
 

1 

Data-driven prioritization of genetic disorders for global genomic newborn screening 
programs 
 
Thomas Minten1*, Nina B. Gold2*†, Sarah Bick3,4,5, Sophia Adelson6,7, Nils Gehlenborg8, 
Laura M. Amendola, François Boemer9, Alison J. Coffey10, Nicolas Encina11,12,13, Alessandra 
Ferlini14, Janbernd Kirschner15, Bianca E. Russell16, Laurent Servais17,18, Kristen L. Sund19, 
Ryan J. Taft10, Petros Tsipouras20, Hana Zouk21,22,23, ICoNS Gene List Contributors**, David 
Bick24, Robert C. Green5,12,23,25 for the International Consortium on Newborn Sequencing 
(ICoNS)*** 
 
* These authors contributed equally to the manuscript. 
† Corresponding author 
** See Supplement A for list of ICoNS Gene List Contributors authors 
*** See Supplement B for a list of International Consortium on Newborn Sequencing (ICoNS) 
authors 
      
 
 
 
 
Address correspondence to: Nina B. Gold, MD, Mass General Hospital for Children, 
Division of Medical Genetics and Metabolism, 175 Cambridge Street, Boston, MA 02114, 
[ngold@mgh.harvard.edu] 
 
 
 
 
 
 
 
 
 
 
 
1KU Leuven; 2Massachusetts General Hospital, Department of Pediatrics; Harvard Medical 
School, Department of Pediatrics; 3Boston Children's Hospital; 4Massachusetts General 
Hospital; 5Harvard Medical School; 6Brigham and Women's Hospital; 7Stanford School of 
Medicine; 8Harvard Medical School, Department of Biomedical Informatics; 9University of 
Liege, CHU Liege; 10Illumina Inc.; 11ICoNS; 12Ariadne Labs; 13Harvard T.H. Chan School of 
Public Health; 14University of Ferrara, Department of Medical Sciences, Department of 
Medical Sciences, Unit of Medical Genetics; 15University Medical Center Freiburg, 
Department of Neuropediatrics and Muscle Disorders; 16University of California, Los 
Angeles, David Geffen School of Medicine, Department of Human Genetics, Division of 
Clinical Genetics; 17University of Oxford; 18University of Liege; 19Nurture Genomics; 
20FirstSteps-BNSI; 21Massachusetts General Hospital, Department of Pathology, Laboratory 
for Molecular Medicine; 22Harvard Medical School, Department of Pathology; 23Broad 
Institute; 24Genomics England; 25Mass General Brigham 
 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 16, 2024. ; https://doi.org/10.1101/2024.03.24.24304797doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.03.24.24304797


 

2 

Abstract 

Genomic sequencing is poised to expand newborn screening for treatable childhood-onset 

disorders. Over 30 international research studies and companies are exploring its use, 

collectively aiming to screen more than 500,000 infants. A key challenge is determining 

which genes to include in screening. Among 27 newborn sequencing programs, the number 

of genes analyzed ranged from 134 to 4,299, with only 74 genes included by over 80% of 

programs. To understand this variability, we assembled a dataset with 25 characteristics of 

4,389 genes included in any program and used a multivariate regression analysis to identify 

characteristics associated with inclusion across programs. These characteristics included 

presence on the US Recommended Uniform Screening panel, evidence regarding the 

natural history of disease, and efficacy of treatment. We then used a machine learning 

model to generate a ranked list of genes, offering a data-driven approach to the future 

prioritization of disorders for public health newborn screening efforts.  
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A decade ago, the BabySeq Project piloted newborn and childhood sequencing (NBSeq), a 

process designed to detect risk for a wide range of genetic disorders in apparently healthy 

infants.1–9  Fueled by the recognition that over 700 genetic disorders now have targeted 

treatments or consensus guidelines for long-term management, enthusiasm for NBSeq has 

grown significantly.10,11 Stakeholders, including diverse groups of parents,12,13 rare disease 

specialists,11 primary care physicians,14 genetic counselors,11,15,16 and the public17,18 now 

support the implementation of genomic newborn screening for at least some disorders. 

 

This growing interest in NBSeq has led to the creation of at least 30 international research 

programs and companies that are actively exploring this screening approach.19–21 Most of 

these programs are exchanging best practices under the International Consortium on 

Newborn Sequencing (ICoNS).22 Given the hundreds of treatable disorders that could be 

candidates for NBSeq, and various interpretations of actionability, selection of the 

appropriate genes and disorders is a recurring challenge.20,23,24 Historically, the criteria 

established by Wilson and Jungner25 have provided a framework for selecting the disorders 

to include in public newborn screening programs. These criteria prioritize the inclusion of 

childhood-onset disorders that are treatable if diagnosed in their earliest stages and require 

emergent intervention to prevent irreversible damage. However, the technical aspects of 

genomic sequencing and variant curation, as well as the variable expression and incomplete 

penetrance of many genetic disorders, present new challenges to this screening paradigm. 

Many of the international NBSeq research studies and commercial programs around the 

world are using independent and opaque processes to select genes for screening.  

 

Prior studies have identified discrepancies across the genes being analyzed by a limited 

number of commercial NBSeq programs26 and research studies,27,28 but little is known about 

the values and variables that underlie these differences. Understanding which genes have 

high concordance across programs may guide emerging NBSeq research programs as they 
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select which genes and variants to report to participants. Furthermore, the characteristics of 

these genes and their associated disorders can be used more empirically to prioritize 

candidate genes for public health programs.  

 

To understand the variability among newborn sequencing programs, we compared the 

genes currently selected for analysis by 27 research studies and commercial NBSeq 

programs. For each gene that was included in any NBSeq program, we assembled a dataset 

of 25 associated characteristics, then used a multivariate regression analysis to identify 

which of these characteristics were associated with inclusion across programs. Finally, we 

used a machine learning model to generate a ranked list of genes, offering a data-driven 

approach to the prioritization of genetic disorders for population-wide NBSeq. 

 

Results 

International Consortium on Newborn Sequencing (ICoNS) 

ICoNS, founded in 2022, brings together leaders of global research projects 

investigating the use of NBSeq. For this project, ICoNS acted as the convening 

organization requesting gene lists and criteria for gene selection from NBSeq programs. 

 
Description of global NBSeq programs 

We identified 35 independent research studies and commercial NBSeq programs (Fig. 1, 

Supplementary Table 1).5,29–46  Of these, 10 were located in North America, 10 in Asia, nine 

in Europe, four in Australia and New Zealand, one in South America and one in Africa. At 

this time, 26 NBSeq programs are actively recruiting participants and nine are scheduled to 

begin recruitment. The 27 research programs anticipate a combined total sample size of 

519,410 infants, with the intended enrollment in each study varying from 48 to over 100,000 

infants.42,47 Genome or exome sequencing backbones are in use by 13 programs and 17 are 

using gene panels. Several programs have not yet decided upon either their underlying 

sequencing platform nor their final gene list.  
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Positive screening rates of NBSeq programs 

Nine of the 20 NBSeq research programs have published or presented the screening results 

from a collective total of 68,884 infants (Table 1). The percentage of positive screening 

results ranged from 1.85% in BabyDetect (3,847 infants screened for 405 genes) to 9.43% in 

BabySeq (159 infants screened for 4,299 genes), with an average of 3.80% positive results 

across 68,884 infants. There was a significant positive correlation between the percentage of 

positive screening results in a program and the number of genes they screened (pearson 

correlation coefficient of 0.653, p=0.041). A majority of the collective 1,937 positive 

screening results across seven studies for which detailed results were available were due to 

variants in G6PD (56.8%).  

 

Four studies reported the clinical outcomes of infants who had undergone NBSeq, allowing 

for the calculation of these studies’ positive predictive value (PPV). The PPV varied from 

12% in 414 infants from the NESTS study to 88% in 142 infants from the GUARDIAN 

study,48 with an average across studies of 43% (40% when weighted by sample size). 

 

Description of gene lists across NBSeq programs 

Only five programs have published or made available their criteria for selecting genes and 

disorders for screening (Supplementary Table S2). Of these programs, nearly all indicated 

the intent to include early-onset, severe, treatable monogenic disorders. 

 

We aggregated the lists of genes being analyzed by 20 NBSeq research and 7 commercial 

programs. The number of genes included in each program ranged from 134 to 4,299 

(median=306). A total of 4,389 genes were included across at least one of the 27 gene lists 

(Supplementary Table S4). Of these, 4,033 genes (91.8%) were associated with a 

phenotype in the OMIM database. Additionally, 1,000 genes (22.8%) had corresponding 

ClinGen gene-disease validity classifications, with 854 gene-disease relationships classified 
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as having definitive validity and 13 genes from 15 programs with refuted or disputed 

associations with the disorder being screened. Collectively, genes linked to inherited 

metabolic disorders (IMDs) (25.7%), neurologic (15.4%), immunologic (12.0%) and 

endocrine (11.1%) disorders constituted the majority of the gene lists (Fig. 2A, 2B).  

 

Discordance among gene lists used in NBSeq programs 

A pairwise Jaccard Index, which compares the content of each of the 27 gene lists with 

another, indicates that similarity was strongest between gene lists from commercial NBSeq 

programs (Fig. 2C, Supplementary Fig. 2, 3). Most pairs of gene lists from NBSeq research 

programs have highly discrepant content. Of the 4,389 genes included in at least one NBSeq 

program, the vast majority were included by only a small number of NBSeq programs: 4,088 

genes (93%) were included by 10 or fewer programs and 3,797 (87%) genes were included 

by five or fewer programs (Supplementary Fig. 1). A total of 14 out of 27 gene lists included 

genes not shared by any other study.  

 

The gene lists of the four research studies with the largest intended sample sizes 

(BabyDetect, the Generation study, the GUARDIAN study and NewbornsInSA) share only 

157 genes (19%) out of an aggregated total of 818 genes (Fig. 2D). Across these four 

programs, 305 genes (37%) were unique to just one of the studies.  

 

Genes with high concordance across NBSeq programs 

Despite this variability across gene lists, we found 74 genes (1.7% of 4,389) that were 

included by over 80% (22 of 27) of NBSeq programs (Fig. 3). Of these 74 genes, 58 were 

associated with diseases on the US Recommended Uniform Screening Panel (RUSP). A 

total of 34 genes not linked to disorders on the RUSP appeared on 20 or more lists (Fig. 3C).  

 

Predictors of gene inclusion across NBSeq programs 
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To understand why certain genes were included by more NBSeq programs than other 

genes, we assembled a dataset of 25 characteristics for each of the 4,389 genes included in 

any NBSeq program. We then used univariate regression analyses to identify the factors that 

influenced the likelihood of a gene being included in multiple programs (Fig. 4A, 

Supplementary Table 5).2,10,11,31,49–51 Genes associated with core and secondary conditions 

on the RUSP were significantly more likely to be included in gene lists compared with 

disorders not on the RUSP (regression coefficient 74.6%, 95% confidence interval (CI): 

0.709-0.783, p<0.01; regression coefficient 60.1%, 95% CI: 0.558-0.644, p<0.01). 

Additionally, genes that were recommended for inclusion in newborn screening by 80% or 

more rare disease experts in a recent survey,11 were 43.5% (95% CI: 37.4%-49.6%, p<0.01) 

more likely to be included than genes that were recommended by fewer experts 

(Supplementary Fig. 5). 

 

Among other gene and disease-related characteristics, the strongest predictor of inclusion 

across NBSeq programs was the evidence base, defined by a combination of gene-disease 

validity, published descriptions of the natural history of disease, and the availability of expert 

consensus or professional society practice guidelines for disease diagnosis and 

management.49 Genes with the highest evidence base were 29.4% more likely (95% CI: 

24.5%-34.3%, p<0.01) to be included in NBSeq programs than those with less available 

evidence.  

 

Other disease-related characteristics associated with inclusion across NBSeq programs 

were high efficacy of disease treatment (16.9%, 95% CI: 12.2%-21.6%, p<0.01), high 

penetrance (15.4%, 95% CI: 9.7%-21.1%, p<0.01), neonatal- or infantile-onset (15.2%, 95% 

CI: 10.7%-19.7%, p<0.01), high disease severity (14.8%, 95% CI: 8.5%-21.1%, p<0.01), 

high acceptability of treatment (with regard to the burdens and risks placed on the individual) 

(14.8%, 95% CI: 10.1%-19.5%, p<0.01), and the existence of an non-molecular test that 

could be used to confirm the diagnosis (13.7%, 95% CI: 9.2%-18.2%, p<0.01). Several 
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quantitative scores previously designed to assess the overall usefulness of disorders for 

NBSeq were also strong predictors of gene inclusion across NBSeq programs, including the 

BabySeq Category2 and ASQM Score49,50 (pearson correlation coefficients of 0.07, p=0.047; 

0.45, p=0.001 respectively, Supplementary Fig. 6). 

 

Measuring evolving knowledge about genes and diseases 

We also conducted a multivariate regression analysis to determine how changes in specific 

variables, such as treatability and evidence base, would individually influence the overall 

regression (Supplementary Table 6). Notably, the introduction of a new, highly acceptable 

treatment for a disorder with no previous treatment would increase the likelihood of inclusion 

in NBSeq programs by 9.7% (95% CI: 0.1%-19.3%, p<0.05). Similarly, improving knowledge 

related to the natural history of a gene-disorder pair from “none” to “perfect” would increase 

the likelihood of inclusion in NBSeq programs by 15.0% (95% CI: 5.0%-25.0%, p<0.01). 

 

Predictors of gene inclusion in individual NBSeq programs 

To explore whether gene and disease characteristics influence their inclusion differently 

within individual NBSeq programs, we also conducted separate regressions for each 

program (Fig. 4B and Supplementary Tables 7). The evidence base of a gene-disease pair 

was more strongly correlated with gene inclusion for programs such as FORESITE 360 

(regression coefficient 53.9%, 95% CI: 44.1%-63.7%, p<0.01) and the commercial genetic 

test offered by PerkinElmer (47.9%, 95% CI: 38.3%-57.5%, p<0.01), compared with the 

average correlation across all programs (29.4%, 95% CI: 24.5%-34.3%, p<0.01). In contrast, 

other programs, such as BabyScreen+, placed more emphasis on the inclusion of early-

onset conditions (35.4%, 95% CI: 25.6%-45.2%, p<0.01) compared with the average 

(15.2%, 95% CI: 10.7%-19.7%, p<0.01).  

 

Machine learning prediction model 
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We developed a machine learning prediction model to empirically predict and rank the 

inclusion of novel genes for NBSeq programs. To build this tool, we randomly split the gene 

list data into 80% training and 20% test sets. Of the previously collected 25 gene and 

disease characteristics, we selected 13 as features in our model due to availability and 

minimal overlap (see Methods and Supplementary Table 3). These characteristics were: 

RUSP category, clinical area, evidence base, treatment efficacy, penetrance, treatment 

acceptability, age of onset, existence of orthogonal tests, recommendation score, 

inheritance, prevalence, and ClinGen disease validity and actionability scores. 

 

During the training phase (n=91,291, 80% of all 114,114 potential instances of a 4,389 

genes included on a gene list across 26 NBSeq programs), we compared three machine 

learning methods: linear regression, random forest and boosted trees (see Methods). 

Boosted trees demonstrated the highest accuracy, with an area under the curve (AUC) of 

0.917 and R-squared of 77% on the test set (n=22,823, 20%) (Fig. 4C). The relative 

importance of all variables in the boosted trees model was highest for characteristics such 

as the proportion of experts who recommended inclusion of the gene in NBSeq on a recent 

survey,11 RUSP classification, and disease prevalence, confirming the results from the 

regression analysis (Supplementary Fig. 8). 

 

We also used this model to predict the observed inclusion of genes across all NBSeq 

programs. The result was a list of all genes that had appeared in any NBSeq program, 

ranked by their predicted inclusion probabilities, which were based on the 13 characteristics 

included in the model (Table 2). This analysis identified five genes (ACADSB, PTPRC, 

NHEJ1, NAGLU, and ETFA) that, despite being highly ranked by the model, were only 

included in a low proportion of NBSeq programs.  

 

To address missing data for some genes that were included across multiple NBSeq 

programs, we created a second ranked list. This list combines the rankings generated by our 
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machine learning model with the proportion of NBSeq programs in which each gene was 

observed with equal weights (Supplementary Table 8). By integrating these two sources of 

information, this hybrid list leverages the most comprehensive evidence available to prioritize 

genes for potential implementation in public health programs. 

 

Discussion 

Genomic newborn screening is a rapidly advancing field of global research exploring the 

impacts of early diagnosis for infants at risk for genetic disorders. With positive screening 

results in 1.85% to 9.43% of infants and a higher average PPV than some traditional 

newborn screening techniques,48,52 findings from NBSeq research programs support the 

premise that this approach could improve early detection rates for a wide range of treatable 

disorders. However, selecting the appropriate genes for screening is a critical step toward 

implementing population-wide NBSeq. This decision will have significant implications for at-

risk infants, their families, and pediatric healthcare systems.19,20 In this study, we compared 

the genes being analyzed by 27 NBSeq programs. We then collected data on 25 

characteristics for all genes that had been included in any program and identified which of 

these characteristics were associated with inclusion across programs. We then developed a 

machine learning model to predict the inclusion of a gene across NBSeq programs. By 

combining this model with observed data from NBSeq programs, we generated a ranked list 

of genes that offers a data-driven approach to prioritizing genetic disorders for public health 

programs looking to incorporate NBSeq into their screening strategies. 

 

Similar to the findings of smaller studies,27,28 our comparison of gene lists from 27 NBSeq 

programs revealed substantial heterogeneity, which we explored using a series of regression 

models. We found that the importance of individual gene and disease characteristics varied 

across studies, potentially due to differences in the international prevalence of disorders, the 

availability of specialists and treatments in different countries and healthcare systems, or the 

specific goals of individual NBSeq programs. Furthermore, the rarity of many genetic 
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disorders often leads to incomplete knowledge of disease characteristics such as 

penetrance, age of onset, and treatability, which complicates the gene selection process. For 

example, the penetrance of each disorder may not be well-understood until population-wide 

genomic screening studies become more routine.53,54 Unexpectedly, 356 genes with no 

disease association on OMIM and 52 with limited or refuted gene-disease validity scores 

from ClinGen were included by some NBSeq programs, demonstrating variation among 

programs in willingness to include candidate genes or those with new associations to 

disease.  

 

Despite variations in the gene lists used by NBSeq programs, many share a common focus 

on certain clinical areas and specific genes. All programs included a substantial proportion of 

genes associated with disorders that are on the RUSP, reflecting the potential for genomic 

sequencing to detect cases missed by traditional newborn screening programs.55–57 Of note, 

genes associated with some disorders on the RUSP, such as 3-methyl-crotonyl-CoA 

carboxylase deficiency (MCCC1, MCCC2), were widely included across lists despite not 

conforming to the historic Wilson-Jungner criteria. This suggests that some NBSeq programs 

have anchored their lists around the RUSP even when the disorders are neither severe nor 

highly treatable.58 Therefore, the observed concordance of a gene across NBSeq programs 

alone may not be sufficient to evaluate the suitability of a gene for population-wide 

screening.  

 

While NBSeq programs expanded the number of disorders included in screening, they 

largely did so within the same clinical areas already represented in current population-wide 

newborn screening programs, such as IMDs, inborn errors of immunity, endocrinologic 

disorders, and hematologic disorders. Several IMD genes with high concordance across 

NBSeq programs, such as those associated glycogen storage disease types Ia and Ib 

(G6PC1, SLC37A4), lack biomarkers that can be accurately assayed on a population scale 

and therefore are widely recognized as candidates for ascertainment by an NBSeq 
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approach.11 In contrast, F8, the gene associated with hemophilia A, which shares similar 

clinical characteristics to hemophilia B and has previously been suggested as a target of 

NBS, was included only in a minority of lists. This discrepancy may reflect the technical 

challenge of using genomic sequencing to identify the inversions that most commonly 

underlie this disorder.59 Developing the best approach toward complementary genomic and 

non-molecular screening approaches remains an ongoing challenge in the NBSeq field. 

 

Many gene and disease characteristics emerged as highly associated with the inclusion of 

genes across NBSeq programs. Although the regression coefficients in our multivariate 

regression model varied for each characteristic across programs, most of the associations 

were positive. This indicates that all NBSeq programs value these characteristics, but weigh 

them differently when curating gene lists. The characteristics that were most strongly 

associated with inclusion across gene lists included the strength of published data on the 

natural history of disease, estimated penetrance, and the effectiveness of the associated 

treatment. The availability of a non-molecular confirmatory diagnostic test also influenced 

inclusion across NBSeq programs, likely because it offers additional phenotypic information 

for disorders with incomplete penetrance.23 Interestingly, despite the inclusion criteria that 

several NBSeq programs reported, characteristics such as the age of onset and disease 

severity were weakly associated with inclusion, possibly due to their subjective nature. 

These results suggest that NBSeq programs are considering a wide range of technical and 

clinical factors specific to genetic diseases when developing their gene lists. Consequently, 

the traditional Wilson-Jungner criteria may no longer be adequate for guiding disease 

selection in public health programs using NBSeq. To address this, ICoNS plans to develop a 

new set of screening principles tailored to NBSeq by 2026. 

 

The machine learning model developed in this study identifies the disorders that may be 

most appropriate for genomic newborn screening, based on a set of 13 disorder 

characteristics and their inclusion across 27 NBSeq programs. On a population scale, it may 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 16, 2024. ; https://doi.org/10.1101/2024.03.24.24304797doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.24.24304797


 

13 

not be feasible for every country to implement the screening of hundreds of genes 

simultaneously. This ranked list, along with the preferences of rare disease experts,11 could 

be used to prioritize genes for screening, which could then be manually curated by a team of 

expert reviewers. Although the list includes many genes associated with disorders that are 

already routinely screened by many states in the US,60 it may guide the adoption of 

screening for these disorders in countries where they are not yet assessed. At this time, the 

model’s predictions reflect a consensus drawn from NBSeq studies and databases, but in 

the future, these could be combined with hard-coded gene selection criteria. The model's 

flexibility also allows updates based on regional preferences, new data, or emerging 

therapeutics. Importantly, this model identified several genes included by only a few NBSeq 

programs, but which have characteristics that are highly associated with inclusion across 

programs. For example, although PTPRC, a gene associated with severe combined 

immunodeficiency (SCID), was only included by 12 of 27 NBSeq programs, the model 

ranked it 122 of 4389 genes. This is likely because PTPRC is associated with a severe 

immunologic disorder that typically presents in childhood and can be treated with an early 

hematopoietic stem cell transplant, but is a rare cause of SCID.61 This finding highlights the 

model’s potential to identify genes that may have been overlooked by researchers during the 

gene selection process.  

 

Our study has several limitations. Although we provided the first overview of screening 

outcomes across multiple NBSeq programs, detailed data on the percentage of positive 

screening results were available for only nine research studies. The Jaccard index may 

exaggerate discrepancies between gene lists of different lengths. For the regression and 

machine learning models, we consolidated metrics including the ASQM, BabySeq, and 

ClinGen databases, most of which rely on expert-curated information, such as age of onset, 

for which definitions vary. There were missing data among the 25 gene and disease 

characteristics that we collected. These gaps reduced the boosted tree model's prediction 

accuracy for genes that are not well-characterized, resulting in lower inclusion rates for 
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genes related to disorders that are rare or have limited published evidence. To mitigate the 

effects of missing data, we designed the model to be easily updated, and provided a ranked 

gene list that takes into account observed inclusion in addition to our model estimates. The 

ranked list may suffer from overfitting, given that it includes genes on which the model was 

trained. Lastly, the model incorporates data from funded research programs and commercial 

products, which may not align with the goals or constraints of public health newborn 

screening programs. 

 

In summary, the growing international interest in genomic newborn screening has prompted 

urgent questions about which genes and disorders should be prioritized for inclusion. Due to 

the substantial variation in the genes included by 27 NBSeq programs, we developed an 

evidence-based approach to prioritizing gene selection that draws from a comprehensive 

data repository encompassing over 4,000 genes. Our machine learning model uses data 

from a variety of sources to predict which genes and their related diseases are currently 

most appropriate for NBSeq. Rather than creating a static list of genes for universal 

implementation, our dynamic ranking system is adaptable and can be updated as new 

knowledge about genes, disorders, and therapeutics emerges. This work will support gene 

selection for both research and public health genomic newborn screening programs and 

guide ICoNS in updating the Wilson-Jungner criteria to address the unique challenges posed 

by NBSeq.
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Tables and Figures 

Figure 1. Research and commercial genomic newborn screening (NBSeq) programs. Gene lists from 27 of these programs were included 
in the analysis (denoted with an asterisk). Intended enrollment sizes are indicated where available. 
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Figure 2. Description and concordance of gene lists of genomic newborn screening programs. 
A. Clinical areas of 4,299 genes included in BabySeq. 
B. Counts and clinical areas of genes included in 26 research and commercial genomic newborn screening programs (n=4,389). 
C. Jaccard similarity index, which offers a quantitative comparison of how closely related the gene lists are. 
D. UpSet plot62 of gene lists of 4 large research studies. The matrix below the bar graph represents each individual study and their 

intersections (n=818). 
 

A. 

 

 

B. 
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C. 

 

D. 
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Figure 3. Genes with high concordance across genomic newborn screening programs. 
A. Genes associated with core Recommended Uniform Screening Panel (RUSP) conditions. 
B. Genes associated with secondary RUSP conditions. 
C. Genes on 20 lists or more that are not associated with RUSP conditions. 

The x-axis is each genomic newborn screening program and y-axis are individual genes; the corresponding cell is colored if the gene is 
included on a given list. 

A.  

 

B.  

 

 

C.  
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Figure 4. Determinants and prediction model of gene inclusion in genomic newborn screening. 
A. Regression coefficients (and confidence intervals) associated with various gene and disease characteristics predicting inclusion across 

gene lists. 
B. Heat map with regression coefficients associated with gene and disease characteristics for each individual genomic newborn screening 

program. 
C. ROC curves for three prediction models in the hold-out test set (n=895 genes). 
D. Scatter plot of predicted versus observed gene list inclusion, showing the fit of the boosted trees model on the 20% hold-out set (n=895 

genes). 
 
In a and b, RUSP category (n=4,474), survey recommendation and orthogonal test (n=649), evidence base, efficacy, penetrance, disease 
severity, treatment acceptability and neonatal or infant onset (n=749). ROC, Receiver Operating Characteristic; AUC, Area Under the Curve. 
 

A. 

 

B. 
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C. 

 

D. 
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Table 1. Percentage of positive results from genomic newborn screening research 
programs. Positive cases of G6PD, as well as follow-up data for positively screened infants 
reported where available. PPV, positive predictive value. 
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Table 2. List of 50 genes with highest predicted inclusion across NBSeq programs. 
RUSP, Recommended Uniform Screening Panel; ASQM, Age-Based Semi Quantitative 
Metric.    
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Methods 

Identification of lists of genes from research studies and commercial programs 

Research studies’ and commercial programs’ gene panels related to NBSeq were identified 

based on inclusion in the International Consortium on Newborn Sequencing (ICoNS) and 

through an online search using terms related to genomic sequencing of infants. In total, 35 

programs were identified, of which 27 provided gene lists (Supplementary Table S1, Fig. 1). 

 

We included gene lists from 27 NBseq programs, including 20 research studies: 

BabyDetect29,30, BabyScreen+27, BabySeq2, BeginNGS31,32, Chen et al. 202333, Early 

Check34, FirstSteps, the Generation study, gnSTAR35,37, GUARDIAN study41, Jian et al. 

202236, Lee et al. 201942, Luo et al. 202043, NeoExome46, NeoSeq39, NESTS40, 

NewbornsInSA, Progetto Genoma Puglia, Screen4Care44 and Wang et al. 202338. In two 

studies (GUARDIAN41 and Early Check34), all infants receive testing for a gene list focused 

on conditions with effective treatments and parents have the option to be tested for an 

expanded gene list. For both of these studies, we included only the core gene list focused on 

treatable genetic conditions. Seven lists of genes from commercial firms that offer products 

related to genomic newborn screening were included: FORESITE 360, Fulgent, Igenomix, 

Mendelics, Nurture Genomics, PerkinElmer45, Sema429. Of note, the Sema4 product is no 

longer commercially available. 

 

Rates of positive screening results 

We obtained data provided by all included studies for results of their NBSeq activities. A total 

of nine studies had published or presented results as of August 2024. As studies had 

different approaches to participant selection, Table 1 only reports results of NBSeq programs 

that screen apparently healthy infants. We excluded results from samples where specifically 

at-risk infants (such as those in the neonatal intensive care unit) were sequenced. From the 

Wang et al study, only the results on healthy infants were retained.38 From the BabySeq 

study, we included both the healthy and NICU infant sample, as only unanticipated results 
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unconnected with NICU clinical presentations were described for the NICU sample.5 We 

excluded a sample from the NeoEXOME study of neonates that had positive results in 

conventional NBS.46 

 

Aggregation of gene lists 

Gene names were converted to the current nomenclature set forth by the HUGO Gene 

Nomenclature Committee (HGNC) based on an available online multi-symbol checker.63 For 

purposes of analysis, each gene was linked to one condition. The multistep process for 

linking genes to a single disorder began by first identifying the phenotypes associated with 

each gene on Online Inheritance in Man (OMIM).64 If only one disease name was associated 

with the gene on OMIM, a gene-disease pair was formed. If the gene was known to be 

associated with multiple OMIM disorders, we used the ClinGen gene-disease validity 

resource to select only the disorder with definitive classification when available.51 For genes 

with more than one disorder with definitive validity or for genes without any disorder with 

definite validity, one disorder was selected based on the highest number of programs in this 

study that indicated it as screening target. For example, for RYR1, which has a definitive 

association with both susceptibility to malignant hyperthermia and myopathy,51 susceptibility 

to malignant hyperthermia was selected as the target disorder. Susceptibility to malignant 

hyperthermia was indicated as a target disease by five of seven programs with disease 

information available screening for this gene, compared with myopathy which was listed as a 

target disease by only two of seven programs. 

 

A total of 264 genes were not annotated with disorder information from either ClinGen or 

OMIM databases, possibly because they were candidate genes or had very recently been 

substantiated as disease genes. These were then manually matched to diseases by search 

in HGMD (https://www.hgmd.cf.ac.uk/ac/index.php). Two gene names, GTM and CD1, which 

could not be linked to HGNC approved gene names, were omitted from the analysis. 
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Establishing a data repository of characteristics of genes-disorder pairs 

We established a data repository consisting of 25 characteristics for all gene-disorder pairs, 

sourced from ten different references: five research papers and five existing 

databases.2,10,11,31,49–51  Matching of data from these databases was based on finding an 

exact match with the gene-disorder pair. Matches were then manually checked for 

correctness. Three variables (prevalence, clinical area, and RUSP category) were newly 

constructed for this study and were based on consolidated information from varying sources. 

Supplementary Table 3 provides an overview of all variables, as well as a description of all 

metrics and their respective sources. 

 

To determine whether each gene-disease pair was associated with a disorder listed on the 

United States Recommended Uniform Screening Panel (RUSP), we cross-referenced the 

genes identified by Owen et al32  with the diseases listed on the RUSP section of the United 

States Health Resources and Services Administration (HRSA) website 

(https://www.hrsa.gov/advisory-committees/heritable-disorders/rusp). A gene was 

considered associated with a RUSP-listed disease if it appeared in the "Cause" section of 

the corresponding disease-specific HRSA webpage. 

 

Each gene and its associated condition was assigned to one of 12 clinical areas, determined 

by the clinical specialty most likely to treat patients with those disorders. The clinical areas 

include cardiovascular, dermatology, ENT/Dental, endocrinology, gastroenterology, 

hematology, immunology, medical genetics, metabolism, nephrology, neurology, oncology, 

ophthalmology, orthopedics, and pulmonology. For 649 disorders, clinical area assignments 

were based on a previously published paper.11 For all other gene-disorder pairs, one co-

author assigned the clinical area, and another co-author verified this assignment (S.A., S.B., 

N.B.G.). 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 16, 2024. ; https://doi.org/10.1101/2024.03.24.24304797doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.24.24304797


 

26 

Prevalence estimates for gene-disease pairs were obtained from four sources: Orphanet 

(https://www.orpha.net/), RX-genes (https://www.rx-genes.com/), and two previously 

published studies.11,31 Gene-disorder links in Orphanet were established through Orphacode, 

and only global prevalence estimates were retained. Consolidated prevalence estimates 

were selected based on the following preference: RX-genes, Orphanet, Gold et al (2023), 

and Kingsmore et al (2022). Prevalence data were obtained from these sources for 1,364 

gene-disease pairs, covering 31% of the 4,389 genes. Notably, 68% of these disorders had 

a prevalence of 1 per 1,000,000 or less, highlighting the ultra-rare nature of many disorders 

included in newborn sequencing programs. 

 

Additional gene and disorder characteristics, including disease penetrance, severity, 

treatment acceptability and efficacy, age of onset, evidence base (which refers to the level of 

knowledge about the natural history of the disorder and its treatments), inheritance patterns 

and the existence of an orthogonal confirmatory non-diagnostic test, were derived from five 

previously published studies.2,11,49,50 When two modes of inheritance were implicated for the 

same gene and disease in these studies, such as for MYO6, a cause of non-syndromic 

deafness, dominant inheritance was selected as it was expected to lead to the most 

inclusive reporting criteria. 

 

Gene-disorder pairs were also matched with ClinGen (https://clinicalgenome.org/) gene-

disease curations, which were evaluated using a standardized approach to assess the 

strength of evidence linking a gene to a monogenic disease. Additionally, ClinGen clinical 

pediatric and adult actionability curations were obtained, with the highest actionability score 

retained when multiple curations were available.8,50 For gene-disorder pairs with both 

pediatric and adult curations, only the pediatric score was retained. 

 

Three existing metrics that address the suitability of genes for newborn sequencing were 

also included. The age-based semi-quantitative metric (ASQM) score49,50 is a metric which 
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assigns a number between 0 and 15 to a gene-disease pair to denote overall 

appropriateness for newborn screening based on several sub-scores. The BabySeq 

Category is another metric scored by the BabySeq Project,2 where BabySeq Category A is 

designated as the category of genes most amenable to newborn screening, while Category 

C is considered less amenable to newborn screening. Finally, we incorporated the proportion 

of 238 rare disease experts who recommended screening newborns for 649 genes, as 

determined by an online survey.11 

 

Statistical analysis 

All statistical analyses were carried out in Stata 18 (College Station, TX), R version 4.3.1 

(Vienna, Austria) and Python version 3.11.2 (Python Software Foundation, Beaverton, OR). 

Descriptive statistics for each gene list, including the length of the list, proportion of genes in 

each clinical category, and the number of genes associated with RUSP conditions were 

calculated. The distribution of genes across BabySeq categories, average ASQM score, and 

the proportion of rare disease experts recommending screening for the gene were calculated 

within each program (Supplementary Table 4). 

 

To represent overlapping parts of different gene lists, an UpSet plot was plotted using the 

UpSet62 library in R (Fig. 2D), as well as Venn diagrams (Supplementary Fig. 3). To provide 

information on the concordance across all lists of genes, Jaccard similarity indices were 

calculated using the Jaccard command in Stata (Fig. 2C and Supplementary Fig. 4). This 

index measures the number of genes in the intersection set divided by the number of genes 

in the union set of two gene lists. 

 

A linear regression model was used to identify factors associated with inclusion in multiple 

gene lists. Two types of regressions were performed: (1) regressions in which the outcome 

variable is the proportion of gene list inclusion across all genomic newborn screening 

programs and the independent variables are factors related to each gene and its associated 
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condition (Supplementary Table 5, 6), and (2) regressions in which inclusion of a gene for 

each individual study was explored (Supplementary Table 7). These regressions were 

implemented using the reg command in Stata with default standard error settings. For Fig. 

4A, the coefficient on each characteristic was measured in a separate regression, where the 

only other control was the RUSP category. For Fig. 4B, coefficients were obtained for each 

program separately running several regressions for each program, one for each program-

characteristic combination. Again, these regressions were controlled for the RUSP category. 

Standard errors, while not reported in 4B, can be found in the Supplementary Table 7 where 

the full results are reported. 

 

Machine learning prediction analysis      

The prediction analysis was implemented in R using linear regression, random forest and 

boosted trees (glm, randomforest and gbm packages). Our machine learning algorithm was 

developed to predict a binary variable: whether a gene was included in an NBSeq program’s 

gene list. We also used the proportion of 27 NBSeq programs that included the gene as an 

outcome measure, but results were similar. Since the BabySeq project uses an “elective 

exome approach” that includes nearly all genes associated with human disease, we 

excluded this list when training the model. The overall dataset used for prediction consists of 

114,114 program-gene observations. We randomly assigned 80% of genes (91,291 

observations) to the training set, and 20% to the hold-out test set. 

 

Out of 25 potential gene and disease characteristics, we selected 13 for inclusion in our 

model. These included the RUSP category, clinical area, evidence base, treatment efficacy, 

penetrance, treatment acceptability, age of onset, existence of an orthogonal test, 

recommendation score, inheritance, prevalence, and the ClinGen Disease Validity and 

Actionability scores. The remaining 12 gene and disease characteristics were excluded due 

to a high amount of missing data or overlapping evidence. For example, ClinGen 

actionability scores were not used due to their availability for only 242 genes. For composite 
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scores like the ASQM Score, NC Nexus category, or BabySeq category, we instead included 

the individual variables used to create these scores. Additionally, when characteristics 

described similar concepts (for example, both ASQM and BabySeq address the inheritance 

pattern of disease), we selected the characteristic with data for the most genes. For the 13 

gene and disease characteristics included in the model, missing values were handled by 

adding dummy variables in the regression model and setting the missing predictor to zero. In 

the random forest and boosted trees models, missing values were set to -1 or labeled as 

'missing' in the case of categorical variables. 

 

We conducted a grid search using cross-validation to optimize the hyperparameters in the 

boosted trees model using the caret package. We optimized interaction depth 

(interaction.depth: 1, 5), number of trees (n.trees: 100, 500), learning rate (shrinkage: 0.01, 

0.1), and minimum observations per node (n.minobsinnode: 10, 20). The final model 

configuration was chosen based on its performance during three-fold cross-validation, 

aiming to maximize predictive accuracy. 

 

Model performance was evaluated using Receiver Operating Characteristic (ROC) curves 

and the Area Under the Curve (AUC) metric for each model. These metrics were computed 

to assess the models' discriminative ability. Additionally, we plotted a calibration plot, 

showing the observed versus predicted inclusion probabilities for each gene-disorder pair in 

the test set (Supplementary Fig.7). We assessed the importance of gene and disease 

characteristics for the random forest and boosted trees models using the randomForest and 

gbm packages, where importance was measured by the mean decrease in accuracy for 

random forest and reduction in deviance for boosted trees.  
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