*RSFA 

0.14   4.83 <.001  0.12  3.57 <.001  0.09   2.99  .003 0.002  0.06  .951 

Right superior frontal gyrus 

 0.54       

Age -0.42 -14.05 <.001 -0.23 -6.59 <.001 -0.30 -7.72 <.001 -0.37 -9.43 <.001 

Genetic status -0.39 -12.64 <.001 -0.67 -17.30 <.001 -0.60 -14.64 <.001 -0.01 -0.29   .769 

RSFA  0.03   0.82   .610     

Genetic 

status*RSFA 

 0.15   5.29 <.001  0.09  2.91   .004  0.04   1.28   .201  0.07  1.90  .058 

     Cognitive function differences as a function of RSFA and genetic status following robust multiple linear regression analysis in ICA-

based components (top panel) and several representative ROIs based on voxel-wise univariate analysis on RSFA maps (bottom panel). 

Cognitive function is represented by subjects’ loading values for PC 1 following PCA on nine cognitive measures. Estimated regression 

parameters, t values, and p values are shown for main effects across the entire sample and sub-groups of interest where relevant. Models are 

adjusted for age, sex, handedness, and scanning site. 

     *P-values are FDR-corrected at the 0.05 level across the whole sample (all genetic status groups combined). Bold numbers indicate that 

p values are statistically significant. 

     Abbreviations: NC, non-carrier; PSC, pre-symptomatic mutation carrier; SC, symptomatic mutation carrier. 
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Figure 1. Schematic representation of the pre-processing pipeline and analytic approach used 

in the study. 
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Figure 2. Spatial distribution of 4 independent components (ICs) within neurocognitively 

meaningful areas (i.e., GM regions) based on ICA on RSFA maps across subjects where 

differences in IC loading values are found in association with genetic status, age, and genetic 

status x age interaction. Robust general linear model regression lines for each IC are 

presented in scatter plots with respective r values on the right side of each IC map. P values 

are FDR-corrected at the 0.05 level across the whole sample. Group-level spatial maps are 

overlaid onto the Colin-27 (ch2.nii) structural template of the MNI brain, where intensity 

values correspond to z-values. 
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Figure 3. Panel A. Regional distribution of RSFA effects based on voxel-wise univariate 

analysis. Cold colours denote RSFA decreases as a function of genetic status and their 

interaction with age. Statistical parametric maps are displayed at an uncorrected level of p < 

0.01 to better visualise regional CVR patterns. Images are overlaid onto the Colin-27 

(ch2.nii) structural template of the MNI brain. Panel B. Differences in RSFA in association 

with genetic status, age, and genetic status x age interaction across groups of interest in 

several representative ROIs based on voxel-wise univariate analysis. Robust general linear 

model regression lines for each ROI are presented in scatter plots with respective r values on 

the right side of each ROI map. P values are FDR-corrected at the 0.05 level across the whole 

sample. NC, non-carrier; PSC, pre-symptomatic mutation carrier; SC, symptomatic mutation 

carrier. MFG, middle frontal gyrus; SFG, superior frontal gyrus. ROI, region of interest; VOI, 

volume of interest. 
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Figure 4. Differences in cognitive function in association with genetic status, RSFA, and 

genetic status x RSFA interaction across groups of interest. Cognitive function is denoted by 

subjects’ loading values for PC 1 following PCA on nine cognitive measures. Effects are 

illustrated for ICA-based components within GM areas (top panel) and several representative 

ROIs based on voxel-wise analysis (bottom panel). Robust general linear model regression 

lines for each respective IC and ROI are presented in scatter plots with corresponding r 

values on the right side of a representative slice depicting each IC/ROI map. P values are 
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FDR-corrected at the 0.05 level across the whole sample. MFG, middle frontal gyrus; SFG, 

superior frontal gyrus. ROI, region of interest; VOI, volume of interest. 
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