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Abstract

Rare structural variants (SVs) — insertions, deletions, and complex rearrangements — can

cause Mendelian disease, yet they remain difficult to accurately detect and interpret. We

sequenced and analyzed Oxford Nanopore long-read genomes of 68 individuals from the

Undiagnosed Disease Network (UDN) with no previously identified diagnostic mutations from

short-read sequencing. Using our optimized SV detection pipelines and 571 control long-read

genomes, we detected 716 long-read rare (MAF < 0.01) SV alleles per genome on average,

achieving a 2.4x increase from short-reads. To characterize the functional effects of rare SVs,

we assessed their relationship with gene expression from blood or fibroblasts from the same

individuals, and found that rare SVs overlapping enhancers were enriched (LOR = 0.46) near

expression outliers. We also evaluated tandem repeat expansions (TREs) and found 14 rare

TREs per genome; notably these TREs were also enriched near overexpression outliers. To

prioritize candidate functional SVs, we developed Watershed-SV, a probabilistic model that

integrates expression data with SV-specific genomic annotations, which significantly

outperforms baseline models that don’t incorporate expression data. Watershed-SV identified a

median of eight high-confidence functional SVs per UDN genome. Notably, this included

compound heterozygous deletions in FAM177A1 shared by two siblings, which were likely

causal for a rare neurodevelopmental disorder. Our observations demonstrate the promise of

integrating long-read sequencing with gene expression towards improving the prioritization of

functional SVs and TREs in rare disease patients.

INTRODUCTION

Long-read sequencing technology has dramatically improved in recent years in terms of

accuracy and throughput[1,2]. This has unlocked a large reservoir of previously inaccessible
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variation, especially structural variation (SV), repeat expansions, and other complex variants

[3,4]. In the clinical setting, however, exome and whole genome short-read sequencing (SRS)

remain the dominant approaches to facilitate diagnoses of rare disease. While SRS increases

the diagnostic yield of various rare diseases by 5 to 20% over exome sequencing, the

diagnostic rates for rare diseases remain below 50%. While some fraction of these undiagnosed

cases are likely due to non-Mendelian and/or non-genetic causes, the relatively low diagnostic

rate underscores the need to explore long-read genome sequencing (LRS) as a new tool to

increase the detection of pathogenic variants [5,6]. The potential clinical utility of LRS is

especially apparent for rare SVs, which are known to have substantial impact on genome

function [7], yet are systematically missed by SRS [3,4]. Furthermore, among rare SVs

discovered by SRS, many variants’ impacts on genes are hard to interpret without additional

functional validations, making rare disease diagnostic efforts difficult [8].

Gene expression data has been shown to help prioritize rare SNVs contributing to rare

genetic disease, particularly using approaches that identify individuals with extreme expression

compared to the rest of the population (“expression outliers”) [9–12]. Previous studies have

shown a stronger enrichment of expression outliers having nearby rare SVs, suggesting a

possible opportunity to prioritize rare functional SVs systematically [13,14]. Although numerous

cases of rare SVs disrupting gene expression have been identified independently in the context

of rare disease diagnostics, there is currently no systematic approach to effectively prioritize

candidate disease SVs by integrating RNA-Seq and rare SVs genomic annotations. Notably,

while STRVCTVRE [15], CADD-SV [16], and PhenoSV[17] can prioritize putative pathogenic

SVs, STRVCTRVE only scores coding SVs, CADD-SV do not explicitly identify the affected

gene and is trained to predict SVs under selection constraints but not regulatory SVs, and all

tools have limited capability in finding functional SVs that modulate gene expression. In addition

to SVs, variation at tandem repeat loci contributes to gene expression differences [18,19].

Repeat expansions at these loci have been implicated in a variety of rare neurological and
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neuromuscular diseases [20]. Because these expansions can potentially span thousands of

base pairs, they are difficult to detect with SRS, but LRS methods have shown promise in

detecting them [21].

In light of the current limitations regarding SV detection and assessment of functional

impact, we propose two modalities for improving SV prioritization in rare disease diagnostics.

First, we hypothesize that augmenting patient datasets with long-read sequencing will improve

the detection of clinically informative rare and private SVs, large indels (30bp to 50bp) and

complex variants where detection from SRS is more limited. Second, we recognize a major

need to develop new methods that can prioritize rare SVs based on both genomic and

functional -omics evidence, thereby providing better clues for clinicians to evaluate variants’

pathogenicity to rare diseases.

Addressing these needs, we performed long-read sequencing with Oxford Nanopore

Technology (ONT) on 68 individuals from the Undiagnosed Disease Network (UDN) with

pre-existing short-read genome sequence data to study the improvement in variant detection

recall from SRS. Then, using blood or fibroblast RNA-Seq data from the same patients, we

characterize the impact of LRS SVs on gene expression and investigate the utility of integrating

these data to predict variant function. To address this challenge, we developed the

Watershed-SV model and pipeline. Watershed-SV extends Watershed[9], a probabilistic variant

prioritization model integrating multiple -omic signals and SNV genomic annotations, with

several new SV-related annotation features to prioritize functional rare SVs. We trained and

evaluated Watershed-SV models on GTEx expression outliers and SRS SV callset and found

Watershed-SV outperforms the WGS-only baseline models in prioritizing coding and noncoding

variants. When applied to the UDN patient dataset, Watershed-SV further provided additional

disease-relevant SV candidates compared to CADD-SV, and provided direct insights into the

gene disruption mechanisms.
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RESULTS

Nanopore long-read sequencing of an exome-negative rare disease cohort

In order to assess the utility of long-read sequencing (LRS) and structural variant (SV)

prioritization for rare disease diagnosis, we performed Oxford Nanopore (R9.4.1) LRS on 68

individuals from the Undiagnosed Disease Network (UDN) with a spectrum of clinical features

who had inconclusive genetic testing using short-read sequencing (SRS) exome or genome

(Figure 1). Across the cohort, we achieved a median sequencing throughput of 61Gb (range:

25Gb-133Gb), corresponding to an estimated aligned coverage of 18x (range: 7.1-33x) , and a

median read length N50 of 19.2Kb (range 5kb-35kb) (Figure S1a). After read quality control,

most samples had a median read quality score above 12.5 (range 9.9-15.1), corresponding to a

median 93.6% read identity aligning to GRCh38 (Figure S1b).
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Figure 1 Undiagnosed patient cohort description and pipeline overview. Cohort
Description: A Patients were recruited from the Undiagnosed Disease Network for a long read
sequencing (LRS) study. These included 57 affected individuals and 11 unaffected family
members from a wide range of primary symptom categories, including Neurology,
musculoskeletal, and cardiology. Patients had previous short-read genetic testing with Illumina
that was negative or inconclusive. B Long-read Pipeline Overview: individuals were
sequenced on R9.4 flowcells on the ONT PromethION. Consensus structural variants were
called by merging SVs across individual callers and keeping those that showed multi-algorithm
support. A population merge of the UDN genomes together with Stanford ADRC population
reference of 579 nanopore genomes, allowed ascertainment of robust allele frequencies for
structural variants. Rare structural variants were filtered and intersected with overlapping
genome annotations to input into Watershed. Vamos was used on a catalog of polymorphic
tandem repeats to genotype tandem repeat copy numbers. A mean neighbor distance based
outlier calling method was used to define extreme repeat expansions. C RNA-sequencing
expression outlier pipeline: transcriptome data from the UDN was processed by quantifying
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expression, combining with tissue-matched controls from GTEx, normalizing for library size and
composition bias, and correcting for batch effects and hidden factors. Expression outliers of the
normalized data were input into Watershed. D Watershed-SV integrates signals from rare SVs
and overlapping genome annotations to predict variants with large functional effects. High
scoring watershed variants are prioritized and curated per patient for disease relevance.

Long-reads detect more insertions and deletions than called from short

reads

To compare the LRS genomes to the previously generated SRS genome data, we called

structural variants (SVs) and large indels from both. Using a multi-algorithm consensus among

sniffles2 [22], cuteSV [23], SVIM [24], facilitated by variant merging with Jasmine-SV [25], we

detected 77,596 large indels (30bp to 50bp) and 120,950 SVs (>50bp) from LRS, 10-times and

2.7-times more, respectively, than were detected from standard clinical SRS SV calling with

Illumina’s DRAGEN pipeline (Figure 1b, 2a). From LRS, we observed a balanced median

number of 18,375 deletions (9,807 30-50bp, 8,788 50bp+) and 18,906 insertions (6,064

30-50bp, 12,815 50bp+) per individual, which is 3.9-times and 6.9- times respectively the

median number identified by SRS (Figure S1c). We further detected a smaller median number

of 436 duplications and 34 inversions per individual from LRS, while SRS detected more at a

median number of 468 and 246 respectively, likely due to false positive calls from Manta-only

SRS compared to confident consensus from LRS.

Stratifying by length, we see LRS identifies more variants in the 30bp to 50bp window for

both insertions and deletions. LRS also identifies many more insertions across the entire length

spectrum, particularly above 1kb, where SRS reads are too short to resolve any insertion

sequence. For deletions, we also observe higher counts for LRS up to 10kb, after which we start

to observe more variants from short reads (Figure 2a). This could be due in part to false

positives in SRS callset or to alignment-based LRS methods not being calibrated to call

deletions greater than 50kb. We find the length distribution of inversions and duplications to be
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roughly similar between LRS and SRS, though we do detect slightly more from short reads

(Figure S1d).

Figure 2 Long-read sequencing detects rare structural variants and extreme tandem
repeat expansions.
A Length distribution of deletions and insertions detected by each technology on a log-log axis.
SVs were called with a consensus SV calling pipeline including SVIM, cuteSV, and sniffles2 for
long reads and MantaSV calls were genotyped with paragraph for short reads. Dashed line
represents 50bp, the threshold for calling an indel an SV. B Mean tandem repeat copy numbers
estimated from the UDN genomes stratified by repeat motif length. Short tandem Repeats (STR)
have repeat motifs between 2-6bp. Variable number tandem repeats (VNTR) have repeat motifs
greater or equal to 7 bp. Vamos was used to genotype tandem repeat copy number in long
reads and ExpansionHunter was used in short reads. Each tool used a different tandem repeat
loci catalog to define TRs. Counts of TRs by repeat motif length bins present in the tools
respective catalog is also plotted. C Allele frequency distribution of long-read discovered SVs
from jasmine-SV merge with ADRC genomes. ADRC provided a reference sample of 600
nanopore genomes to allow robust estimation of minor allele frequencies. D Count of rare SVs
(MAF < 0.01), detected per individual stratified by SV Type and Technology. Short read SVs
were annotated with allele frequencies using SVAFotate and lookup in gnomAD, CCDG, and
1000G. E Count of extreme tandem repeat expansion (TRE) detected per individual. Extreme
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tandem repeat expansion outliers in each technology were called by jointly estimating repeat
copy number distribution of long read vamos calls with the ADRC and of short-read
ExpansionHunter calls with 1000G, and then calculating for each allele its average distance
from its k nearest neighbors. Extreme TREs were defined as alleles with a standardized mean
neighbor distance greater than 2, with k = 5 for long read and k = 25 for short read.

Long reads allow identification of longer, more complex variation at tandem

repeat loci

Expansions of tandem repeats are known to cause multiple human diseases including myotonic

dystrophy[26]. We tested the ability of long-read sequencing to resolve tandem repeat (TR)

variation in the UDN cohort. To this end, we genotyped TR copy numbers with vamos [27]

across 466,220 loci using LRS and ExpansionHunter across 174,260 loci using SRS [28]

(Figure 2b). We used the recommended TR catalogs–a reference of where TRs exist in the

genome and what the repeating motifs are–to run each tool and found they were widely

characterizing different TRs; only 18% of loci were shared and, of those, 48% were annotated

with different motifs (Figure S2a). Vamos defined their TR catalog from loci that varied in 32

haplotype-resolved PacBio HiFi genomes from the Human Genome Structural Variation

Consortium and was designed to capture mostly complex variable number tandem repeats

(VNTR) with motif lengths 7bp+, while the ExpansionHunter default catalog mainly captures

short tandem repeats (STR) (2-6bp) that are small enough to be resolved with short reads. For

the UDN cohort, we estimated the mean and variance of these TR copy numbers at each locus

from both vamos (LRS) and ExpansionHunter (SRS) (Table S2). We discovered that vamos

characterized loci that have higher mean TR copy numbers than ExpansionHunter, meaning

LRS could detect longer repeats (Figure 2b). Further, the distribution of vamos TRs had a much

longer tail for repeat motif length, mean repeat copy number, and repeat copy number variance

than ExpansionHunter (Figure S2c, S2d, S2e). While almost all ExpansionHunter TRs had a
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mean repeat length of <100bp, vamos resolved TRs that had mean lengths well above 1kb

(Figure S2e).

Direct comparison of LRS and SRS TRs can be impacted by their disparate TR catalog

loci. To address this, we ran both tools using an identical TR catalog from STRchive

(harrietdashnow.com/STRchive), a highly-curated set of 68 well-characterized and pathogenic

TR loci. This allowed us to directly compare the LRS vamos and SRS ExpansionHunter on

repeats with known disease-relevance. We calculated mean TR copy numbers across these 68

loci with both vamos and ExpansionHunter (Table S3). Vamos characterized all of the loci

whereas ExpansionHunter only called 50 (73.5%) since some of these loci are longer than SRS

fragment sizes. Of those called by short reads, we find a strong correlation across tools for the

estimated mean TR copy number (Spearman correlation 0.833) (Figure 2f); however, there

were a few repeats with larger discrepancies, most notably the CGC repeat in the gene XYLT1

that leads to the rare disease Desbuquois dysplasia-2 (ExpansionHunter mean=22, vamos

mean=58), the AAGGG repeat in the RFC1 gene that leads to Cerebellar ataxia with neuropathy

and vestibular areflexia syndrome (ExpansionHunter mean=16, vamos mean=37), and the

CCTG repeat in CNBP that leads to Myotonic dystrophy type 2 (ExpansionHunter mean=17,

vamos mean=38) (Table S3). As vamos was developed for noisier long-read data, it is more

permissive of assigning non-perfectly matching repeats to the input motif, particularly in nested

repeats where the pathogenic motif is flanked by others at the same locus, which may explain

why vamos calls higher repeat copy number means compared to ExpansionHunter. For each

repeat locus, the correlation across individual haplotypes was more variable (median

Spearman’s correlation = 0.635, range= 0.163 – 0.850) (Figure S2g).
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Long-read population references enable frequency estimates for rare SVs

and TREs

For rare disease diagnosis, it is critical to determine which variants are rare in the population.

For LRS SV this is a major challenge as existing short-read references such as gnomAD,

CCDG, and 1000G, show low ascertainment of SVs discovered from LRS data (Figure S1f)

[29–31]. To address this issue, we used a technology-matched population reference of

nanopore genomes generated from Stanford’s Alzheimer’s Disease Research Center (ADRC)

and the Stanford Aging and Memory Study (SAMS) (n=571) [32]. ADRC + SAMS nanopore

genomes were processed with the same SV calling workflow and were merged using

Jasmine-SV with the UDN callset; allele frequencies were estimated based on merged allele

counts in the combined set. We observe the expected allele frequency distribution for SVs,

finding 32.6% of variants are rare (minor allele frequency < 0.01) (Figure 2c) (Table S4). For

SRS SVs, we observed a high genotyping rate of our Manta callsets with Paragraph and used

them to determine the allele frequencies for SRS SV calls (Supplemental Figure 1E). We filtered

both LRS and SRS SVs down to rare variants with MAF < 0.01 and found each genome had a

median burden of about 546 rare deletions and 490 rare insertions detected by LRS, whereas

by SRS methods there was a median burden of 80.5 rare deletions and 11 rare insertions

(Figure 2d). We further observed a smaller burden of rare duplications and inversions at a

median number of 11 and 2 respectively from LRS, and 13.5 and 9 in SRS (Figure 2d).

Using the combined population of over 600 genomes of our UDN and ADRC + SAMS

cohort [32], we dramatically improved our ability to filter LRS SVs for rare disease diagnosis. We

detected a median of 716 rare SVs (>50bp) per genome, whereas using a short-read references

(i.e. gnomAD) to ascertain rare variants, we would have detected over 17,000 per genome,

making curation of these variants extremely difficult (Figure 1g). Genotyping LRS SVs in 1000G

short-read genomes with PARAGRAPH to ascertain allele frequencies yielded a median of
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3,198 SVs per individual, still 4.4 times more than we discover from a technology-matched

reference (Figure S1g).

Similarly, we sought to assess TR distribution to identify rare tandem repeat expansions (TREs)

in the UDN cohort, that is, extreme outliers of TR copy number. Using the ADRC reference for

long-read sequencing (LRS), we developed an algorithm to call rare TREs by thresholding on a

standardized mean neighbor distance (MND) (see Methods). This method evaluates how much

longer on average an allele is from its K-nearest neighbors in the repeat copy number

distribution. This statistic is designed to distinguish clearly separated and expanded alleles from

those that are just at the tail of the distribution, enabling us to identify samples with rare repeat

expansions (see schematic in Figure 1b). We apply this method to vamos TR genotypes .

Setting K = 0.5% of total allele number, we found a median of 14 TREs per individual, in

comparison to median of 427 using Tukey’s outlier approach based on empirical TR copy

number distribution, greatly reducing the false positive TRE calls.

To compare the characteristics of LRS and SRS TREs, we additionally assessed allele

frequency and identified rare TREs from SRS with MND using genome-wide repeat catalog of

1000G as a reference. While ExpansionHunter detects more rare TREs from SRS that are

STRs (2-5 bp) (median EH = 22, median vamos = 8), vamos detected more rare variable

number tandem repeats (VNTR, 7+bp) TREs from LRS (median EH = 0, median vamos = 11).

Further, vamos TREs were in loci with longer motif unit lengths (median = 22) compared to

ExpansionHunter (median = 2) (Figure S3c). ExpansionHunter and vamos rare TREs had

similar distributions of standardized MNDs, yet vamos was able to find outliers in repeats with

longer mean lengths, and the expansion allele lengths were much larger in the LRS TREs

compared to SRS data (Figure S3d, S3e, S3f).
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Transcriptome data identifies functional effects of rare SVs

To characterize the functional effects of rare structural variants (SV) and extreme tandem repeat

expansions (TRE) detected by LRS, we used RNA-seq obtained from individuals in our UDN

cohort. Most (n=60) of the UDN LRS subset also had short-read RNA-seq data generated as

part of their UDN enrollment, including (n=42) samples from whole blood and (n=27) from

fibroblasts. We hypothesized that impactful SVs would drive outlier expression of nearby genes.

We called gene expression outliers from blood and fibroblast tissues by jointly normalizing the

UDN cohort with matched-tissue RNA-seq samples from GTEx ,and adjusting for RIN, sex,

batch, and global expression principal components as covariates, and observed a median of

139 outliers per individual in UDN blood samples (Figure S4a). We found strong enrichment at

a log odds-ratio (LOR) of 0.63 (adj. p-value = 4.8e-6) for rare SVs nearby (within 10kb) of

expression outlier genes. We observed enrichment across all types of SVs, with stronger

enrichments for more stringent z-score thresholds defining outliers (Figure 3a). These

observations are concordant with previous analysis in GTEx, where CNVs were enriched for

proximity to genes with outlying expression [9,13].

Using the improved variant discovery enabled by LRS, we expand upon previous results

by analyzing insertions and TREs, which are difficult to call with SRS. We observed that genes

from individuals with outlier expressions are significantly enriched for nearby rare insertions and

TREs (z-score threshold = 4, Insertion LOR (95% CI) = 0.496 (0.13-0.86), TRE 1.72

(0.47-3.0))(Figure S4b). We observed the strongest enrichment for duplications and inversions,

which may be due to the fact that these variants are on average much longer (INV mean =

103kb, DUP mean = 18.4kb) than deletions and insertions (DEL mean = 450, INS mean = 275).

Stratifying enrichments by outlier direction, we also observed that deletions were enriched for

under-expression events (LOR (95% CI) = 0.83 (0.18-1.48)), and insertions, duplications, and

TREs were enriched for overexpression events (insertion 0.568 (0.149-0.987), duplications
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1.48 (0.153-2.81), TRE 1.78 (0.53-3.01)). Inversions were enriched for outliers in both

directions, suggesting that large inversions may rearrange regulatory landscapes to increase or

decrease expression of nearby genes (Figure 3b).

Previous work in GTEx based on SRS did not report significant expression outlier

enrichments for insertion variants, which may be a reflection of the limited power of SRS to call

insertions[9]. To characterize differences in enrichments based on sequencing technology, we

compared LRS enrichment to those calculated based on the UDN SRS SVs. We observed the

LRS callsets had larger enrichments than SRS callsets, particularly for insertions where SRS

insertions were not enriched similar to what was previously observed in GTEx, underscoring the

utility of LRS for discovery of novel functional insertions (Figure S4c). When considering other

variant types, we observed that most rare SVs near outlier genes were detected uniquely by

LRS (77.3% of deletions and 97.2% of insertions). Rare duplications found nearby outliers were

largely detected by both technologies (57.1% shared). In contrast, rare inversions nearby

outliers were frequently only detected by short-reads (71.4%), but these variants had only

modest enrichments, suggesting a higher false discovery rate of inversions from SRS (Figure

S4d).

To characterize rare variant enrichments near expression outliers, we estimated SV

enrichments stratified by several annotations, increasing our proximity-window size to 100kb to

capture more non-coding variants. Among gene body regions, we observed the strongest

enrichment for SVs overlapping protein-coding sequence (LOR 2.28, adj. p-value = 1.5e-05).

We also observed enrichments for non-coding SVs, including intronic (LOR 0.93, adj. p-value =

2.6e-06), upstream noncoding (LOR 0.85, adj. p-value = 1.6e-06) and downstream noncoding

regions (LOR 1.05, adj. p-value = 1.5e-10). As the length of the SV increased, we observed

enrichments up to log odds ratios of 2.86 (adj. p-value = 1.2e-08) for variants longer than 100kb,

indicating that variants that disrupt more sequence are more likely to drive outlier expression.

Further, increasing thresholds for variant deleteriousness as predicted by CADD-SV [16] or VEP
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impact categories [33] was also associated with increased enrichment. Variants with high

CADD-SV score (>20) were strikingly enriched at a log odds ratio of 4.96 (adj. p-value =

1.3e-03) (Figure 3c).

We then estimated enrichment for non-coding rare SVs using several regulatory

annotations. We included the proximity to a coding SV as a covariate in all enrichment analyses

to mitigate effects due to tagging of coding SVs. We observed that SVs that intersect an

activity-by-contact (ABC) mapped regulatory element [34] were enriched for outlier expression

of the ABC target gene (LOR 1.32, adj. p-value = 7.7e-03). Rare SVs were also enriched for

outliers when overlapping a high density of ChIP-seq peaks from ReMap [35] (LOR 1.27, adj.

p-value = 1.1e-12), noncoding regions with evidence of negative selection from LINSIGHT

variants [36] (LOR 1.38, aj. p-value = 1.6e-15), or highly conserved sequences by phastCons

[37] (LOR 1.39, adj. p-value = 2.2e-16). As a negative control, we curated a set of putatively

non-regulatory SVs, non-coding SVs that did not overlap with any of the previous annotations or

any conserved transcription factor binding motifs, TAD boundaries, ENCODE conserved

cis-regulatory elements, or high scoring CADD variants. These 519 non-regulatory rare SVs

were not enriched proximal to expression outliers (LOR 0.33, adj. p-value = 1.00) (Figure 3c).

We then sought to validate these ABC-element enrichments in a larger sample size from GTEx.

Notably, enhancer enrichments were observed for single-tissue outliers but not multi-tissue

outliers (Figure S4e).
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Figure 3 Rare long-read-discovered SVs are strongly enriched proximal to gene
expression outliers A enrichment of rare structural variants, stratified by type, within 10kb of
an expression outlier gene given the specified absolute Z-score threshold. Estimate of log odds
ratio plotted with error bars representing standard errors of the estimate. B Directional
enrichment for rare SVs within 10kb of either over (Z > 4) or under (Z < -4) expression outliers.
Model for tandem repeat expansion (TRE) nearby underexpression outliers did not converge
due to the lack of examples of rare TREs near underexpression outliers, so was not be plotted.
C Enrichment of rare SVs, across all SV types, within 100kb of expression outliers, stratified by
genome and variant annotation categories. Gene body position displays enrichment of VEP
annotated categories for SV location relative to the gene body of the expressed gene. If an SV
overlaps multiple categories it is assigned to the one with highest priority given the following
ordering: CDS, 5’UTR, 3’UTR, intron, upstream noncoding, downstream noncoding. SV length
and CADDSV deleteriousness display enrichment of rare SVs with length and CADDSV score
respectively above the specified threshold. VEP impact displays enrichment of rare SVs with the
given VEP impact category, where HIGH represents predicted loss-of-function variants. Finally,
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we display enrichment of SVs that overlap with noncoding regulatory annotations, including if it
overlaps an ABC regulatory element linked to the expressed gene, a conserved transcription
factor binding site (TFBS), a high-density of ChIP-seq peaks defining conserved regulatory
modules (CRM) from ReMap, a TAD boundary detected in multiple cell types, highly constrained
LINSIGHT SNVs, or a highly conserved region by phastCON. We also display enrichments for
SVs that overlapped any one of these annotations (putative regulatory SVs) and for SVs that do
not overlap with any of these annotations (putative non-regulatory).

Watershed-SV integrates genomic annotations and transcriptomic signals

to prioritize rare functional SVs

The co-occurence of expression outliers with rare SVs provides the opportunity to jointly

use genomic annotations and transcriptomic signals to prioritize rare functional SVs. To do so,

we extended our method Watershed [9], originally created for SNVs, to develop Watershed-SV

to assess structural variants. Watershed-SV models individual gene expression jointly with

genomic annotations of nearby SVs to infer the probability the individual harbors a high-impact

regulatory SV (“Watershed posterior probability”). We included annotations characterizing the

gene-body and separate annotations for flanking sequence (up to either 10kb or 100kb from the

gene body). We then trained the Watershed-SV models using individual-gene pairs from the

GTEx v8 SRS SV callset. We first developed three Watershed-SV models for gene expression

in skeletal muscle, whole blood, and cell cultured fibroblasts tissues, which we refer to as

tissue-specific Watershed-SV models. We then developed a multi-tissue Watershed-SV model

using expression outliers defined from the median expression z-score across 48 GTEx tissues.

To assess the performance of the Watershed-SV models, we evaluated expression outlier

predictions of the model using held-out pairs of individuals who share the same rare SV

genotype near a particular gene (“N2-pairs”). We used the Watershed-SV posterior probability

from one sample in the N2-pair as a prediction and the expression outlier status of the

genotype-matched, held-out sample as the label. We compared the Watershed-SV models to a

model that included genomic annotations but no expression information (“WGS-only baseline”).
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The 10kb multi-tissue Watershed-SV model outperformed the WGS-only baseline (ΔAUPRC

bound = (0.13, 0.27)) (Figure 4a), demonstrating the utility of incorporating gene expression

information in SV prioritization. Watershed-SV learned large feature importance scores for SV

length, overlapping with exons, location in 5’ UTRs, CADD scores, and for disruption of

cis-regulatory elements. (Figure 4b, Figure S6).

To capture longer range SV-gene interactions in the 100kb Watershed-SV model, we

included ABC [34] enhancer-gene links among the annotations. We categorized annotations into

three categories based on SV location: upstream flanking region (UFR) annotations, gene body

annotations, and downstream flanking region (DFR) annotations. Watershed-SV learned

especially large weights for UFR annotations, reflecting the known functional importance of

regulatory elements near promoters. Among gene body annotations, we observed a high effect

size CADD scores and active transcription annotations (Figure 4d, Figure S7). The 100kb

multi-tissue Watershed model also outperformed the baseline WGS-only model (ΔAUPRC

bound = (0.12, 0.26)), although with a slightly lower performance than the 10kb model, reflecting

the challenges of annotating long-range regulatory elements. (Figure 4a). Taken together, we

observed that Watershed-SV can prioritize rare functional SVs affecting either coding or

non-coding sequence.
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Figure 4. Watershed-SV improves prioritization of rare SVs in healthy and muscular
dystrophy cohort. A Precision-Recall Curves (PRC) of benchmark using held-out N2 pairs; We
ran multi-tissue Watershed-SV using both 10kb (solid) and 100kb (dashed) distance limit as well
as WGS-only model with the same setup. B top positive genomic annotation effect sizes (β) for
7 major categories of the 10kb multi-tissue Watershed-SV model. C Using a z-score threshold of
-3 and 3, we stratified 100kb multi-tissue Watershed-SV model prediction on CMG muscular
disorder dataset posterior probabilities by under-, over-, and non-outliers (column), and then by
coding vs noncoding variants (row); each dot represent an gene-SV pair. D top positive genomic
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annotation effect sizes for 100kb multi-tissue Watershed-SV model. 7 annotation categories are
grouped into region-specific (TSS/upstream Flank, Gene Body, TES/downstream Flank) and
region-agnostic features. Region specific features are separately aggregated for each SV, then
collapsed to each gene by regions.

Watershed-SV prioritizes structural variants implicated in Mendelian

muscular disorders

To demonstrate Watershed-SV’s applicability to Mendelian disease diagnosis, we applied the

method to a disease dataset with previously reported functional SVs implicated in patient

phenotypes. Specifically, we applied Watershed-SV, trained using GTEx SRS SV calls and

multi-tissue transcriptomic outliers, to prioritize functional rare SVs from 26 patients with

inherited muscular disease, among which 2 are diagnosed with SVs and 6 with SNV from the

Center for Mendelian Genomics (CMG) project [38]. We jointly called SVs using svtools [39] and

Parliament2 [40]. After harmonizing variant calls with Jasmine, we called 11,360 deletions,

9,346 insertions, 3,820 inversions, and 592 duplications. Due to the challenges of calling rare

SVs with a small cohort, we queried 1000 Genomes, CCDG, and gnomAD SV reference callsets

with SVAFotate [41] and genotypes putative novel variants in 1000 Genomes SRS with

PARAGRAPH [42] to annotate population SV allele frequencies (AF). Population database

queries and PARAGRAPH enabled the annotation of AF in 97% of SVs. We called expression

outliers in the CMG cohort using GTEx skeletal muscle as a reference expression baseline. We

observed on average 318 outliers per individual in the CMG samples, in contrast to 94 outliers

per GTEx healthy controls (Figure S4a). Using the Watershed-SV pipeline, we identified both

cases where previously described diagnostic variants are SVs [38]; both are cases of Duchenne

muscular dystrophy (DMD) caused by inversions in the DMD gene (Figure S5e). Notably, the

patient C4 inversion included the first 18 exons, resulting in expression of a truncated transcript
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similar to other known cases of large-inversion induced DMD[43]; the C3 inversion inverted

exon 51 and was associated with greatly reduced expression(Figure S5e).

Among 18 patients without prior genetic diagnosis, we observed four patients with

Watershed-SV prioritized gene-SV pairs in muscular disorder related genes, one gene-SV

posterior above 0.5, and three above 0.9. (Table S6). Among them, a female patient (N10) with

undiagnosed Limb-Girdle Muscular Dystrophy carried a heterozygous rare deletion (gnomAD

AF = 0.0003, Watershed-SV = 0.996, WGS-baseline = 0.78) disrupting the 3’ CDS-UTR region

of PIP5K1C. Known disruptions of PIP5K1C can cause an autosomal recessive lethal

contracture syndrome III (OMIM#611369) [44], another type of severe muscular disorder. While

there is not sufficient evidence to determine that this deletion alone underlies the patient’s

phenotype, it demonstrates Watershed-SV’s ability to prioritize variants of interest for further

genetic and functional investigation.

Watershed-SV prioritizes LRS SVs in rare disease

Knowing our method could prioritize diagnostic rare disease SVs from SRS, we investigate if we

could prioritize likely functional LRS SVs that may underlie UDN patients’ disease phenotypes.

We trained a 100kb Watershed-SV model that models per-tissue expression outliers from both

blood and fibroblast using GTEx v8 data. We defined the Watershed-SV estimate as the

maximum of the Watershed posterior probabilities for blood and fibroblast for each gene-SV

pair. Out of 19,277 gene-SV pairs tested, 886 had a posterior of at least 60%, representing

4.6% of rare variants within 100kb of the nearest gene.

In order to assess the variants that Watershed-SV could return for clinical review, we

evaluated variants passing a Watershed-SV score threshold along with filters corresponding to

basic approaches clinicians could use to prioritize potential disease relevant variants. The filters

encompass three general strategies: (1) filtering for variants near genes previously known to be

related to the patients’ symptoms, using HPO term matching [45] (2) filtering for variants that
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have strong evidence of pathogenicity from WGS-based variant scoring, here using CADD-SV;

and (3) prioritizing variants through RNA-seq outlier signals using expression outliers alone.

Specifically, we compared Watershed-SV to CADD-SV [16], and evaluated whether

Watershed-SV nominates different variants from CADD-SV, with these two scores evaluated

alone and in combination with other filters. We compared a CADD-SV threshold of 10 to a

Watershed posterior threshold of 0.6, corresponding to a roughly equivalent fraction (4.6%) of

variants.

When comparing the most stringent set of filters, Watershed-SV combined with HPO

term matching prioritized symptom relevant functional gene-SVs for more patients (n=6) than

CADD-SV combined with expression outlier and HPO term matching (n=1) (Fig. 5a) – that is,

among genes with established relationships to the patient symptoms, more hits were identified

using Watershed-SV than among a comparable size set prioritized by CADD-SV. In addition, the

variant gene-pairs prioritized by HPO term-matching along with either CADD-SV or

Watershed-SV overlap minimally. When not constraining to expression outlier genes, filtering by

HPO and Watershed-SV yields 18 variant-gene pairs, filtering by HPO and CADD-SV yields 12

variant-gene pairs, but the two sets only share a single variant-gene pair (Figure S8a). This

suggests that Watershed-SV and CADD-SV contribute complementary information, with

Watershed-SV optimized for prioritizing expression regulating variants and CADD-SV for

constrained variants. Among all variants in UDN prioritized by either CADD-SV or

Watershed-SV, we found an overwhelming majority coming from SVs and long indels

(30-50bps) only identified in long read data (Fig. 5b).

Watershed-SV yielded a number of interesting variants for future analysis. In one case,

we identified a heterozygous CCG TRE in a pair of siblings with clinically diagnosed

oculopharyngodistal myopathy (OPDM). The TRE is situated in the promoter and 5’ UTR of the

FAM193B gene and was observed with overexpression outliers in both of the siblings’ blood

RNA samples. Previous studies have found CGG/CCG repeat expansions in the 5’ UTR of other
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genes to be causal for OPMD [46–48], and speculate repeat-associated non-ATG (RAN)

translation of the CCG repeat and accumulation of toxic RAN proteins may be the mechanism.

Fazal et al. predicted this repeat locus as pathogenic using RExPRT, a tool trained with

tandem-repeat-specific annotations [49], but was unable to resolve the full size of the repeat

using SRS. Comparing LRS vamos calls with ExpansionHunter calls at the same loci, we saw

that short-reads drastically underestimated the length of the expansion (Figure S9a). Because

FAM193B has not been annotated as a disease gene for OPDM, HPO-term-based filters failed

to prioritize the variant. Both Watershed-SV (score = 0.63) and CADD-SV (score = 11) were able

to prioritize the TREs (Fig 5c). We observed similar tandem repeat numbers (RNA=198, RNB=

194) for the two siblings and a smaller yet still expanded number in their unaffected parent (RN

= 158), which could be consistent with a premutation allele that was expanded beyond a

pathogenic threshold in both siblings (Figure 5d). CGG repeat expansions have previously

been associated with hypermethylation and gene silencing, yet with nanopore methylation calls

in this case, we did not detect a change in methylation levels of the FAM193B promoter,

consistent with the observed over-expression(z-score = 10) (Figure S9d). Watershed-SV’s

integration of gene expression as evidence of regulatory disruption provided greater support for

the prioritization and pathogenicity of this variant.

In a second case, we detected a set of compound heterozygous deletions separately

affecting the 5’ UTR-CDS region and the 3’ CDS-UTR region of FAM177A1 in another pair of

siblings suffering from global developmental delay, macrocephaly, and seizures. CADD-SV

computed a modest score of just 6 for one of the variants, while Watershed-SV prioritized both

variants with strong posterior probabilities > 0.9 (Fig. 5e). Notably, the siblings displayed strong

under-expression in fibroblasts for FAM177A1 in comparison to other UDN samples. LRS

enabled the phasing of these variants and showed the deletions were in trans, disrupting both

FAM177A1 alleles (Fig. 5f). A study [50] of disease variants in consanguineous families

reported homozygous frameshift SNVs in FAM177A1(c.297_298insA) in individuals with similar
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neurologic symptoms to these siblings. Experimental validation study [51] using a Zebrafish

model further supported that biallelic LOF mutations on FAM177A1 could potentially lead to

neurodevelopmental problems via abnormal Golgi complex dynamics.
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Figure 5. Watershed-SV prioritizes symptom-relevant functional rare SVs from UDN LRS
dataset. A Swarmplot for number of gene-SV pairs prioritized per individuals in the UDN LRS
dataset under different set of combined filters. There are 4 filter categories: WGS-only filters,
WGS + HPO filters, WGS + RNA filters, and WGS + RNA + HPO filters, in increasing level of
stringency due to increasing types of filters jointly applied; red dot represent the mean number
of gene-SV pairs across individuals, red horizontal line represent standard deviation; x-axis is in
log2 scale; the bar plot on the right shows number of samples with significant prioritizations. B
Upset plot depicting number of gene-SV pairs prioritized by Watershed-SV (posterior > 0.6),
CADD-SV (score > 10), and whether the SV is uniquely identified using LRS. C and E Case
example 1, rare TREs shared by both siblings, and case example 2, rare compound
heterozygous deletions in siblings. Lollipop plot shows which set of filter includes the candidate
diagnostic gene-SV pair (Triangle) and which does not (Circle), height of the lollipop represents
number of gene-SV pairs prioritized in log2 scale. D Panels depict the TR copy numbers of the
siblings and unaffected parent with less-expanded allele. The TRE loci is in 5’ UTR of
FAM193B. Both Watershed-SV and CADD-SV can prioritize this but not WGS-only model. Both
siblings have extremely high overexpression z-scores. F Panels depict the compound
heterozygous deletions phased onto both alleles for FAM177A1, causing LOF of gene and
thereby underexpression outliers. Only Watershed-SV succeeded at prioritizing both variants.

DISCUSSION

Multi-technology, high-sequencing-depth references have shown that there are roughly

22,000-27,000 rare SVs per genome [3,4]. We achieve similar numbers within our UDN samples

using a multi-algorithm consensus set from only low-depth (15x coverage) long-read nanopore

data, yielding on average more than 2.4x of what was found with SRS callers, especially

substantially more insertions in LRS across all size ranges. Meanwhile, we observed more

inversions, duplications, and large deletions >10kb in SRS than in LRS, likely due both to higher

false positives in the SRS callset and limitations in alignment-based SV calling from LRS. From

our study, we also demonstrated that LRS-based reference panels (ADRC) significantly

improved variant allele frequency estimates, stressing the need for high-quality, diverse ancestry

population reference such as the ongoing LRS sequencing of the 1000 Genome Consortium or

All of Us [52,53]. In addition, we also examined variation at TR loci, genotyping TR copy number

from LRS at 2 times more loci than profiled routinely in SRS, and identifying longer TREs even

up to 10kb.
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Beyond variant discovery, our work investigates the functional impact of LRS rare SVs

and TREs with expression outliers measured from RNA-seq. We reinforce previous findings of a

strong enrichment of gene expression outliers nearby rare SVs [9,13,14,54], and we further also

detected expression effects of additional variant types, including insertions and TREs, and

enrichment for non-coding rare SVs that disrupt important enhancers predicted by the ABC

enhancer model [34]. Future investigation in larger cohorts with disease relevant transcriptomes

and long-read genomes is expected to only further resolve the functional rare SV landscape.

Relatedly, assembly-based SV callers like the Napu pipeline [55] and read-depth based SV

callers may enhance future studies with increased sensitivity for detecting and interpreting other

types of variation.

Finally, our work provides a framework, Watershed-SV

(https://github.com/jasonbhn/Watershed-SV), to synthesize genomic annotations of SVs with

transcriptomic signals to prioritize functional rare SVs, applicable to rare disease patients. We

showed that Watershed-SV improves prioritization of rare SVs that affect gene expression over

existing tools such as CADD-SV, and can identify candidate functional variants that would have

been missed by such genome-only methods. Among the unique prioritizations from

Watershed-SV in UDN LRS genomes, we successfully identified candidate diagnostic variants,

suggesting the benefit of a dedicated model of rare SV’s impact on gene expression. However,

current Watershed-SV models were trained on SRS data from GTEx, likely not capturing the full

functional SV landscape observed in LRS. Future improvements may be possible from training

on larger LRS datasets, and from incorporating additional molecular signals such as splicing,

methylation available directly from nanopore sequencing, or proteomics [11]. Future

improvements to Watershed-SV will also analyze transmission in trios or pedigrees of related

individuals to further help variant prioritization.

In summary, we demonstrated the power of LRS in detecting functional and

disease-relevant indels, TREs, and SVs using LRS genomes from UDN patients with negative
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ES or SRS. Altogether, our work is a demonstration of how LRS sequencing will broaden our

understanding of the function of rare SVs and other rare variants in healthy and rare disease

cohorts, and provided a reusable framework for practically integrating LRS SV with various

transcriptomic outlier signals to provide additional candidate diagnostic variants for undiagnosed

rare diseases. With the increasingly context-specific RNA-seq and the rapidly expanding LRS

resources, our analysis framework will be an even more powerful tool for rare SV prioritization

including for disease.

.

METHODS

Oxford Nanopore Sequencing

DNA was extracted from either whole blood (n=25) or from a cultured fibroblast pellet

(n=43) for all UDN individuals using Qiagen’s extraction protocol (Cat. ID:158023). Up to 4µg of

genomic DNA was used as input into Nanopore ligation kit LSK109 or LSK110. Standard ligation

protocol was followed without barcoding. Libraries were loaded onto R9.4 flow cells on the

PromethION device and sequenced to exhaustion. Libraries were washed and reloaded 24

hours into sequencing in order to maximize sequencing throughput. Some samples with lower

depth were resequenced on additional flow cells to increase coverage. In total, 77 flow cells

were used to sequence the 68 individuals. Data was basecalled in real time through MinKNOW

with Guppy (v4.0.11), using the high-accuracy model (hac) with a Qscore filter of 7 for

determining passed reads. Sequencing summary metrics were calculated and plotted with

Nanoplot from sequencing summary files [56], and the region from GRCh38 aligned bam files to

report percent identity.
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LRS Structural Variant Calling

FASTQ files from base calling were aligned to the GRCh38 patch 13 reference

(https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.39) with minimap2

(  2.26-r1175) using the –map-ont presets after filtering low quality (Qscore < 7) and short-length

reads (length < 250bp) [57,58]: “zcat $fastqs | NanoFilt -q 7 -l 250 |

minimap2 -x map-ont -a --MD -t {threads} {input.ref} │ samtools view

-hb > {output.bam}”. Structural variants were called with an ensemble algorithm

combining three separate SV callers: Sniffles2 (v2.2) [22], cuteSV (v2.1.0) [23], and SVIM

(v2.0.0) [24]. Each tool was called with the following parameters:

Sniffles: “sniffles -t {threads} 4 --sample-id "{sample}_sniffles"

--input {input.bam} --minsvlen 30 --minsupport 3 --vcf {output.vcf}

--output-rnames --tandem-repeats {ttrf_bed}”

CuteSV: “cuteSV -t 4 --sample {wildcards.sample}_cuteSV

--max_cluster_bias_INS 100 --diff_ratio_merging_INS 0.3

--max_cluster_bias_DEL 100 --diff_ratio_merging_DEL 0.3

--report_readid --min_support 3 --min_size 30 --max_size 10000000

--genotype {input.bam} {input.ref} {output.vcf} {params.scratchdir}”

SVIM: “svim alignment --sample {sample}_SVIM --minimum_depth 3

--min_sv_size 30 --max_sv_size 10000000 --read_names {params.tmpdir}

{input.bam} {input.ref}”

Additionally, for SVIM output vcf files were processed to ensure consistent naming of

duplications across tools and consistent names for reporting supporting read IDs to be used

downstream for Iris insertion refining. After calling SVs with each tool, individual callers per

sample were merged with Jasmine SV (v1.1.5)[25]. For individual merges we used the following

Jasmine parameters: “jasmine -Xmx18g --allow_intrasample --normalize_type
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--ignore_strand --file_list={params.vcf_list} --output_genotypes

--centroid_merging --dup_to_ins min_support=2 genome_file={input.ref}

out_dir={params.tmp_dir} out_file={out.vcf}”.

Genotypes were decided for the post-merged consensus by taking a majority vote of the

genotypes determined by each of the three callers. We required that a structural variant be

supported by at least two callers, creating the consensus set we used for downstream analysis.

After merging with Jasmine, we also ran Iris through Jasmine in order to refine insertion

sequences of noisy Nanopore data. We ran Iris refinement with these parameters: “jasmine

-Xmx 24 --preprocess_only --run_iris iris_args=keep_long_variants,

vcf_out={output} genome_file={input.ref} file_list={params.vcf_list}

bam_list={input.bam_list} out_dir={params.tmp_dir}

out_file={output.vcf} threads=4”.

SRS Structural Variant Calling

For short-read sequencing (SRS) structural variant calling, we sought to emulate what is

typically performed for clinical WGS genetic testing. The current clinical standard for WGS

clinical testing uses the Illumina DRAGEN pipeline [59] and calls structural variants with

Illumina’s Manta software. We ran Manta (v1.6.0-2) with default parameters. To limit false

positive calls, which are prevalent in short-read call sets, we ran an additional genotyping step

with PARAGRAPH. First, individual Manta calls across the UDN cohort were merged with

JasmineSV using the following parameters: “jasmine

file_list=~{UDN_manta_file_list} out_file=~{UDN_SRS_cohort_vcf}

–output_genotypes –default_zero_genotype”. Using this merged set, we then input

fully resolved SVs into a PARAGRAPH genotyping step. Insertions are not fully resolved above

twice the fragment size of the library according to Manta documentation
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(github.com/Illumina/manta/blob/master/docs/userGuide/README.md#known-limitations), thus

these unresolved SVs could not be genotyped with PARAGRAPH. We ran PARAGRAPH on

each SRS BAM file with the following parameters: “idxdepth -b ~{cram} -r

~{reference} -o ~{sample_id}.json”. To estimate the average depth across the

genome, we used the following parameters: “multigrmpy.py -i ~{vcf} -m

~{sample_id}.manifest.txt -r ~{reference} -o ~{sample_id} -M

20*{depth}”. -m is the manifest file extracted and formatted from idxdepth output, and -M,

maximum allowed read count is set according to average depth across the genome. WDL

workflow is available on Firecloud and AnVIL [60]

(https://portal.firecloud.org/?return=anvil#methods/run_paragraph/run_paragraph/26). From this

final merged, genotyped callset, we calculated variant lengths and counts per sample across

structural variant types for 50 UDN individuals that had both WGS short-read and long-read

data available.

Allele Frequency Estimation

To assess structural variant allele frequency we first applied SVAFotate [41]. SVAFotate

uses a large population reference of SVs from SRS that includes gnomAD, CCDG, and 1000

Genomes, and matches an input SV to the catalog given specific overlap fractions to assign

input SVs with allele frequencies from the SV catalog. We ran SVAFotate on the UDN

short-read Manta-Jasmine-merged callset, UDN long-read-consensus callset, and IMD

short-read SVTools-Parliament2-Jasmine-merged callset with the following parameters: “--a

best –f 0.5“ . For the short-read callset, we saw high ascertainment of variants in the

SVAFotate catalog, 88%. We also ran SVAFotate with the same parameters on the

Jasmine-merged consensus set from Nanopore sequencing; however, observed drastically

lower ascertainment of variants, 8%.

31

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 26, 2024. ; https://doi.org/10.1101/2024.03.22.24304565doi: medRxiv preprint 

https://github.com/Illumina/manta/blob/master/docs/userGuide/README.md#known-limitations
https://paperpile.com/c/7krv43/tTcEv
https://portal.firecloud.org/?return=anvil#methods/run_paragraph/run_paragraph/26
https://paperpile.com/c/7krv43/BxYXI
https://doi.org/10.1101/2024.03.22.24304565
http://creativecommons.org/licenses/by-nc-nd/4.0/


To further assess variants not detected with SVAFotate, we genotyped all no-hit variants

with PARAGRAPH genotyper in 2,499 high-depth 1000 Genome unrelated individuals, which

allowed us to obtain allele frequency estimates for 97% of SRS variants and 92% of LRS

variants. To get more robust allele frequencies for ONT and address variants outside of the

short read detection limit using PARAGRAPH, we used consensus SV calls from long read

sequencing of Stanford’s Alzheimer’s Disease Research Center (ADRC) and the Stanford aging

and memory study (SAMS) (n=571) sequencing collection[32]. The ADRC contains 598

individuals sequenced on the same Oxford Nanopore PromethION platform to a median of 60

Gb of coverage. An identical SV calling and merging workflow was run on ADRC. To get allele

frequencies we ran a population Jasmine merge on all genomes from the ADRC and UDN (667

total genomes) using the following jasmine parameters: “jasmine -Xmx96g -Xms24g

--ignore_strand --file_list={params.vcf_list} --normalize_type

--dup_to_ins --default_zero_genotype --centroid_merging

out_dir={params.tmp_dir} genome_file={input.ref} --output_genotypes

out_file={output.vcf} threads={threads}”. Merging was performed per

chromosome to decrease memory requirements. From the population-merged vcf, allele

frequencies were estimated by summing allele counts identified in the merged vcf and dividing

by total allele number.

Tandem Repeat Copy Number Genotyping

For long-read sequencing data, the vamos efficient motif set was downloaded from

(https://github.com/ChaissonLab/vamos/blob/master/snakefile/configs/vntr_region_motifs.e.bed.

gz), and used as input into vamos (v1.3.6) to genotype tandem repeat (TR) copy numbers

across across 467,000 TR loci [27]. vamos was called on each sample using the following

parameters “vamos --read -t 4 -b {input.bam} -r vntr_region_motifs.e.bed
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-s {sample_name} -a 0.93 -o {output.vcf}”. Vamos vcf files were converted to tsv

files to report per sample and haplotype length of each TR (vcf INFO FIELD LEN_H1, or

LEN_H2). We considered only repeat annotation lengths and not composition information. TRs

were annotated by motif size based on the length of the first motif present in the efficient motif

catalog.

For short-read sequencing data, TR copy numbers were estimated with

ExpansionHunter (v5.0.0) [28]. The recommended TR catalog for ExpansionHunter was

downloaded from

(https://github.com/Illumina/RepeatCatalogs/blob/master/hg38/variant_catalog.json).

ExpansionHunter was ran with the following parameters: “ExpansionHunter --reads

{input.bam} --threads 4 --reference {input.fasta} --variant-catalog

variant_catalog.json --output-prefix {output_prefix} --analysis-mode

streaming”. The resulting output json was converted into a tsv file to report per sample per

haplotype estimated repeat numbers and confidence intervals. TRs were again annotated

based on their motif length.

For both short reads and long read TR files, TR tsv files were concatenated across all

samples within each technology, we then grouped by unique TR loci and calculated mean and

variance per TR across all alleles. TRs were filtered to those that were detected in at least 50%

of UDN individuals and detected in at least 50 haplotypes. This resulted in 466,220 TR loci for

vamos and 174,260 for ExpansionHunter. For comparing the ExpansionHunter variant catalog

to the vamos TR catalog, we calculated genomic ranges based on coordinates found in their

respective catalogs, and we flanked each region by 100bp on each side. The ExpansionHunter

and vamos motif sets were then intersected with bedTools to determine if they were covering

the same loci. For loci in both catalogs that did intersect, we further characterized if they

contained the same motif. Vamos includes potentially multiple motifs at each TR in order to
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represent composition changes that occur within repeats, whereas ExpansionHunter only

records a single motif. To compare if ExpansionHunter and vamos contain the same motif, we

compared the ExpansionHunter motif with any motif in the vamos set, or any cyclic permutation

of a motif in the vamos set (because, for instance, a CGC repeat and a CCG repeat would result

in identical repeat sequence).

To characterize tandem repeat variation at known pathogenic loci, we downloaded the

STRchive motif set from

(github.com/hdashnow/STRchive/blob/main/data/hg38.STRchive-disease-loci.TRGT.bed). And

reformatted this file so it is compatible to be run with vamos and ExpansionHunter. We analyzed

the pathogenic motif set with ExpansionHunter and Vamos as described above. The resulting

haplotype-level tsv files were concatenated across the cohort in each technology and then

joined on TR_id. Since assignment of haplotypes in both tools is arbitrary, to compare

haplotype-specific repeat copy numbers, we assign H1 to be the haplotype with the longer

repeat count (max) and H2 to be the haplotype with the shortest repeat count (min). TRs were

filtered if there was >50% missingness in individuals, removing 20 TRs from ExpansionHunter.

For the remaining TRs, EH mean and vamos mean repeat copy numbers were calculated, and

per loci Spearman correlations between reassigned (max,min) haplotype repeat copy numbers

were computed.

Mean Neighbor Distance Rare Tandem Repeat Expansion Calling

To detect rare and extreme tandem repeat expansions (TRE) at tandem repeat loci, we

developed a method which involves calculating and thresholding on a mean neighbor distance

(MND) statistic. This semiparametric approach uses a population reference (preferably of

healthy controls) to jointly define robust tandem repeat copy number distributions together with

any samples of interest. Then for each observation in the distribution (corresponding to a unique

TR copy number allele observed in one haplotype of an individual) we calculate how far on
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average they are from their K-nearest neighbors (mean of the minimum K absolute differences).

We then standardized this mean neighbor distribution by the standard deviation of the original

distribution. This statistic describes how many standard deviations away an allele is from their

nearest K-neighbors. Here, if an allele was drawn from the same distribution as the rest of the

alleles, then its nearest neighbors would be very close, and the standardized MND would be

close to zero. Even if an individual was at the tail of the distribution, there would still be

neighbors nearby and the standardized MND will still be close to zero. However, if an allele was

extremely expanded, as is the case in repeat expansion disease, they will be sampled from a

distinct distribution and should be clearly separated from the rest of the distribution. This means

the k-nearest neighbors should be far away and the MND will be high. Thus, thresholding on a

standardized MND can differentiate extreme expansions from just individuals who are near the

tail of the distribution (see schematic in Figure 1B).

This MND method is analogous to a z-score, but instead of calculating difference from

an observation to the population mean, we replace the population mean with a local mean of the

k-nearest neighbors of the observation. Thus, MND can be thought of as a topological or local

z-score. Additionally, to require the repeat expansion to be at the tail of the distribution and not

at an intermediate value between two mixtures, for instance, we also require the observation to

be in the top K in order to be considered an expansion outlier (or bottom K in the case of rare

extreme contractions). Finally, to avoid inflation of standardized MNDs from TRs with little

variability, we forced a lower bound on the standard deviation of the original distribution by the

expected standard deviation if the distribution was Poisson distributed, namely the standard

deviation of the mean.

We observed that this method works well for detecting rare and extreme repeat

expansions. Benefits of this model included its nonparametric estimation of the MND based only

on nearest neighbors. This makes our method less susceptible to violations of underlying

assumptions like the unimodality of data that is often assumed for standard z-score scaling
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outlier methods, an assumption commonly broken by the multimodal distributions of many TRs.

Also outlier calling methods like Tukey’s assume a wide variance of the distribution in order to

calculate interquartile ranges, however, many tandem repeat loci are pathological in this regard

as the 25th and 75th percentile will have the same value, while still being variable in the

remaining 25% of data points, thereby making any other value an outlier.

To call repeat expansions with this method there are two parameters to set. First, K to

determine the number of nearest neighbors to consider when calculating the local z-scores. As

K increases, the local z-score will approach the standard global z-score and local information

about the distribution will diminish. A default k parameter propotional to the total allele number in

the reference population is recommended, for instance K = 0.5% of total alleles. This mirrors

rare variants at a < 0.01 MAF, where if we see 1% or more of the alleles having the same or

similar repeat number to a given allele, it will have a MND close to zero and will not be called a

TRE. For determining ultra-rare events, a lower k threshold of 0.5% or 0.01% of total allele

number can be used. Whereas more lenient tandem repeat expansion calling can be done at

2%. In the most extreme case, if K = 1, then an allele is only an outlier if no other allele is

nearby, which should only be done in a rare disease setting if it is absolutely sure no other allele

could have the same pathogenic repeat. We show increasing K results in more TREs called on

average per sample (Supplemental Figure 3A). The second parameter is the standardized

MND threshold above which to call a sample an rare TRE. We used a default parameter of 2,

but this can be increased in order to be more stringent and detect only the most extremely

expanded of alleles. We also show that increasing this standardized MND threshold results in

less and less TREs called per genome on average (Supplemental Figure 3A).

Rare tandem repeat expansion calling in UDN

We applied the above mean neighbor distance (MND) method to vamos (from LRS

genomes) and ExpansionHunter (from SRS genomes) tandem repeat genotypes from the UDN
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to call extreme tandem repeat expansions. In the first round of analysis we calculated the MND

on the default catalogs present for each tool. For the LRS vamos set, we jointly analyzed the

data with ADRC vamos genotypes as a reference set, whereas for the SRS ExpansionHunter,

we used the ExpansionHunter repeat catalog that was run on 1000 Genomes as a reference

set, downloaded here

(github.com/Illumina/RepeatCatalogs/blob/master/hg38/genotype/1000genomes/1kg.gt.hist.tsv.g

z). To call repeat expansion outliers, we set K = 0.5% of total allele number, corresponding to K

= 5 in the vamos set, and K = 25 in the ExpansionHunter set. We set a standardized MDN

threshold of 2 above which to call an allele as an extreme tandem repeat expansion (TRE). In a

secondary round of analysis, we called TREs specifically from the STRchive catalog of

pathogenic repeats. We used the same vamos and ExpansionHunter output as described above

to input into the MND TRE calling script. For ExpansionHunter, because the 1000 Genomes

reference repeat catalog did not contain all of these pathogenic repeats, we used a reference

set of an additional 54 short-read UDN genomes that were also called with ExpansionHunter

(bringing total reference size for SRS to 104). To account for the smaller reference size of

ExpansionHunter, we decreased k for calling from the pathogenic repeats to k = 5 for the

ExpansionHunter set (~2% of the total allele number).

In order to compare our MND statistic to other outlier calling methods for tandem repeat

expansion calling, we also called expansions from vamos output using two additional methods.

We used the joint distribution of UDN combined with ADRC to perform all tandem repeat

expansion calling. A Tukey’s outlier method was applied by setting an outlier threshold per TR

equal to the 75th percentile of the distribution + 1.5*IQR of the distribution. Any allele that had a

repeat count greater than this value was called an outlier. We also used a z-score scaling

method where repeat counts per tandem repeat were scaled to a mean of 0 and standard

deviation of 1 by subtracting the population mean and dividing by the population standard

deviation. A z-score threshold of 3 was used to compare with Tukey’s and MND threshold. We
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compared counts of tandem repeat expansions detected by each method from the UDN

genomes and found MND drastically decreases the number of TREs compared to Tukey's

method. Compared to the z-score method, the MND method calls about half as many TREs as

z-scores (Supplemental Figure 3C).

Outlier calling against a healthy population background in matching tissues

In the rare disease datasets we collected 24 skeletal muscle biopsy RNA-seq

STAR-mapped bam files from the CMG Muscular Disease dataset [38] and 66 fibroblast and

283 blood samples bam files from the UDN dataset. In order to more effectively identify aberrant

expression from healthy samples, we also selected GTEx RNA samples from skeletal muscle,

cell cultured fibroblast, and whole blood as the best matching tissues controls. To reduce

technical variation due to sample quality issues, we filtered all RNA-seq based on RNA Integrity

Number (RIN) greater than 5.5, To quantify expression on a gene level, we used RNA-SeQC to

generate read count and TPM [61] with GENCODE[62] models matching the versions the STAR

alignment was performed on. We limited, for a given tissue type, the genes to those with at least

6 reads in at least 20% samples. In UDN blood samples, to maximize discovery power,

GLOBINclear was used on cDNA library to maximize the number of non-globin and disease

relevant mRNA to be detected. This created a library compositional shift when comparing GTEx

whole blood and UDN globin-depleted blood. To combat the composition bias, we generated

TMM adjusted TPM values using edgeR package, accounting for this known unwanted shift in

RNA composition that TPM normalization itself cannot account for [63]. After acquiring TPM

values, we estimated expression PCs, which was previously shown [64] to well-represent the

technical hidden covariates. TMM-TPM are log transformed using log2(TPM+2), then scaled to

mean of 0 and standard deviation of 1. In addition to 60 PCs [9], we also accounted for batch,

RIN, and biological sex using linear model, and subsequently scaled the expression residual
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from the model to obtain expression z-scores. We removed global outliers in similar fashion as

Ferraro et al. 2020 [9].

Expression outlier enrichment nearby rare SVs analysis

In order to test enrichment of expression outliers nearby rare SVs we used a multivariate

logistic regression framework, using outlier status as the dependent variable and presence of

rare SV covering various annotations nearby the gene as independent variables. We performed

enrichment in UDN using blood expression z-scores as calculated above to maximize sample

size and power. After filtering out individuals who were global expression outliers, defined as

individuals with number of outliers greater than 1.5*interquartile range + 75 percentile of outlier

counts in the cohort, there were 33 UDN individuals with LRS and blood z-scores. We set a

window size of 10kb to determine if an SV is near a gene, and intersect SVs with these

expanded gene windows using bedtools[65]. To set the proper background, we restricted to

genes with at least one outlier among the 33 individuals. In order to test SV Type enrichments,

we set various increasing absolute z-score thresholds to determine a binary gene outlier

variable, and then ran the following logistic regression to estimate log odds-ratios Outlier ~

SV_TYPE_DEL + SV_TYPE_INS + SV_TYPE_DUP + SV_TYPE_INV. Where each of the

dependent variables is set to 1 if the gene has a nearby SV of that type within 10 kb and 0

otherwise. For testing rare TREs we run a similar univariate model Outlier ~ has_TRE, where

has_TRE is set to 1 if there is a rare TRE present within 10kb of the gene. We also run specific

models stratifying by Outlier direction, Underexpression_Outlier ~ SV_TYPE_DEL +

SV_TYPE_INS + SV_TYPE_DUP + SV_TYPE_INV, where Underexpression_Outlier is set to 1

if z-score is strictly less than negative of the Z-threshold used. And Overexpression_outlier ~

SV_TYPE_DEL + SV_TYPE_INS + SV_TYPE_DUP + SV_TYPE_INV, where

Overexpresion_Outlier is set to 1 if z-score is strictly above the Z-threshold used. The logistic

regression estimates a beta value, which corresponds to the log odds ratio of that variant type
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being enriched for expression outliers compared to inliers, jointly controlling for the effects of the

other variant types. We also extracted standard errors of this beta value and a p-value for

significance. P-values were then Bonferonni adjusted to account for multiple hypothesis testing

correction.

For testing enrichments across rare variant annotations, we used an absolute z-score

threshold of z = 4 and increased window size to 100kb for determining SVs proximal to genes

so we could capture more noncoding variants. Annotations for enrichment analysis were

consistent with those that were used as features for Watershed-SV (details below). To create

ABC annotations, we downloaded cell-type specific ABC elements from

(ftp.broadinstitute.org/outgoing/lincRNA/ABC/AllPredictions.AvgHiC.ABC0.015.minus150.Fo

rABCPaperV3.txt.gz), and cell-types were subset to those from primary, unstimulated cell types

from blood, fibroblast, or muscle cell types in order to match the expression tissues we profiled

in this study [34]. Coordinates for ABC elements across all tissues were then merged after

grouping by ABC element class (promoter, intergenic, genic) and target gene and then using

plyranges[66] reduce_ranges to create a tissue-level reference. The target gene column of ABC

elements was used to map the ABC element to the gene it is predicted to be regulating. These

coordinates were then lifted-over to hg38 using “CrossMap region ~{chain_file}

~{ABC_enhancer_bed} ~{ABC_enhancer_lifted_bed} -r 0.85 ” to be in a consistent

build with SV coordinates.

For VEP gene body region annotations, VEP categories were made exclusive using the

following prioritization schema [in order of highest priority: exon variant, 5’ UTR variant, 3’ UTR

variant, intron variant, upstream noncoding variant, downstream noncoding variant]. So any SV

that overlapped multiple features is assigned to the category with highest priority, making gene

body region categories not correlated. Gene body region annotation enrichments were

calculated by the following model: Outlier ~ upstream_noncoding_variant +
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five_prime_UTR_variant + exon_variant + intron_variant + three_prime_UTR_variant +

downstream_noncoding_variant in order to jointly estimate the enrichment of each gene body

region. For length enrichments, we label genes as 1 if it has a rare SV above the given length

threshold in a 100kb window and 0 otherwise, and compute enrichments from the model Outlier

~ has_SV_above_length, using length threshold set to 100bp,1kb,10kb, and 100kb. CADD-SV

[16] scores were generated for insertions, deletions, and duplications (CADD-SV could not

score inversions), using their recommended snakemake pipeline and using as input the UDN

plus ADRC jasmineSV-merged combined vcf [16]. Similar enrichments to SV length were

performed using the CADD-SV score as a threshold and the model Outlier ~

has_SV_above_CADDSV using the following thresholds of CADD-SV [5,10,15,20]. Similarly for

VEP impact categories, enrichments were calculated with the model Outlier ~

has_MODIFIER_SV + has_MODERATE_SV + has_HIGH_SV.

Finally, to look at regulatory annotations, we compiled noncoding regulatory annotations

as described above for ABC elements and below for the other Watershed-SV features. SVs that

intersected ABC elements of the target gene were assigned a 1. For non-binary features, i.e.

LINSIGHT, PhastCon, REMAP CRM density, high and low categories were assigned based on

whether the non-coding variant was above the median value of these annotation categories

across all SVs with annotation present. We set the regulatory annotation feature to 0 if the SV

also overlaps an exon, so they are exclusive to coding variants and to prevent them from

spuriously capturing coding variant effects. We also created an annotation of putative-regulatory

SVs for SVs that overlap any non-coding annotation or the VEP regulatory region variant

annotation. We also create putatively non-regulatory variants as a control, which are variants

that do not overlap any of the regulatory annotations and additionally do not overlap any high

CADD-scoring variants, and the mean CADD score of the highest-CADD-scoring 10 SNVs

overlapping the SV was less than 5. Individual SV annotations were then merged on a

per-gene-individual level to get gene-level annotations. Due to high correlation among the
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different regulatory annotations, we tested enrichment for each annotation individually rather

than jointly modeling them because beta values of correlated features in multivariate

regressions are not interpretable. So, for each regulatory annotation, we compute enrichments

by the following model: Outlier ~ has_coding_SV + has_SV_with_regulatory_annotation,

controlling for if the gene has a coding variant to avoid non-coding enrichment just from tagging

coding SVs that are on same haplotypes. We report the beta value for the

has_SV_with_regulatory_annotation term as the log odds ratio enrichment. Again, as with the

SV Type models, we used the beta estimate as well as the standard error and p-value to report

enrichments. We adjusted p-values using the Bonferroni method to correct for multiple

hypothesis testing.

Watershed-SV annotation collection pipeline

Given the increased complexity of annotating SVs relative to SNVs, Watershed-SV

includes a more comprehensive set of relevant annotations: VEP [33] variant category and

protein-coding sequence consequence, SV specific annotations like variant types and length,

chromHMM [67] states, and conservation scores, among others. Since many SVs affect a range

within the genome, leading to overlaps with multiple annotations from the same source, we

summarized the impact of these SVs on nearby genes that aligns with increased functional

impact for a given annotation. Since there could be more than one rare SV nearby a given gene,

we further aggregated annotations according to Table S5, highlighting the strongest impact of

variants nearby gene. Both gene level predictions and gene-variant level predictions can be

computed for an individual from the trained model.

Further, two annotation collection methods are provided. First, we have a mode that

adds user specified flanking sequence to each end of a given gene, then considers the

aggregated impact of all rare SVs overlapping these regions as the genomic annotation. In this

version, variant in gene body, upstream flanking region (UFR), and downstream flanking region
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(DFR) are aggregated together, regardless of the specific location of variant overlap. In another

mode, we separately consider nearby the gene body, UFR, and DFR regions in order to better

isolate the impact of rare SVs on different regions that might be contributing to outlier gene

expression. In both modes, annotations are only collected from the overlapping region between

an SV and a gene with its +/- flanking sequences to limit the impact to cis-regulatory. Our

pipeline is available at (https://github.com/jasonbhn/Watershed-SV).

Watershed-SV annotation features

SV-generated features

We one-hot encoded the type of rare SVs present nearby a gene like a

presence-abscence vector. Allele frequency, length of the SV, copy numbers of variants could

both be processed separately and uploaded as TSV or extracted from VCF file automatically.

We log transformed length since it’s a continuous positive feature in our feature encoding.

AFractions of exons sequence affected by nearby SVs were calculated and aggregated using

the maximum among SVs to depict the most deleterious impact. Similarly, binary features

describing exon truncations by SV from either 5’ or 3’ of the genes were included. For

non-coding variants, distances of variants to UFR and DFR were calculated, with the

aggregated minimum among nearby SVs being used for gene-level feature curations; note,

when variant is coding, these distances are 0.

VEP features

We one-hot encoded the Consequences from VEP into binary features. We replaced the

exon_variant, intron_variant consequences from VEP with our own script because the VEP

module can simultaneously call an SV being intronic and exonic, producing contradictory

information for model training.

43

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 26, 2024. ; https://doi.org/10.1101/2024.03.22.24304565doi: medRxiv preprint 

https://github.com/jasonbhn/Watershed-SV
https://doi.org/10.1101/2024.03.22.24304565
http://creativecommons.org/licenses/by-nc-nd/4.0/


Regulatory element annotations

In order to capture the impact of rare SVs on various regulatory elements, we used

annotation from multiple sources. Activity-by-contact(ABC) model predictions were extracted

and aggregated from 78 cell lines and tissues, we considered any rare SVs nearby genes that

overlap an ABC enhancer mapped to the given gene an ABC SV. We extracted cis-regulatory

modules(CRMs) from REMAP2022 database [35] and considered the maximum SV disrupted

CRM score the remap score annotation for a gene. And we also collected information about

tissue specificity of enhancers in the form of the number of primary tissues a given enhancer

bed segment is detected in from enhancerAtlas 2.0 [68]. Finally, the number of tissues a TAD

boundary is detected in Wang et al [69] are collected to depict the impact of SV on regulations

related to 3D genome organizations.

ChromHMM features

To collect chromHMM features, we selected 27 primary tissue/cell types from 127

epigenomes. We used the 25 state model generated by the Roadmap Epigenome

consortium[70]. We aggregated overlapping segments of the same state from 27 tissues into a

single segment, with the count of tissues that the state is active in, forming modules of

chromatin states. The higher the number of tissues, the more ubiquitously observed a state is.

Conservation Scores and other bigwig track features from UCSC Genome Browser

We used pybigwig[71] to collect and summarize the score tracks of various conservation

metrics, including LINSIGHT, CADD, PhastCON, GC-content, and percent CpG in a disrupted

CpG island from the UCSC Genome Browser[72]. LINSIGHT, CADD, PhastCON have high

sparsity in the scores, therefore, we selected the top 10 scores within the range of each SV, and

took the average of the top 10 as the annotation for these score tracks. For GC-content, the

mean of GC was taken. And for CpG, the max CpG percentage was considered.
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Region-specific annotation aggregation

For region-specific annotation, conservation scores, regulatory annotations, chromHMM

features are summarized and aggregated in the gene body, UFR, and DFR regions separately.

Variant type information is also collected such that if an SV overlaps with the gene body and

UFR, the SV segments that overlaps each regions will be considered separately, i.e. SVTYPE:

DUP_UFR, DUP_gene_body. Other annotations, such as VEP, are aggregated as we did in

non-region-specific aggregation.

Methods, scripts, and source annotations are available on github

(https://github.com/jasonbhn/Watershed-SV). All scripts for each type of annotations could be

ran independently, although we provide bash scripts and snakemake pipeline template to easily

run on different VCF and outlier data types.

Evaluating Watershed-SV using N2-pairs in GTEx samples

For evaluating the Watershed model, we largely followed the N2-pair evaluation

framework developed previously [9]. To further account for variability within a single locus,

specifically CNVs with multiple possible rare copy numbers, we required that copy numbers

must at least match in the direction of copy number change from the population mode copy

number. To account for noise in the gene expression outlier z-scores, we evaluated using

stringent outlier signals threshold at Z>3, but relaxed the outlier threshold to a p-value threshold

of 0.05 in the second individual in N2 pairs. To evaluate the performances of models on

non-coding variants, we performed the same analysis but limited to only N2-pairs with

non-coding rare SVs nearby. We further relaxed the p-value threshold to 0.1 due to the

weakened impact of non-coding variants in comparison to coding variants (Supp. Fig. 5c).

Bootstrapping of AUPRC is performed identically as mentioned in previous literature.
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Applying Watershed-SV models to prioritize functional rare SVs in the

inherited muscular disease dataset

Structural variants were called using svtools[39] and Parliament2[40]. svtools jointly

infers the presence of SVs based on LUMPY[73] breakpoints and CNVnator[74] copy number

changes. Due to the small cohort size, this approach is underpowered in calling rare

duplications or deletions. We used Parliament2 on each sample, which merges variant calls

from multiple callers for a single individual, to maximize recall of rare and private SVs that failed

to be called from SVtools. Due to the high false positive rate of SV calling in short read data, we

required an SV to have the support from at least two different callers [40]. Subsequently, we

merged individual sample VCFs using Jasmine. Finally we harmonized the Parliament2 and

SVtools callset using Jasmine. Variant allele frequencies were ascertained using SVAFotate and

PARAGRAPH as described earlier. We collected annotations for rare SVs found in the dataset,

combined with skeletal muscle expression outliers to run Watershed-SV prediction mode based

on the GTEx 100kb region specific median z-score model.

Applying Watershed-SV models to prioritize rare SVs and extreme TR

expansions in UDN dataset

We applied both the median z-score model and the tissue-Watershed model that was

trained jointly with blood and fibroblast outlier signals to the patient data. For rare SVs,

predictions were performed as described in the previous section. For extreme TR expansions,

we cast them to the type of duplication, and calculated the length as the total length of the

expanded repeat. To evaluate whether Watershed-SV identified symptom relevant rare disease

variant gene pairs, as well as to evaluate performance against CADD-SV, we designed a set of

filters to simulate a range of diagnostic filters that genetic counselors would use. The filters

encompass three general approaches: matching of nearby gene with the patient’s symptoms,
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variants that have strong evidence of pathogenicity from whole genome sequencing based

variant prioritization methods, and variant prioritization leveraging RNA outlier signals. We

compared CADD-SV to Watershed-SV to assess how CADD-SV scores for the same set of

variants nearby 100kb of genes with measured expression in blood or fibroblast compared to

Watershed-SV scores. We note that CADD-SV is a variant centric prioritization approach and

does not model the variant impact on a nearby gene. Furthermore, the CADD-SV score is on a

Phred Scale whereas Watershed-SV reports a probability. The same CADD-SV score is used

for two gene-SV pairs that are the same SV but different gene in Watershed-SV. We used a

Watershed threshold of 0.6, corresponding to ~10% of the total variants, and a roughly

equivalent threshold of 10 in CADD-SV, corresponding to the top 10% pathogenicity. To

compare whether variants prioritized are relevant to disease phenotypes, we created HPO term

matching using Phen2Gene [45], considering all genes for each patient with rank < 300 as

recommended by authors.
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