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Abstract 

Objective:  To quantify brain health using a measure of reserve that incorporates pre-existing 

pathology. 

Methods: We analyzed two retrospective ischemic stroke cohorts (GASROS and SALVO) with 

neuroimaging and 90-day modified Rankin Scores (mRS) available. White matter hyperintensity 

(WMHv), brain, and intracranial volumes were automatically extracted, and brain parenchymal 

fraction (BPF) calculated. The latent variable effective reserve (eR) was modeled using age, 

WMHv, and BPF or brain volume in GASROS. Models were compared using Bayes Information 

&ULWHULRQ��%,&���7KH�EHVW�PRGHO¶V�H5�HVWLPDWHV�ZHUH�FDWHJRUL]Hd into quartiles and evaluated in 

SALVO. 

Results: GASROS included 476 (median age: 65.8; 65.3% male) and SALVO included 43 

(median age: 69.2; 62.8% male) patients. Inverse associations between eR and mRS was seen in 

both models, with brain volume outperforming BPF (path coefficients: -0.67, -0.48, respectively; 

S���������� _û%,&_� �������4XDUWLOH-based eR stratification in SALVO showed a similar inverse 

trend, with worse outcomes in the low reserve group �P56���- highest vs lowest quartile: 85/90% 

vs 59/45% for GASROS/SALVO). 

Conclusions: Expanding the concept of eR, highlights its clinical translational potential. The 

strong link between higher eR and better outcomes underscores its value as a protective brain 

health metric. 
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Introduction 

Stroke is a leading cause of long-term disability worldwide making the prevention of related 

physical and cognitive impairment essential.1 Comprehensive outcome modeling may lead to 

effective prevention strategies for adverse outcomes, enriching quality of life and reducing 

economic burden.2 However, recovery mechanisms are complex, and current models are limited.3 

 

With brain health becoming a significant action goal, reserve concepts can help explain outcome 

differences.4,5 While they are established in fields such as neurodegeneration, their adaptation to 

stroke populations is new.6,7 In an initial study,8 we expanded the idea of structural reserve in 

stroke, introducing effective reserve (eR) as a latent variable which accounts for pre-existing 

pathology. However, clinical neuroimaging challenges, such as low image quality and acquisition 

variability, remain when quantifying existing neuropathology. Recently, we developed automated 

approaches to quantify white matter hyperintensity (WMH) and brain volume in these settings,9±

11 which enable rapid quantification of these important biomarkers at the bedside.  

 

This study sought to refine our model of eR, which relied on measures of intracranial volume 

(ICV) and systolic blood pressure at the time of admission, by incorporating brain volume and 

WMH volume instead, and to demonstrate that the protective mechanism of effective reserve 

offsets the negative effect of the stroke lesion. We aim to demonstrate that measures of eR can be 

easily derived from standard-of-care neuroimaging, allowing a quartile-based prognostication that 

can be widely implemented as an accessible tool across stroke centers. 

Methods 

Standard protocol approvals, registration, and patient consent 

The study cohorts received approval from the local Institutional Review Board, and informed 

written consent was obtained from all patients or their surrogates, in line with the Declaration of 

Helsinki. 
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Study design and neuroimaging data 

Patients from the GASROS12 (2003-2011) and SALVO13 (2014-2019) cohorts with acute ischemic 

stroke confirmed on diffusion-weighted imaging (DWI) within 48 hours, and with available T2 

fluid-attenuated inversion recovery (T2-FLAIR), were included. Demographics and medical 

history were recorded on admission. Functional outcomes were assessed at 3 months using the 

modified Rankin Scale (mRS), based on interviews with patients/caregivers or review of clinical 

evaluations.  

 

GASROS MRI data included DWI (single-shot echo-planar imaging; 1-5 B0 volumes, 6-30 

diffusion directions with b=1000 s/mm2, 1-3 averaged volumes) and acute infarct volume was 

manually quantified. Both GASROS and SALVO patients had T2 FLAIR imaging (TR 5000ms, 

TE 62-116ms, TI 2200ms, FOV 220-240mm), as part of the standard protocol. Automated 

estimates of WMH,9 along with ICV and brain volume (combined white and gray matter),11 were 

determined using image analysis pipelines developed for acute stroke. 

Statistical analysis and model description 

Each segmentation underwent manual quality control by visual inspection. WMH, brain, and ICV 

were calculated by multiplying voxel number by voxel size. Brain parenchymal fraction (BPF) 

was calculated as the ratio of brain volume to ICV in GASROS and logit-transformed. WMH and 

lesion loads were given as the ratio of WMH and lesion volume to brain volume and logit-

transformed. Brain volume was reported in dm3 and age in decades.  

 

eR was modeled using latent variable analyses,8 given by 

 

eR ~ Age + WMH load + Brain volume/BPF.  

 

The outcome model also included stroke lesion load, sex, hypertension, diabetes mellitus, and 

smoking as predictors. Parameters were estimated using the R package LAVAAN,14 and models 

were compared using the Bayes Information Criterion (BIC) using the GASROS cohort.  
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eR was then inferred in both GASROS and SALVO using the path-coefficients of the model with 

the lowest BIC. Cohort outcome distributions were stratified by quartiles and compared using the 

Kolmogorov-Smirnov test. All analyses were performed in R,15 with significance set at p<0.05. 

Data availability statement 

Data, methods, and materials will be made available to any researcher for the purpose of 

reproducing the results, subject to approval by the local Institutional Review Board. 

Results 

Table 1 outlines the cohort characteristics. In the GASROS cohort (n = 476), the median age was 

65.8 years (IQR: 55.3-76.3), 65.3% were male, and 69.7% had hypertension. In the SALVO cohort 

(n = 43), the median age was 69.2 years (IQR: 61.2-76.3), 62.8% were male, and 67.4% had 

hypertension. Both cohorts had similar median 90-day mRS.  
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Table 1. Characteristics of the cohort utilized in this study. (IQR: interquartile range; HTN: 

hypertension; DM2: Diabetes Mellitus Type 2; BPF: brain parenchymal fraction) 

 Overall GASROS SALVO p 

n 521 478 43  

Age (median [IQR]) 66.4 [55.8, 76.3] 65.8 [55.0, 76.3] 69.2 [61.2, 76.3] 0.102 

Sex (M; %) 339 (65.1) 312 (65.3) 27 (62.8) 0.873 

HTN (%) 323 (62.0) 294 (61.5) 29 (67.4) 0.546 

Smoker (%) 201 (38.6) 190 (39.7) 11 (25.6) 0.096 

DM2 (%) 104 (20.0) 96 (20.1) 8 (18.6) 0.973 

mRS (median [IQR]) 1 [0, 2.25] 1 [0, 2] 1 [1, 2.5] 0.626 

Brain volume (median [IQR]) 1311.0 [1191.3, 1417.5] 1306.9 [1191.2, 1414.2] 1362.7 [1238.1, 1462.8] 0.059 

WMH load  (median [IQR]) 0.5 [0.2, 1.4] 0.5 [0.2, 1.4] 0.8 [0.5, 1.3] 0.025 

BPF (median [IQR]) 80.6 [77.3, 82.9] 80.6 [77.3, 82.9] - - 

Lesion load (median [IQR]) 0.2 [0.0, 1.0] 0.2 [0.0, 1.0] - - 

 

Structural equation models, including their path coefficients, are shown in Figure A1 and Table 

$���0RGHO�FRPSDULVRQ�XVLQJ�%,&�UHVXOWHG�LQ�_û%,&_� ������EUDLQ�YROXPH�PRGHO�%,& ������%3)�

model BIC=4824) with a path coefficient of -0.67 between eR and mRS. Model parameters of the 

brain volume model further suggest that age and WMH load negatively affect eR (path coefficients 

-0.85 and -0.51, respectively; p<0.001), whereas higher brain volume leads to an increase in eR 

(path coefficient 0.1; p<0.001). The model showed that eR has a 2.8 times larger, opposite effect, 

compared to lesion load (path coefficient: 0.24). 
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eR values were calculated in both GASROS and SALVO and quartiles determined in both cohorts. 

The outcome distributions per quartile are shown in Figure 1, demonstrating patients in higher eR 

quartiles generally had better 90-day P56��P56���- highest quartile: 85/90%; lowest quartile: 

59/45% for GASROS/SALVO). The Kolmogorov-Smirnov test did not identify a significant 

difference in outcome distributions within quartiles between cohorts. 

 

 

Figure 1. Quartile distribution of modified Rankin Scale (mRS) in GASROS and SALVO. Good 

RXWFRPH��P56����LQ�VKRZQ�VKDGHV�RI�EOXH��4XDUWLOHV�LQ�HDFK�FRKRUW�EDVHG�RQ�H5��FDOFXODWHG�XVLQJ�

the path coefficients of the structural equation model in GASROS, represent high (Q4), 

intermediate (Q2-Q3), and low (Q1) brain health. White numbers reflect the number of patients 

per mRS category, with higher quartiles generally correlating with better outcomes. 

Discussion 

%\�TXDQWLI\LQJ�WKH�EUDLQ¶V�FDSDFLW\�WR�ZLWKVWDQG�LQVXOWV��H5�LV�D�VXUURJDWH�PHDVXUH�RI�EUDLQ�KHDOWK��

Here, we extended this concept incorporating information related to brain health and linking eR to 

long-term outcome.  

 

Using deep-learning neuroimage analyses,9,11 we quantified ICV, brain, and WMH volumes from 

clinically available MRI. Higher eR estimates led to better outcomes, where the brain volume 

PRGHO�VXEVWDQWLDOO\�RXWSHUIRUPHG�WKH�%3)�PRGHO��_û%,&_� ����!�����7KLV�UHVXOW�DOLJQV�ZLWK�UHFHQW�
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research showing brain volume outperforms BPF in multivariable linear regression models.11 We 

note that eR has 2.8 and 1.9 times larger effect on mRS in amplitude, but opposite in direction, 

compared to lesion load in the brain volume and BPF models. Using a quartile-based 

categorization of eR, patients in higher eR quartiles consistently showed better functional 

outcomes in both cohorts. This result further underscores the potential of eR for characterizing a 

significant protective mechanism and its importance for outcome prognostication. 

 

There are some limitations to the current study. mRS tends to over-emphasize motor function, 

lacking comprehensive cognitive and patient centric outcome information. Additionally, mRS 

obtained through interviews with patients and/or caregivers can introduce self-report biases. 

However, it remains a standard outcome measure after stroke, supporting the translational potential 

of our results. Moreover, stroke treatment information was unavailable, but likely consisted of 

thrombolytic therapy. Future studies with other measures of outcomes and treatment information 

are needed to fully investigate the potential of eR as a pivotal marker of brain health. 

 

In this study, we significantly extended the concept of eR and demonstrated its utility as an 

important biomarker for stroke outcome. Utilizing routinely acquired clinical neuroimaging data 

supports the immediate translational potential of the results, allowing us to create a quantitative 

marker of brain health and evaluate its relationship to post-stroke outcomes at the time of 

presentation. The association of higher eR with better post-stroke outcome highlights its potential 

to be used as a quantitative, easily extractable measure of brain health, and as an indicator of the 

EUDLQ¶V�SURWHFWLYH�PHFKDQLVPV�DJDLQVW�DFXWH�LVFKHPLF�LQMXU\�� 
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Table A1. Path-coefficients corresponding to Figure A1. (WMH: white matter hyperintensity; eR: 

effective reserve; HTN: hypertension; DM2: Diabetes Mellitus Type 2; BPF: brain parenchymal 

fraction) 

 Parameter Estimate p Parameter Estimate p 

eR Brain volume 0.10±0.02 <0.001 BPF 0.21±0.03 <0.001 

Age -0.85±0.15 <0.001  -1.14±0.19 <0.001 

WMH load -0.51±0.10 <0.001  -0.68±0.11 <0.001 

mRS Lesion load 0.24±0.04 <0.001  0.25±0.04 <0.001 

eR -0.67±0.14 <0.001  -0.48±0.11 <0.001 

Sex -0.25±0.17 0.15  -0.56±0.15 <0.001 

HTN -0.04±0.15 0.804  -0.01±0.16 0.956 

DM2 0.39±0.18 0.030  0.44±0.18 0.012 

Smoker -0.05±0.14 0.712  -0.09±0.14 0.514 
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