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Abstract  46 

 47 

Importance: Sepsis accounts for a substantial portion of global deaths and healthcare costs. 48 

Early detection using machine learning (ML) models offers a critical opportunity to improve care 49 

and reduce the burden of sepsis. 50 

 51 

Objective: To externally validate the SepsisWatch ML model, initially developed at Duke 52 

University, in a community healthcare and assess its performance and clinical utility in early 53 

sepsis detection. 54 

 55 

Design: This retrospective external validation study evaluated the performance of the 56 

SepsisWatch model in a new environment. Data from patient encounters at Summa Health’s 57 

emergency departments between 2020 and 2021 were used. The study analyzed the model's 58 

ability to predict sepsis using a combination of static and dynamic patient data. 59 

 60 

Setting: The study was conducted at Summa Health, a nonprofit healthcare system in Northeast 61 

Ohio, covering two emergency departments (EDs) associated with acute care hospitals, and two 62 

standalone EDs. 63 

 64 

Participants: Encounters associated with adult patients in any of Summa Health’s four EDs 65 

were included. Encounters lasting <1 hour were excluded. Only the first 36 hours of each 66 

encounter were used in model evaluation.  67 

 68 

Intervention(s)/Exposure(s): The SepsisWatch model was used to predict sepsis based on 69 

patient data.  70 

 71 

Main Outcome(s) and Measure(s): The primary outcomes measured were the model's area 72 

under the precision-recall curve (AUPRC), and area under the receiver operator curve (AUROC).  73 

 74 

Results: The study included 205,005 encounters from 101,584 unique patients. 54.7% (n = 75 

112,223) patients were female and the mean age was 50 (IQR, [38,71]). The model demonstrated 76 

strong performance across the Summa Health system, with little variation across different sites. 77 

The AUROC ranged from 0.906 to 0.960, and the AUPRC ranged from 0.177 to 0.252 across the 78 

four sites.  79 

 80 

Conclusions and Relevance: The external validation of the SepsisWatch model in a community 81 

health system setting confirmed its robust performance and portability across different 82 

geographical and demographic contexts. The study underscores the potential of advanced ML 83 

models in improving sepsis detection in both academic and community hospital settings, paving 84 

the way for prospective studies to measure the clinical and operational impact of such models in 85 

healthcare. 86 

 87 

 88 

 89 

 90 
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Introduction 91 

 92 

 93 

Sepsis is a systemic inflammatory response to disseminated infection that affects millions of 94 

people worldwide.1 Despite medical advancements, sepsis continues to be a major health 95 

concern, accounting for 19.7% of all global deaths.2 In the US, sepsis is the cause of up to half of 96 

all in-hospital fatalities.3 The economic impact of sepsis is equally staggering. Between 2012 and 97 

2018, the annual cost of inpatient hospitalizations related to sepsis for Medicare beneficiaries 98 

increased 26.12% from $17.8 billion to $22.4 billion.4 Costs for each sepsis-related encounter 99 

were estimated to be $18,023 when identified before admission and $51,022 if recognized post-100 

admission.5 Importantly, early detection and prompt antibiotic treatment can significantly reduce 101 

both the cost and the health impacts of sepsis.6-11  Sepsis care bundles have been developed and 102 

diffused to advance the standard of care for sepsis management, but the outcomes of these 103 

interventions are mixed.12–14 Leveraging machine learning (ML) for early sepsis identification 104 

has become a pivotal opportunity to further improve sepsis care. 105 

ML models can effectively identify sepsis early and implementation of these models can 106 

influence treatment and outcomes.15-18 Prospective implementation of ML and non-ML driven 107 

sepsis alert systems have been shown to decrease in-hospital mortality, organ failure, and length 108 

of stay.19-22,24 However, other studies demonstrate that while these systems may be able to predict 109 

impending sepsis they can fall short of changing care delivery and patient outcomes.23 The role 110 

of ML in sepsis treatment merits continued study of models and implementation approaches in 111 

different healthcare settings and patient populations. 112 

A key challenge to scaling ML models in healthcare is lack of portability, in part due to 113 

significant variability of patient populations and care delivery processes across geographies and 114 

points in time. Performance of ML models across diverse healthcare settings and patient 115 
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populations is highly variable.24-27 Model deployment itself brings forth its own set of 116 

challenges. From data curation to quality assurance and continuous monitoring, successful 117 

integration requires a multifaceted and deliberate approach.28,29 In addition, designing and 118 

implementing a workflow solution for clinicians to act on the outputs of an ML model requires 119 

additional training and personnel.30 Clinical perceptions of ML interventions will also vary 120 

depending on intuition and understanding, demonstrating that model accuracy does not 121 

necessarily equate to trust by providers and overall solution effectiveness.31 Taken together with 122 

the privacy concerns related to use and sharing of protected healthcare data, external validations 123 

of ML models are limited. 124 

In this paper, we describe the external validation of the SepsisWatch model in Summa 125 

Health, a hospital system in Ohio—a setting both geographically and temporally distinct from 126 

the context of initial development at Duke University. SepsisWatch is the first deep learning 127 

model implemented in routine clinical care in the United States and has been in continuous 128 

operations at Duke University since November 2018. This study has two primary objectives. 129 

First, we aim to assess the model's performance in this new environment. Second, we aim to 130 

estimate the potential workload and benefit to patients associated with the prospective 131 

implementation of SepsisWatch in this new environment. Through this study, we hope to 132 

contribute meaningful insights into the broader applicability of ML models for sepsis detection, 133 

emphasizing the importance of context and adaptation. 134 

 135 

Methods 136 

 137 

Setting  138 

 139 

Summa Health, a nonprofit integrated healthcare delivery system in Northeast Ohio, 140 

encompasses two acute care hospitals: Summa Health Akron City Hospital (ACH) and Summa 141 



 5

Health Barberton (SHB), each equipped with their own emergency department (ED). The system 142 

is further complemented by two standalone EDs—ACH Green ED and SHB Wadsworth ED. 143 

These facilities form a 1,300-bed system that facilitates over one million patient encounters 144 

annually. Summa Health primarily serves Summit, Wayne, Medina, Portage and Stark Counties 145 

in Ohio. The service area encompasses urban, suburban, and rural areas. The payer mix of 146 

Summa Health patients is 5% uninsured, 25% privately insured, 30% Medicaid, and 40% 147 

Medicare. 148 

 149 

Data  150 

SepsisWatch was externally evaluated on encounters for adult patients (age >= 18) who 151 

presented to one of Summa Health’s four emergency departments (EDs) between 1/1/2020 and 152 

12/31/2021. Encounters started at the time of presentation to the ED and ended at time of 153 

discharge or death. Encounters were attributed to the site of origination, such that an encounter 154 

that began at a free-standing ED and included a transfer to an acute hospital was assigned to the 155 

free-standing ED. Each individual visit to the emergency department was considered as a 156 

separate encounter, regardless of the number of visits made by the same patient.  Encounters with 157 

a length of stay less than 1-hour were excluded from the cohort and only the first 36 hours of 158 

each encounter were used in the model evaluation. 159 

 160 

The model combines static data that remains unchanged throughout an encounter and dynamic 161 

data that is updated during an encounter. Static variables included patient demographics, 162 

encounter details, and comorbidity data, which looked at ICD-10 codes documented at any 163 

encounter in the 12 months prior to ED presentation. Dynamic data used by the model includes 164 
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analyte results, vital signs, and medication administrations. Dynamic variables were considered 165 

between the encounter start time and end time. 166 

 167 

Outcome Definition 168 

We used a previously developed sepsis phenotype as our outcome label. Specifically, we defined 169 

sepsis as the co-occurrence of all 3 following criteria: 1) At least two Systemic Inflammatory 170 

Response Syndrome (SIRS) criteria, which is valid for 24 hours and includes temperature 171 

anomalies (>100.4 F or <96.8 F), a heart rate above 90, a respiration rate exceeding 20, and an 172 

abnormal white blood cell count (>12 or <4); (2) a blood culture order; (3) indication of any end-173 

organ damage, characterized by elevated creatinine (>2.0), INR (>1.5), total bilirubin (>2.0), 174 

decreased platelet count (<100), lactate levels of 2 or higher, or systolic blood pressure below 90 175 

mmHg or a drop of 40 mmHg in systolic blood pressure within 6 hours.  The varying sampling 176 

rates for medical measurements were accounted for by adjusting the relevant time window for 177 

each criterion. Vital sign documentation values (temperature, heart rate, respiration rate, blood 178 

pressure) were valid for a six-hour time window, whereas analyte measurements (white blood 179 

cell count, creatinine, bilirubin, platelet count, lactate) and orders (blood culture) were valid for a 180 

24-hour time window.  In addition, patients who met the criteria for sepsis within 1 hour of 181 

presentation to the ED were excluded.  182 

SepsisWatch was evaluated using a detection window of 12-hours, meaning once a 183 

prediction breached the threshold, the prediction would only be classified as a true positive if the 184 

patient met sepsis criteria within 12 hours. If the prediction breached the threshold more than 12 185 

hours prior to sepsis, the prediction was classified as a false positive. SepsisWatch was ran 186 

hourly on the hour, and produced predictions for all encounters between presenting to the ED 187 
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and the minimum of time of sepsis, time of death, time of discharge, and 36 hours after ED 188 

presentation. Once a prediction breached the threshold, predictions over the next 8 hours were 189 

suppressed or snoozed. This 8-hour snooze window was designed to reduce false positive alerts 190 

and downstream potential alert fatigue. The snooze window also avoided inflating performance 191 

metrics by repetitively counting true positives.  192 

 193 

Model 194 

The original model was designed at Duke University Hospital using EHR encounter data from 195 

October 1st 2014 – December 1st 2015. It is a recurrent neural network (RNN) model and is 196 

hereby referred to as SepsisWatch. The data used to train the model was split 80:10:10 for 197 

training, internal validation and testing, respectively. The original model performed well in 198 

multiple settings. Specifically, on an internal validation cohort SepsisWatch achieved an area 199 

under the receiver operator curve (AUROC) of 0.882 and on a temporal validation cohort the 200 

model achieved an AUROC of 0.943. The full details of the model development and evaluation 201 

can be accessed in the original development, internal validation manuscripts and implementation 202 

manuscripts.18,28,32 203 

 204 

Evaluation 205 

To answer our first research objective, we evaluated the model performance in the new 206 

healthcare setting using precision, recall, area under the precision-recall curve (AUPRC), and 207 

area under the receiver operator curve (AUROC). To better understand the performance of 208 

SepsisWatch across the different ED and hospital sites, we separately evaluated the model at 209 

each location within Summa Health. 210 
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 211 

 To answer our second research objective, we conduct several additional analyses. First, to 212 

estimate the potential effect of model integration on clinical care, we quantified the average ‘lead 213 

time’, defined as the amount of time between a ‘high risk’ model prediction and a patient 214 

meeting sepsis criterion. This measure helps quantify the potential opportunity for earlier 215 

intervention. Lead time is only measured for true positive cases identified early by SepsisWatch. 216 

Second, to assess the workflow burden placed on staff, we assessed the number of alerts that 217 

would be sent to either a charge nurse or rapid response team (RRT) at a given model threshold. 218 

The lead time and number of alerts are calculated separately for each Summa Health site. 219 

 220 

Results  221 

 222 

Cohort Characteristics  223 

 224 

In total 205,005 encounters from 101,584 unique patients met inclusion criteria for the study. 225 

Most patients were female (54.7%, n = 112,223) and the mean age was 50 (IQR, [38,71]). The 226 

incidence of sepsis within the first 36 hours of encounters was 3.38% (n = 6,920). The majority 227 

of encounters were initiated at the two EDs co-located with acute care hospitals: ACH 228 

Emergency Department (ED) (59.08%, n=121,131) and SHB ED (23.53%, n = 48,244). The 229 

remaining encounters were initiated at the two standalone EDs: ACH Green ED (11.11%, n = 230 

22,893) and SHB Wadsworth ED (6.21%, n = 12,737).  Patient characteristics are broken down 231 

by site in Table 1.   232 

 233 

Research Objective 1 - Model Performance 234 

 235 

Overall, the SepsisWatch model demonstrated robust performance on the geographically and 236 

temporally distinct Summa Health patient population. Moreover, there was little variation in 237 
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model performance across the different emergency departments. Area under the precision-recall 238 

curve (AUPRC) for the four sites was 0.252 for ACH ED, 0.248 for SHB ED, 0.177 for ACH 239 

Green ED and 0.216 for SHB Wadsworth ED. The area under the receiver operator curve 240 

(AUROC) for the four sites was 0.919 for ACH ED, 0.906 for SHB ED, 0.960 for ACH Green 241 

ED and 0.928 for SHB Wadsworth ED. The AUROC and AUPRC for the four sites are 242 

visualized in Figure 1 and Figure 2. The model performed similarly at each distinct location 243 

when stratifying patient population by White and Black races (Table 2).   244 

 245 

Research Objective 2 – Evaluating Potential Clinical Benefit and Alert Fatigue 246 

Model performance measures, including precision, recall, average number of alerts per day, and 247 

average lead time prior to meeting sepsis criteria vary based on model threshold. Performance 248 

measures across thresholds are illustrated in Table 3. If a threshold is set at each site to fix 249 

precision (positive predictive value) at 20%, the recall (sensitivity) is 76.2% at ACH ED, 70.9% 250 

at SHB ED, 27.0% at ACH Green ED, and 61.2% at SHB Wadsworth ED. At this same 251 

threshold, the average number of alerts per day is 7 at ACH ED, 3 at SHB ED, 2 at ACH Green 252 

ED, and 1 at SHB Wadsworth ED. Lastly, the average lead time (hours) is 4.06 at ACH ED, 3.79 253 

at SHB ED, 5.07 at ACH Green ED, and 3.58 at SHB Wadsworth ED (eTable 1 in the 254 

Supplement).  255 

 256 

Alternatively, if a threshold is set at each site to fix recall (sensitivity) at 60%, the precision 257 

(positive predictive value) is 23.9% at ACH ED, 23.1% at SHB ED, 16.3% at ACH Green ED, 258 

and 20.1% at SHB Wadsworth ED. At this same threshold, the average number of alerts per day 259 

is 7 at ACH ED, 3 at SHB ED, 1 at ACH Green ED, and 1 at SHB Wadsworth ED. Lastly, the 260 
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average lead time (hours) is 3.94 at ACH ED, 3.69 at SHB ED, 4.89 at ACH Green ED, and 3.42 261 

at SHB Wadsworth ED (eTable 2 in the Supplement). 262 

  263 

 Discussion  264 

 265 

In this study we present the first external validation of a sepsis ML model in a community 266 

based health setting. The model was originally developed at a tertiary academic medical center in 267 

North Carolina and maintained robust performance across four EDs at a community health 268 

system in Ohio. The original model achieved an AUROC of 0.83 and an AUPRC of 0.257.18 This 269 

strong performance was maintained in the external validation presented in this study, in which 270 

SepsisWatch achieved an AUROC of 0.92 and an AUPRC of 0.24. Moreover, SepsisWatch 271 

performed strongly across two EDs that are co-located with acute care hospitals and two 272 

standalone EDs, marking the first known validation of a sepsis machine learning algorithm in a 273 

standalone ED. A ‘Model Facts’ sheet containing details of this external validation and the 274 

original model development can be seen in eFigure 1 in the Supplement.  275 

Most machine learning algorithms are not externally validated and those that are 276 

demonstrate varied performance. Wong et al. demonstrated that the proprietary Epic Sepsis 277 

Model (ESM) had substantially worse calibration and discrimination among adult patients within 278 

one US academic health system. A later study by Lyons et al. also revealed and varied 279 

performance of ESM across nine hospitals and found that hospitals with lower sepsis incidence 280 

had worse AUROC.24 On the other hand, Brajer et al. demonstrated robust performance of an in-281 

hospital mortality ML model across multiple hospitals within the same health system.25 Moor et 282 

al. used a novel validation technique pooling predictions of models developed on different data, 283 

achieving an AUROC of 0.76 on external validation cohorts verse 0.84 on internal validation.33 284 

While Moor et al. were able improve external validation performance after fine tuning the 285 
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models using a small set of data from the target testing site, performance remained stronger in 286 

the internal validation cohort.33 The new version of the ESM similarly includes fine tuning on 287 

local data to improve performance, but improved performance of that model has not yet been 288 

reported in the peer-reviewed literature. In addition, local fine tuning necessitates additional 289 

expertise, personnel, and compute infrastructure.  290 

Beyond generalizing across time and geographic settings, SepsisWatch also exhibited 291 

strong and robust performance across demographic subgroups. Unfortunately, examination of 292 

ML model performance across racial subgroups has not been reported in many prior external 293 

validation studies in sepsis and other clinical domains.27,33 There are significant concerns when 294 

models are trained on datasets with minimal diversity and tested on populations that include 295 

more representation of historically marginalized populations.34 The current study builds on prior 296 

work from dermatology that found that training on more diverse datasets led to improved 297 

performance on diverse populations.35 SepsisWatch was trained on a cohort of adults in North 298 

Carolina that were 30% Black and performed well on cohorts of adults in Ohio that were 3% – 299 

30% Black. The robust performance of the SepsisWatch model presented in the current study 300 

emphasizes the importance of training models on diverse datasets. 301 

Balancing alert fatigue with clinically meaningful predictions is a well-established 302 

challenge in operationalizing sepsis prediction models.27,36,37 Moreover, given expected trade-303 

offs between model precision and recall, choosing a prediction threshold that balances both 304 

overall performance with clinical impact becomes exceedingly important. For example, at the 305 

ACH Emergency Department, when prediction threshold was set to 0.1, the model would send 306 

on average 147 alerts per day. At this threshold the model would identify almost every instance 307 

of sepsis and provide an average lead time of 7.1 hours. But the precision of the model at this 308 
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threshold is 2.1% and approximately 47 alerts need to be screened for every case that goes on to 309 

develop sepsis. In contrast, a prediction threshold of 0.6 would afford a recall of 84%, precision 310 

of 20% and average lead time of 4.23 hours. The number of alerts at this threshold is reduced 311 

80% to an average of 29 alerts per day. Thus, operational leaders within each setting can titrate 312 

the model threshold to align with the capacity of front-line clinicians to respond to alerts. 313 

Ultimately, the threshold should be determined after a silent trial in which front-line clinicians 314 

can help test SepsisWatch and ensure that patients flagged by the model are appropriate for 315 

review. 316 

 Our study had several limitations. First, this was a retrospective study and while model 317 

performance and potential opportunity to improve care could be assessed, SepsisWatch will need 318 

to be prospectively tested to measure impact. Second, this study features a single health system 319 

in a single geography. The generalizability of SepsisWatch beyond North Carolina and Ohio 320 

remains unknown. Third, this study did not directly compare SepsisWatch to other available 321 

sepsis models, such as the Epic Sepsis Model or TREWS. Those technologies were not available 322 

to include in the analysis and additional contracting and potential costs would be required to 323 

compare multiple algorithms. Future comparative effectiveness research will be required to 324 

better understand the tradeoffs associated with use of each model. Fourth, this study evaluated 325 

SepsisWatch during a time window that included the COVID-19 pandemic. The time window 326 

was two years and covered multiple variant waves of the virus. Future research will be needed to 327 

characterize variability of model performance during viral outbreaks. Finally, this study only 328 

evaluated the performance of SepsisWatch with an 8-hour snooze window. Future studies are 329 

necessary to optimize and tailor this time window for different implementation sites. 330 

 331 
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Conclusions  332 

 333 

This study illustrates the first successful external validation of a sepsis deep learning 334 

model, SepsisWatch, within a community health system. SepsisWatch demonstrated remarkable 335 

consistency in performance despite variations in time, geography, and patient demographics. The 336 

strong performance of SepsisWatch highlights the possibility of effectively transporting 337 

advanced ML models from academic to community based hospital settings. Additionally, the 338 

study addresses the crucial balance between minimizing alert fatigue and maintaining clinical 339 

relevance, emphasizing the importance of carefully selecting prediction thresholds tailored to 340 

each deployment site and clinical context. The findings suggest that while there are challenges in 341 

creating more broadly applicable clinical prediction models, careful evaluation in different health 342 

contexts is feasible and can yield promising results. This study will pave the way for future 343 

prospective studies to measure the clinical and operational effect of SepsisWatch and other 344 

sepsis machine learning models integrated into clinical care. 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 
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Tables 479 

 480 

Baseline 
Characteristics of 
Cohort 

ACH EMERGENCY 
DEPT 

SHB EMERGENCY DEPT ACH GREEN ED SHB WADSWORTH 
ED  

 Total Encounters, N (%)  121131 (59.08%)  48244 (23.53%)  22893 (11.11%)  12737 (6.21%)  

Age (years), mean ±SD 50.92 ± 20.12 50.71 ± 20.18 47.36 ± 19.28 48 ± 20.05 

Sex Male, N (%) 56540 (46.67%) 21,284 (44.12%) 9,552 (41.72%) 5,551 (43.58%) 

Sex Female, N (%) 64470 (53.22%) 26,960 (55.88%) 13,341 (58.28%) 7,184 (56.40%) 

Sex (Others/Missing), N (%) 121 (0.10%)  0 (0%) 0 (0%) 2 (0.02%) 

Race, N (%)         

Black or African 
American 

36431 (30.08%) 6,545 (13.57%) 2,436 (10.64%) 279 (2.19%) 

Caucasian/White 75833 (62.60%) 40,754 (84.47%) 20,086 (87.74%) 12,242 (96.11%) 

Missing/other 8867 (7.32%) 945 (1.96%) 371 (1.62%) 216 (1.70%) 

Comorbidities, N (%)         

Congestive heart failure 4515 (3.73%) 1,222 (2.53%) 257 (1.12%) 192 (1.51%) 

Hypertension  5805 (4.80%)  1,581 (3.28%) 534 (2.33) 479 (3.80%) 

Pulmonary circulation 
disorders 

5441 (4.49%) 2,777 (5.76%) 633 (2.77%) 459 (3.60%) 

Diabetes mellitus 3702 (3.06%) 1,012 (2.10%) 283 (1.24%) 205 (1.61%) 

Fluid and 
electrolyte disorders 

9324 (7.70%) 3,705 (7.68%) 995 (4.35%) 642 (5.04%) 

Depression  2521 (2.08%)  612 (1.27%) 141 (0.62%) 161 (1.26%) 

In-hospital mortality, N (%) 1139 (0.94%) 381 (0.79%) 0.16% 0.28% 

Median Length of Stay 
(25%–75%) 

6.38 (3.5, 56.7)  4 (2.46, 28.8) 2.63 (1.71, 4.15) 2.43 (1.6, 4.31) 

Overall rate of ICU 
admission, N (%) 

5487 (4.53%) 2644 (5.48%)  272 (1.19%) 320 (2.51%) 

Septic, N (%) 4639 (3.83%) 1785 (3.70%) 240 (1.05%) 245 (1.92%) 

 481 

Table 1: Description of cohort characteristics across all four emergency departments in the Summa Health system.  482 

 483 
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 484 

Table 2: Site-specific performance metrics stratified by race including area under the precision 485 

recall curve (AU-PR) and area under the receiver operator curve (AUROC) 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

Cohort AU-PR  AUROC 

ACH ED   

Entire Population 0.252 0.919 

White Adults 0.255 0.918 

Black Adults 0.238 0.911 

SHB ED   

Entire Population 0.248 0.906 

White Adults 0.246 0.901 

Black Adults 0.286 0.920 

ACH Green ED   

Entire Population 0.177 0.960 

White Adults 0.175 0.957 

Black Adults 0.18 0.983 

SHB- Wadsworth ED   

Entire Population 0.216 0.928 

White Adults 0.213 0.926 

Black Adults 0.325 0.974 
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 516 

 517 

 518 

 519 

Table 3: Site specific model performance including precision, recall, average number of alerts per day and average lead time based on 520 

model threshold.521 

Threshold ACH Emergency Department SHB Emergency Department ACH Green Emergency Department SHB Wadsworth Emergency 
Department 
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R
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0.1 147 
(144, 
148) 

7.1 (6.9, 
7.31) 

0.021 0.986 60 (58, 61) 6.45 (6.16, 
6.76) 

0.024 0.975 28 (27, 
28) 

7.77 (6.82, 
8.73) 

0.009 0.988 15 
(15,16) 

6.05 
(5.24, 
6.87) 

0.015 0.992 

0.2 42 (41, 
43) 

4.97 
(4.81, 
5.15) 

0.051 0.949 17 (17, 18) 4.69 (4.43, 
4.95) 

0.047 0.946 5 (4, 5) 6.11 (5.27, 
6.97) 

0.014 0.980 3 (3, 4) 4.79 
(4.03, 
5.56) 

0.025 0.951 

0.3 34 (32, 
35) 

4.60 
(4.44, 
4.78) 

0.161 0.922 14 (13, 14) 4.31 (4.06, 
4.57) 

0.149 0.901 4 (3, 4) 5.59 (4.79, 
6.41) 

0.092 0.959 3 (3, 3) 4.27 
(3.54, 
5.01) 

0.134 0.927 

0.4 32 (30, 
32) 

4.43 
(4.27, 
4.6) 

0.186 0.899 13 (12, 13) 4.13 (3.88, 
4.39) 

0.176 0.873 4 (3, 4) 5.47 (4.67, 
6.29) 

0.118 0.951 3 (3, 3) 4.01 
(3.32, 
4.72) 

0.171 0.910 

0.5 30 (29, 
31) 

4.31 
(4.15, 
4.48) 

0.193 0.872 13 (12, 13) 4.04 (3.79, 
4.3) 

0.183 0.849 3 (3, 4) 5.37 (4.57, 
6.18) 

0.125 0.934 3 (3, 3) 3.84 
(3.16, 
4.52) 

0.177 0.890 

0.6 29 (28, 
30) 

4.23 
(4.07, 
4.4) 

0.195 0.838 12 (11, 12) 3.94 (3.69, 
4.2) 

0.186 0.821 3 (3, 4) 5.25 (4.44, 
6.07) 

0.128 0.910 3 (3, 3) 3.72 
(3.06, 
4.4) 

0.179 0.861 

0.7 29 (28, 
30) 

4.12 
(3.96, 
4.29) 

0.195 0.794 12 (11, 12) 3.85 (3.6, 
4.11) 

0.184 0.772 3 (3, 4) 5.13 (4.33, 
5.94) 

0.127 0.857 3 (3, 3) 3.65 
(2.98, 
4.32) 

0.172 0.796 

0.8 25 (24, 
25) 

4.02 
(3.85, 
4.19) 

0.211 0.730 10 (9, 11) 3.73 (3.48, 
3.99) 

0.199 0.710 3 (2, 3) 4.96 (4.16, 
5.76) 

0.137 0.775 2 (2, 2) 3.51 
(2.84, 
4.19) 

0.182 0.743 

0.9 14 (14, 
15) 

3.86 
(3.69, 
4.04) 

0.258 0.548 6 (5, 6) 3.62 (3.35, 
3.89) 

0.255 0.545 2 (2, 2) 4.74 (3.92, 
5.57) 

0.168 0.578 2 (2, 2) 3.15 
(2.47, 
3.84) 

0.199 0.518 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Figure 1: Area under the receiver operator curve at each of Summa Health’s four emergency 

departments, A) ACH Emergency Department (ED), B) SHB ED, C) ACH Green ED, D) SHB 

Wadsworth ED  
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Figure 2: Area under precision-recall curve at each of Summa Health’s four emergency 

departments A) ACH Emergency Department (ED) B) SHB ED C) ACH Green ED D) SHB 

Wadsworth ED  
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