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Abstract 

Background: Water, sanitation, hygiene (WSH), nutrition (N), and combined (N+WSH) 
interventions are often implemented by global health organizations, but WSH interventions may 
insufficiently reduce pathogen exposure, and nutrition interventions may be modified by 
environmental enteric dysfunction (EED), a condition of increased intestinal permeability and 
inflammation. This study investigated the heterogeneity of these treatments’ effects based on 
individual pathogen and EED biomarker status with respect to child linear growth.  

Methods: We applied cross-validated targeted maximum likelihood estimation and super learner 
ensemble machine learning to assess the conditional treatment effects in subgroups defined by 
biomarker and pathogen status. We analyzed treatment (N+WSH, WSH, N, or control) randomly 
assigned in-utero, child pathogen and EED data at 14 months of age, and child LAZ at 28 
months of age. We estimated the difference in mean child length for age Z-score (LAZ) under 
the treatment rule and the difference in stratified treatment effect (treatment effect difference) 
comparing children with high versus low pathogen/biomarker status while controlling for 
baseline covariates.  

Results: We analyzed data from 1,522 children, who had median LAZ of -1.56. We found that 
myeloperoxidase (N+WSH treatment effect difference 0.0007 LAZ, WSH treatment effect 
difference 0.1032 LAZ, N treatment effect difference 0.0037 LAZ) and Campylobacter infection 
(N+WSH treatment effect difference 0.0011 LAZ, WSH difference 0.0119 LAZ, N difference 
0.0255 LAZ) were associated with greater effect of all interventions on growth. In other words, 
children with high myeloperoxidase or Campylobacter infection experienced a greater impact of 
the interventions on growth. We found that a treatment rule that assigned the N+WSH (LAZ 
difference 0.23, 95% CI (0.05, 0.41)) and WSH (LAZ difference 0.17, 95% CI (0.04, 0.30)) 
interventions based on EED biomarkers and pathogens increased predicted child growth 
compared to the randomly allocated intervention.  

Conclusions: These findings indicate that EED biomarker and pathogen status, particularly 
Campylobacter and myeloperoxidase (a measure of gut inflammation), may be related to impact 
of N+WSH, WSH, and N interventions on child linear growth.  
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Introduction 

Approximately 148 million children globally experience linear growth faltering, which may be a 
consequence of early life undernutrition [1]. Studies have consistently found a positive 
relationship between child growth and child development, leading investigators to use child 
linear growth as a proxy for overall development [2,3]. In adulthood, children who experienced 
early-life growth faltering are more likely to experience low educational attainment and low 
income, although interventions that improve child growth do not necessarily improve child 
development (and vice versa) [2–6]. Children of mothers who are stunted have an increased risk 
of experiencing stunting themselves, which can perpetuate the cycle of poverty [7]. 

Water, sanitation, hygiene, and nutrition 

Experts in public health and international development have identified water, sanitation, hygiene 
(WSH), nutrition (N), and combined (N+WSH) programs as potentially effective methods to 
improve child growth. WSH interventions aim to reduce children’s exposure to pathogens, which 
can improve nutrient utilization by reducing malabsorption, redirection of nutrients for immune 
response, and other symptoms associated with infection, while nutrition interventions aim to 
directly provide nutrient supplementation [8,7]. The United Nations has established universal 
access to WSH by the year 2030 as a Sustainable Development Goal [9]. Despite the widespread 
implementation of N and WSH interventions, based on the assumption that these interventions 
improve child growth, few randomized controlled trials have evaluated the impact of N+WSH, 
WSH, and N interventions on child growth.  

Several observational studies indicated a positive relationship between household WSH 
interventions and child growth [10]. In contrast to these observational findings, three recent 
randomized controlled trials in rural populations from Kenya and Bangladesh (the WASH 
Benefits study) and Zimbabwe (SHINE trial), enrolled pregnant mothers and found that 
household WSH interventions did not improve child linear growth in a randomized context 
[7,11–13]. These findings suggested that positive associations between WSH and child growth in 
observational settings may be due to residual confounding. The null effect of these 
environmental interventions on growth indicated the possibility that additional sources of growth 
impairment might exist for children facing extreme poverty. Alternatively, the lack of impact of 
these interventions may reflect an inability of these household interventions to sufficiently 
reduce pathogen exposure and environmental enteric dysfunction [11,14,15].   

The WASH Benefits study found that nutritional supplementation led to modest improvements in 
child linear growth compared to control [11]. This is consistent with other randomized controlled 
trials in low and middle-income countries, which have also found that early nutritional 
supplementation can improve child growth.[16,17] The combined N+WSH intervention did not 
provide any additional benefit to child linear growth compared to the nutrition intervention alone 
[11]. The authors indicated that this small and variable impact of nutrition interventions on child 
linear growth may be due to contextual underlying factors that influence participants’ ability to 
respond to and benefit from nutrition interventions [11,18].  

Effect Measure Modification by EED and Pathogens 

In addition to finding a null main effect of WSH interventions on growth and modest effects of 
nutrition on growth (and N+WSH providing no additional benefit compared to nutrition alone), 
the WASH Benefits study did not detect significant effect modification of interventions by child 
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age, child sex, maternal education, maternal age, child parity, economic factors, or child hunger 
[11]. Although it should be noted that lack of observed effect measure modification could be due 
to limited power or the study context [11]. Despite this lack of evidence of interaction, pathogen 
and environmental enteric dysfunction (EED) biomarker data may provide additional 
information on which subgroups of children, defined by pathogen or biomarker levels, are 
amenable or resistant to intervention.  

EED is a condition characterized by increased gut permeability, gut barrier disruption, increased 
gut and systemic inflammation, and is hypothesized to be caused by chronic exposure to 
pathogens [19,20]. Although clear diagnostic criteria for EED have not been established, several 
studies have speculated that it could be a key intermediate between poverty and growth 
impairment for children in low and middle-income countries [19,20]. Observational data and 
animal models have indicated that Campylobacter infection may contribute to EED [21]. Among 
young children in Bangladesh, small intestine bacterial overgrowth is associated with both 
intestinal inflammation, a key component of EED, and child growth impairment [22,23]. The 
WASH Benefits Bangladesh study found that the nutrition intervention was associated with 
reduction of neopterin at 3 and 14 months of age, and all interventions reduced lactulose and 
mannitol at 3 and 14 months [24]. At 28 months, contrary to a-priori hypotheses, WSH and 
nutrition interventions were associated with increased myeloperoxidase, and WSH was 
associated with increased mannitol absorption [24]. Although these findings at age 3 and 14 
months support N+WSH interventions’ ability to reduce some EED biomarkers, the 
counterintuitive results at 28 months highlight uncertainty regarding the relationship between 
N+WSH interventions and presumed biomarkers for EED. In the SHINE Trial, investigators 
found that WSH interventions decreased the number of parasites detected, but did not have a 
significant effect on bacteria, viruses, or enteropathogens [15]. 

Investigators of the WASH Benefits study suggested that insufficient reduction of pathogen 
exposure could explain the null effects of WSH interventions on child linear growth [11]. 
Investigation of the relationships between N+WSH interventions and enteropathogens at Year 1 
(age 14 months) in Bangladesh found that children who received WSH interventions had a lower 
prevalence and quantity of some individual viruses (norovirus, sapovirus, and adenovirus 40/41) 
compared to children in the control group, although investigators did not find a significant 
difference in bacteria, parasites, or stunting-related pathogens between these groups [14]. 
Furthermore, this study found that 99% of children at Year 1 had at least one enteropathogen 
[14]. At Year 2 (age 31 months), investigators found that individual sanitation and hygiene 
interventions were associated with decreased Giardia infections and that drinking water and 
nutrition interventions were not associated with a change in Giardia infections [25]. Regarding 
soil-transmitted helminths, investigators found that the drinking water intervention was 
associated with reduced hookworm [26]. Lastly, analysis of interventions and fecal 
contamination found that drinking water and handwashing interventions reduced contamination 
of water and food, but did not reduce contamination of indirect pathways such as child hands and 
objects, and that combined WSH interventions provided no additional benefit compared to 
individual interventions [27]. These cumulative findings indicate that household WSH 
interventions can reduce child exposure to certain pathogens, although these results highlight 
heterogenous relationships between interventions and individual pathogens. 

Methodological Utility of Optimal Treatment Regime Analysis  
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Public health research typically seeks to identify population-level drivers of incidence rates, 
rather than individual causes of cases [28]. But, methodological advances have enabled the 
creation of dynamic treatment rules, where susceptible individuals can be targeted for 
interventions based on individual characteristics or treatment history [29,30]. Despite this focus 
on optimizing interventions based on individual covariate information, we retain the public 
health goal of maximizing population-level health outcomes with limited resources [29]. Even if 
there is a true effect of the intervention on the outcome of interest among certain individuals, a 
study may fail to detect this relationship if the effect is heterogeneous in the study sample or the 
subgroup of amenable individuals is small. We can assess the variance of the stratum-specific 
treatment effect to evaluate treatment heterogeneity [31].  

Targeted maximum likelihood estimation is an estimation method that optimizes the bias-
variance tradeoff for a specific parameter of interest [32]. This method is efficient when the 
outcome regression and the treatment mechanism (propensity score) are correctly specified. Due 
to the doubly-robust property, targeted maximum likelihood estimation returns consistent results 
as long as either the outcome regression or the treatment mechanism is estimated consistently 
[32,33].  

We can gain additional insight through analysis of optimal individualized treatment effect, where 
we seek to maximize population outcomes by assigning treatment based on individual 
characteristics that are associated with the most beneficial treatment effect [34]. Estimation of 
this optimal individualized treatment effect has gained popularity with the rise in precision 
health, but much of these efforts have relied on unrealistic parametric assumptions [35–40].  If 
the parametric model is incorrect (which is often the case), the resulting estimates will be biased 
for the parameters of interest (e.g., average treatment effect) [34]. Using targeted learning 
methods, we can estimate the mean outcome under the optimal individualized treatment. The 
candidate treatment rules are estimated on the same data for which the impact of the rule is also 
estimated, using a robust cross-validated estimation procedure [34]. One can gain efficiency by 
constraining the statistical model, so the only restrictions on the data distribution relate to the 
probability of a participant receiving treatment (which is a fixed, randomized assignment) [34]. 
The use of cross-validated targeted maximum likelihood estimator for the mean outcome under 
optimal individualized treatment uses a data-adaptive estimation of the optimal rule, while still 
providing valid inference on the impact of the estimated optimal treatment without making 
parametric assumptions.  

Using data from the WASH Benefits Bangladesh study, analysis of treatment heterogeneity 
through estimating subgroup treatment effects and optimal treatment regimens can improve our 
understanding of child growth in low- and middle-income countries. Despite widespread use of 
N+WSH interventions, investigators have found mixed evidence regarding these interventions’ 
impact on child growth [7,11,13]. This study will apply targeted machine learning methods to 
assess the conditional treatment effect of N+WSH, WSH, and N interventions on child linear 
growth (child length for age Z score (LAZ)) by pathogen and EED biomarker status and explore 
rules for the optimal allocation of N+WSH, WSH, and N interventions in resource-constrained 
settings.  

Methods 

Study design, participants, and interventions 
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This analysis involves data from a substudy of the WASH Benefits Bangladesh randomized 
controlled trial. The trial randomized pregnant mothers and their children to receive one of six 
interventions – water treatment, sanitation, handwashing, nutrition (N), combined water 
treatment, sanitation and handwashing (WSH) and combined nutrition plus WSH (N+WSH), or 
control [11]. In a substudy focused on evaluation of EED, investigators assessed additional 
biomarker data in a subset of children in four of the study arms – N, WSH, N+WSH, and control 
(with an allocation ratio of 1:1:1:1) [24]. 

Intervention promoters, who were residents of the study area, visited participants to promote 
intervention behaviors at the level of the compound (cluster of nearby houses). Each promoter 
received at least five days of training prior to visiting compounds, and received periodic 
refresher courses throughout the intervention period.  The behavioral components of these 
interventions included treating drinking water for index households, which included children less 
than 3 years of age (water), using latrines and child potty in addition to removing animal feces 
from the compound (sanitation), washing hands with soap before preparing food and after 
defecating or contacting child feces (hygiene), and practicing age-appropriate nutrition practices 
from pregnancy up until two years of age and using small-quantity lipid-based nutrient 
supplements for children six months to two years of age (nutrition) [41]. These promoters used 
various strategies to promote intervention behaviors. For example, promoters promoted the 
hygiene intervention (handwashing) by framing it as a nurturing intervention that was facilitated 
by the handwashing station and soap provided by the intervention [41,42].  Promoters were 
instructed to visit study compounds at least once per week for the first six months, and then once 
every two weeks for the following 1.5 years.  The intervention hardware and consumables were 
provided free of charge and replenished by promoters as needed throughout the study period 
(additional details on interventions can be found in Supplemental Material 1). 

Investigators followed the cohort of children for approximately 2.5 years after birth. It was not 
feasible to retain the geographic matching of the parent trial in this subset due to logistical 
challenges regarding specimen collection and transportation. The trial was conducted in 
contiguous rural subdistricts in Gazipur, Mymensingh, Tangail and Kishoreganj districts of 
Bangladesh. The trial enrolled mothers in their second trimester of pregnancy (additional 
information on recruitment and eligibility can be found in Supplemental Material 2) [41]. 

Covariates: 

Although randomization of participants led to a balanced distribution of covariates between 
study arms, this analysis conditioned on post-randomization biomarker values, leading to the 
possibility of collider stratification bias. In addition to the biomarkers and pathogens included in 
the treatment rule, our analyses adjusted for child sex, birth order, number of children under 18 
years of age in the household, number of individuals in the compound (group of nearby houses), 
household wall material, household wealth (first principal component of a principal components 
analysis incorporating household assets), maternal age and height, age in days at urine and stool 
assessments, month of urine and stool assessments, and age at anthropometry assessment. We 
considered and tested potential confounders using super learner and cross-validated targeted 
maximum likelihood estimation. The full list of baseline and time-varying covariates can be 
found in Supplemental Material 3. 

Biomarkers:  

EED Biomarkers  
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The EED measures included in this study were fecal alpha-1-antitrypsin, myeloperoxidase, and 
REG1B, which we measured at median ages 3 months and 14 months. These measures are 
markers of intestinal permeability (alpha-1-antitrypsin), inflammation (myeloperoxidase), and 
intestinal repair (REG1B) [43]. We excluded EED biomarkers (neopterin, lactulose, and 
mannitol) that were associated with the interventions of interest in a previous analysis of this 
sample and therefore were potential mediators of the exposure-outcome relationship [24]. 

To reduce inter-laboratory variation, all fecal samples were assayed by the same research team 
member at the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) 
laboratory. Laboratory methods are included in Supplemental Material 4 and were published 
previously [14,24]. 

Pathogens  

We included six pathogens in our final analysis: Campylobacter jejuni/coli, enteroaggregative 
Escherichia coli (EAEC), any enterotoxigenic E. coli (ETEC), atypical enteropathogenic E. coli 
(aEPEC), any enteropathogenic E. coli (EPEC, including both typical or atypical), and 
Campylobacter spp. (which includes C. jejuni, C. coli, and other Campylobacter species). 
Relative concentrations of pathogens were assessed at 14 months in feces using quantitative 
polymerase chain reaction (qPCR) via TaqMan array card [14,44,45]. We excluded three 
pathogens (norovirus, sapovirus, and adenovirus 40/41) that were reduced by the interventions of 
interest in a previous analysis of this sample and therefore were potential mediators of the 
exposure-outcome relationship [14]. We excluded an additional 25 pathogens due to high 
missingness or near-zero variance. We quantified pathogens via quantification cycle, where one 
unit represented twice the pathogen quantity, and the analytical limit of detection was at 
quantification cycle 35 [46]. We standardized these measures using the efficiency of per-sample 
extraction/amplification. The full list of pathogens is included in Supplemental Material 5. 

A single infection event is unlikely to elicit growth impairment in itself, but repeated exposure to 
pathogens and chronic disruptions such as EED are associated with delayed growth [47–49]. 
This analysis assumes that the detection of pathogens and EED biomarkers at 14 months is a 
proxy for chronic exposure to these factors throughout early childhood. 

Analyzed biomarkers 

Our treatment rule included the pathogens Campylobacter jejuni/coli, EAEC, ETEC, aEPEC, 
EPEC, and Campylobacter spp., as well as EED biomarkers regenerating gene 1β (REG1B), 
myeloperoxidase, and alpha-1-antitrypsin.  

Outcomes:  

The growth outcome was length for age Z-score (LAZ) assessed at Year 2 (median age 28 
months). Following standard protocols for anthropometric outcomes measurement [50,51], pairs 
of trained anthropometrists measured child growth (accurate to 0.1 cm) in triplicate to calculate 
median growth using 2006 WHO child growth standards [11]. We measured recumbent length 
when child was age < 24 months. We measured standing height when child was age > 24 
months. 

Analyses:  

These analyses assessed the conditional average treatment effect (CATE) and mean under the 
optimal individualized treatment regime using a targeted learning approach [34]. A static 
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treatment approach as used in the WASH Benefits primary analysis, in which treatment is 
randomly assigned, aims to assess the average effect of the interventions in the entire study 
population (i.e. interventions are not targeted based on individual covariate information) [11,34]. 
In contrast, an optimal treatment regime analysis assesses the impact of the intervention given 
(or, conditional on) individual covariate status [11,34]. In these analyses, the individual covariate 
information was child pathogen and EED biomarker status.  

We used cross-validated targeted maximum likelihood estimation, which we fit using Super 
Learner ensemble machine learning in order to estimate the optimal individualized treatment 
regime and the outcome as the mean under the optimal individualized treatment [31]. First, we 
estimated the outcome regression function and propensity score (treatment mechanism) using 
Super Learner. Super Learner is an ensemble machine learning approach that creates a convex 
combination of candidate algorithms in order to maximize model fit [52,53]. Super Learner is 
grounded in statistical optimality theory, and guarantees that it will perform at least as well as the 
best candidate algorithm with a sufficiently large sample size. In our learner list for the treatment 
mechanism, we included the least absolute shrinkage and selection operator (LASSO) penalized 
regressions, random forests, the simple mean, and generalized linear models, and we used non-
negative least squares to construct the final ensemble (the meta-learner) [34].  

Next, we used the doubly-robust augmented inverse probability weighting to transform the 
outcome to a random variable that has as the CATE (i.e., the treatment effect specific to each 
individual’s set of covariates) as its mean and regressed this transformed outcome to assess 
treatment heterogeneity using targeted maximum likelihood estimation via the R package 
“tmle3mopttx” [54]. Targeted maximum likelihood estimation reduces bias and yields an 
interpretable measure of association (in this case, the average treatment effect) [34,55–58]. 
Specifically, we estimated the function of the individualized outcome by regressing this contrast 
on biomarker status using Super Learner with a non-negative least squares loss function based on 
the Lawson-Hanson algorithm. As these analyses assess the impact of the randomized 
intervention (the treatment mechanism), the doubly-robust nature of this estimator will ensure 
asymptotically consistent estimation of the CATE even if the outcome regression is not 
consistently estimated [34].  

Finally, we use the estimate of the CATE function to derive an optimal individualized treatment 
rule where we would treat a maximum of 50% of individuals with the greatest CATE. Though 
providing optimal treatment to all children is desirable, in a resource constrained setting, one 
might also be interested to limit the intervention to the children most likely to benefit from the 
intervention (i.e., have the greatest CATE). In order to assess the impact of the individualized 
treatment regime in resource-constrained settings (i.e., preventing all children from being 
allocated to intervention), we restricted the maximum allocation to treatment in each binary 
(treatment to control) contrast to be no more than 50%, which is approximately equivalent to the 
original trial’s allocation ratio (1:1:1:1). If less than 50% of individuals in a single binary 
(treatment to control) contrast have a positive CATE (beneficial effect of treatment), then the 
optimal treatment rule will assign all individuals with a positive CATE to intervention. If more 
than 50% of individuals in a single contrast have a positive CATE, the optimal treatment rule 
will only assign the 50% of individuals with the greatest CATE to intervention.  

In order to assess the role of each biomarker or pathogen in the optimal treatment rule, we 
evaluated Pearson’s correlation between each of these covariates and the CATE. In order to 
contextualize the magnitude of these relationships, we estimated the difference in subgroup 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 26, 2024. ; https://doi.org/10.1101/2024.03.21.24304684doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.21.24304684
http://creativecommons.org/licenses/by/4.0/


treatment effect between children with high (detection for pathogens, above median for EED 
biomarkers) versus low (non-detection for pathogens, below median for EED biomarkers) 
pathogen and EED biomarker status. While the optimal treatment rule flexibly incorporated 
continuous values of these biomarkers, we used binary transformations of these values to assess 
variable importance in order to improve interpretability. Furthermore, while the optimal 
treatment rule assessed the combined role of these biomarkers, our assessments of variable 
importance assessed each biomarker individually to improve interpretability. The difference 
between these two subgroup effects is hereafter referred to as “treatment effect difference.”  

Covariate screening 

We screened all covariates for missingness, excluding all covariates with missingness greater 
than 30% and median-imputing all other missing covariate data. We only included observations 
for which the primary outcome, LAZ at 28 months, was observed. We also excluded variables 
with near zero variance, which we defined as covariates with a frequency ratio (ratio of most 
frequent value to second most frequent value) greater than 2 and a percent of unique values less 
than 20%, using the R package “caret” (version 6.0-92) [59]. The analysis plan was publicly pre-
registered on Open Science Framework, and all data and analysis scripts are publicly available 
(https://osf.io/cg8dv/). EED markers assessed at 3 months were excluded due to high 
missingness (>30%). The full list of excluded covariates and reasons for exclusion are defined in 
Supplemental Material 6. 

Ethics 

The primary caregiver of each child provided written informed consent prior to enrollment. 
Human subjects protection committees at icddr,b, the University of California, Berkeley, and 
Stanford University approved the study protocols. The parent trial was registered at 
ClinicalTrials.gov (NCT01590095) and a safety monitoring committee convened by icddr,b 
oversaw the study. 

Results 

We analyzed data from 1,522 children, and our analytic sample had a median LAZ of -1.56 at 
Year 2 (median age 28 months; Table 1).  

Relationships between pathogens or biomarkers and the conditional average treatment effect  

In order to identify subgroups of children (based on EED biomarker and pathogen values) with 
the largest treatment effect, we analyzed the treatment effect comparing children with high 
(detection for pathogens, above median for EED biomarkers) versus low (non-detection for 
pathogens, below median for EED biomarkers) values of each pathogen or biomarker.  

We found that the following covariates were associated with a greater impact of N+WSH 
intervention on growth under the optimal treatment rule: ETEC (correlation 0.45, treatment 
effect difference (comparing the treatment among children with high ETEC to children with low 
ETEC) 0.0019 LAZ), Campylobacter jejuni/coli (correlation 0.37, treatment effect difference 
0.0016 LAZ), Campylobacter spp. (correlation 0.33, treatment effect difference 0.0011 LAZ), 
REG1B (correlation 0.20, treatment effect difference 0.0005 LAZ), and myeloperoxidase 
(correlation 0.15, treatment effect difference 0.0007 LAZ) (Table 2). The following covariates 
were associated with a lower impact of N+WSH intervention: aEPEC (correlation -0.41, 
treatment effect difference -0.0018 LAZ), EAEC (correlation -0.39, treatment effect difference -
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0.0015 LAZ), alpha-1-antitrypsin (correlation -0.38, treatment effect difference -0.0013 LAZ), 
and EPEC (correlation -0.22, treatment effect difference -0.0009 LAZ).  

The following EED biomarkers and pathogens were associated with greater WSH impact on 
growth under the optimal treatment rule: myeloperoxidase (correlation 1.00, treatment effect 
difference 0.1032 LAZ), alpha-1-antitrypsin (correlation 0.26, treatment effect difference 0.0259 
LAZ), REG1B (correlation 0.17, treatment effect difference 0.0105 LAZ), Campylobacter 
jejuni/coli (correlation 0.15, treatment effect difference 0.0143), Campylobacter spp. (correlation 
0.13, treatment effect difference 0.0119 LAZ), EPEC (correlation 0.11, treatment effect 
difference 0.014 LAZ), and aEPEC (correlation 0.08, treatment effect difference 0.0099 LAZ) 
(Table 3). No EED biomarkers or pathogens were associated with lower WSH treatment effect.  

The following EED biomarkers and pathogens were associated with greater impact of N on 
growth under the optimal treatment rule: Campylobacter spp. (correlation 0.17, treatment effect 
difference 0.0255 LAZ), Campylobacter jejuni/coli (correlation 0.15, treatment effect difference 
0.0269 LAZ), myeloperoxidase (correlation 0.06, treatment effect difference 0.0037 LAZ), and 
ETEC (correlation 0.05, treatment effect difference 0.0098 LAZ) (Table 4). EAEC (correlation -
0.07, treatment effect difference -0.0181 LAZ) was associated with a lower impact of N 
intervention.  

Treatment allocation and predicted child growth 

When comparing the combined N+WSH (mean LAZ -1.62) and control (mean LAZ -1.54) arms 
(n = 756), an optimal treatment allocation assigned 331 children to N+WSH and 425 children to 
control (Table 5). The optimal treatment rule predicted greater child growth than the observed 
randomized intervention (observed LAZ -1.58 vs. optimal LAZ -1.35; optimal vs. observed 
growth difference 0.23 LAZ,  95% CI (0.05, 0.41)). 

In the contrast of WSH (mean LAZ -1.69) and control (mean LAZ -1.54) arms (n = 752), the 
optimal treatment rule assigned 9 children to receive WSH interventions and 743 children to 
receive control. The optimal treatment rule had greater predicted child growth than the observed 
randomized, static intervention (observed LAZ -1.62 vs. optimal LAZ -1.45; optimal vs. 
observed growth difference 0.17 LAZ,  95% CI (0.04, 0.3)). 

After comparing the nutrition (mean LAZ -1.53) and control (mean LAZ -1.54) arms (n = 726), 
the optimal treatment rule assigned 317 children to receive the intervention and 409 children to 
be in the control group. The optimal treatment rule did not have significantly greater child 
growth compared to the observed randomized intervention (observed LAZ -1.53 vs. optimal 
LAZ -1.47; optimal vs. observed growth difference 0.07 LAZ, 95% CI (-0.09, 0.22). 

Post-hoc analysis 

Campylobacter spp. and myeloperoxidase were associated with a greater treatment effect across 
all three interventions (Supplemental Materials 7-12). We conducted an exploratory evaluation 
of the combined impact of Campylobacter infection (any detection) and high myeloperoxidase 
(above median concentration) on the conditional treatment effect under the optimal treatment 
rule (Table 6). The difference in treatment effect, comparing those with both Campylobacter spp. 
infection and high myeloperoxidase to those with no Campylobacter spp. detection and below 
median myeloperoxidase, was 0.039 LAZ for N+WSH, 0.106 LAZ for WSH, and 0.022 LAZ for 
N. 
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Discussion 

Across all three interventions, myeloperoxidase, an EED biomarker of gut inflammation, and 
Campylobacter were associated with a greater treatment effect [43,60]. In other words, children 
with the greatest burden of Campylobacter infection and myeloperoxidase experienced the 
greatest benefit from the interventions, although the magnitude of these differences in treatment 
effects was typically small and not clinically significant. There was a greater N+WSH and WSH 
treatment effect among those with both Campylobacter infection and high myeloperoxidase than 
those with either factor alone. The correlation of both Campylobacter and myeloperoxidase 
biomarkers with the treatment effect indicates that these factors, implicated as a cause 
(Campylobacter) and a marker (myeloperoxidase) of EED, supports that EED may play a role in 
the interventions’ impact on growth [47]. These results are consistent with previous findings that 
young children with Campylobacter infection may face increased risk of growth impairment and 
are therefore a high-need group for intervention. A multi-site birth cohort study (MAL-ED) 
found that Campylobacter infection was highly prevalent and was associated with decreased 
child growth in the first two years of life [61,48]. Campylobacter infections are endemic in 
settings where poultry is raised near the household (which is common in low and middle income 
countries), and even asymptomatic infection is negatively associated with child growth 
[48,62,63]. Campylobacter alters the gut microbiota composition, disrupts the intestinal barrier, 
and can elicit chronic intestinal inflammation [64–69]. Across eight study sites in low-resource 
settings, MAL-ED found that breastfeeding, lack of access to WSH, and targeted antibiotic 
treatment were associated with Campylobacter infection [48]. In addition, these investigators 
found that Campylobacter infection was associated with increased intestinal permeability, 
intestinal inflammation, and systemic inflammation, which are key components of EED [48]. 

We found that myeloperoxidase, an EED marker of gut inflammation, was associated with a 
greater impact of N+WSH, WSH, and N interventions on child growth. That is to say, children 
with higher intestinal inflammation were most protected by the interventions. This is likely 
indicative of children whose household environments were the most contaminated and 
interventions reduced but did not eliminate environmental exposures, as gut inflammation 
remained high despite continued intervention delivery. Previous meta-analyses have found that 
inflammation and WSH conditions modify the effects of nutrient supplementation on 
micronutrient status and anemia [16,70]. Regarding WSH, our findings were consistent with 
MAL-ED’s findings that EED and inflammation likely mediated the relationship between 
infection and growth faltering [47]. In addition, MAL-ED investigators found that 
myeloperoxidase was associated with pathogen infection, and more specifically, that 
Campylobacter and myeloperoxidase were positively associated across all eight study sites [71].   

After comparing both WSH and combined N+WSH interventions to control, we found that an 
optimal treatment rule selected via cross-validation and based on EED and pathogen status led to 
greater expected mean child growth than the observed, randomized intervention. This indicates 
that pathogen and EED biomarker status may define, in part, which children are responsive to 
WSH and N+WSH interventions.  

There was a large disparity between the individual biomarker treatment effect differences (very 
small) and the overall shift in growth under the optimal treatment regime (moderate). The 
optimal treatment regime takes all of the factors into account, while the treatment effect 
difference only looks at biomarkers one at a time. Next, the treatment effect difference 
dichotomizes all of the biomarkers, while the optimal treatment regime incorporates their 
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continuous values in whatever way is most informative to the optimal treatment regime. The 
disparity between these values highlights how a flexible nonparametric approach such as 
Targeted Machine Learning can outperform parametric specification of subgroups. These 
findings highlight the potential for targeted learning methods to identify and explore treatment 
heterogeneity within a study and for optimal treatment regime analysis to estimate the effects of 
targeting treatments to children who would benefit the most when resource constraints prevent 
intervening on all children.  

These findings provide empirical support for the hypothesis that pathogen exposure and EED 
biomarkers are associated with growth faltering. Within rural Bangladesh, these effects were 
small, but they provide support for a biological mechanism. 

Strengths 

The rich data source of the WASH Benefits Bangladesh EED substudy is a major strength of this 
analysis. This data source included in utero randomized interventions that were continued for 
two years after birth and robust collection of enrollment covariates, EED biomarkers, pathogens, 
and growth outcomes across multiple timepoints. Furthermore, the statistical methods applied 
here allow us to flexibly assess relationships between multiple covariates, exposures, and 
outcomes while making minimal parametric assumptions. 

The analysis methods are a second major strength of this study. We used targeted maximum 
likelihood estimation, which is maximally efficient in finite samples and doubly-robust [32,33]. 
Assessment of optimal individualized treatment effects allows us to evaluate the relationships 
between pathogen exposure, EED, and intervention effects without making parametric 
assumptions [34–40]. Given the complex relationships between these biomarker and pathogen 
data, these targeted learning methods allow flexible modeling of complex relationships without 
requiring parametric assumptions regarding relationships between interventions, biomarkers, 
pathogens, and child growth that would inevitably be violated.  

Limitations 

One limitation of this study arises from using post-intervention biomarkers, as no baseline EED 
biomarkers or pathogens were measured because infants were in utero at the time of 
randomization. Conditioning on these post-intervention nodes potentially introduces 
confounding and bias. We accounted for this possible confounding by adjusting for additional 
baseline covariate information related to family health and socioeconomic status and by 
excluding pathogens and EED biomarkers that were associated with the interventions in previous 
analyses of this sample (i.e., potential mediators or colliders), although residual confounding or 
bias may be present. However, the identification of these relationships remains useful for 
generating hypotheses about the causes of N+WSH, WSH, and N treatment heterogeneity. In the 
future, we hope to analyze biological samples that were collected from these children at a 
younger age (4-8 months) in order further evaluate these relationships. Furthermore, future 
studies should evaluate these relationships by assessing biomarker and pathogen status prior to 
randomization. In addition, the limited external validity of randomized controlled trials is a 
limitation of these findings, as these conclusions may not be generalizable to populations outside 
these communities. The external validity of these findings is also limited due to the trial context, 
in which participating households received extensive follow-up and monitoring and may not 
reflect the experience of these interventions in the target population’s context.  
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The small or null overall effects of the study interventions is another limitation. In the presence 
of a null overall effect, in order to detect subpopulations that have a significant effect, there must 
be equivalent populations with a deleterious effect or much larger populations with a null effect. 
In contrast, optimal treatment regime analysis in a population with a greater treatment effect will 
have much greater power to detect subpopulations of interest. In other words, optimal treatment 
regime analyses have the most power to detect treatment heterogeneity in study settings where 
there is a large overall treatment effect, but this sample had a null overall treatment effect. 
Furthermore, the subsample analyzed here did not retain the same growth characteristics as the 
total trial population. While the trial reported that N and N+WSH interventions led to a modest 
improvement in growth [11], these effects were not seen for this subsample. This may be the 
reason that more than half of the children were assigned to control rather than the interventions 
in the optimal treatment regime, which should be taken as a finite sample limitation of a trial 
with null effects on children within the small substudy. Follow up evaluation of these 
relationships in a separate population may provide insight on the replicability of these findings.  

Future directions 

These findings support the application and evaluation of interventions that aim to reduce 
exposure to pathogens, such as Campylobacter, as well as interventions that seek to reduce 
markers of inflammation, such as myeloperoxidase. Evaluations of these interventions should 
evaluate their direct impacts on these biomarkers as well as their indirect impacts on child 
growth.  

We found that the interventions had the greatest effect in children with a high burden of 
pathogens and EED biomarkers. Future evaluations that consistently identify biomarkers 
associated with lower treatment effect (i.e., resistance to treatment) could indicate the need for 
co-interventions. For example, certain types of persistent bacterial infection (e.g., 
Mycobacterium tuberculosis or Salmonella typhi) may not be responsive to WSH interventions, 
and may require additional medical intervention [72–74]. In these cases, co-interventions, such 
as antibiotic treatment, may supplement interventions in order to ameliorate these conditions and 
improve N+WSH, WSH, or N intervention effectiveness [72].  

We focused our interpretation on Campylobacter and myeloperoxidase, which demonstrated 
consistent correlations (in terms of direction) with the CATE across interventions. Our analysis 
of individual biomarkers’ and pathogens’ correlations with the conditional treatment effect 
provided some evidence of effect heterogeneity being associated with factors beyond 
Campylobacter and myeloperoxidase, although the lack of consistency of these observations 
across similar interventions (e.g., N+WSH versus WSH) led us to believe that these relationships 
may be spurious. On the other hand, it is plausible that these unique correlations across similar 
biomarkers point to unique actions of related covariates or unique mechanisms of combined 
versus individual interventions, respectively. Future studies could incorporate cluster analysis 
methods to assess the combined role of related biomarkers and pathogens on treatment 
effectiveness. 

Conclusion 

The cumulative results here indicate that EED and pathogens may be related to N+WSH, WSH, 
and N interventions’ impact on child growth. In particular, we found that Campylobacter 
infection and high myeloperoxidase were associated with a greater effect of N+WSH (treatment 
effect difference 0.039 LAZ), WSH (treatment effect difference 0.106 LAZ), and N (treatment 
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effect difference 0.022 LAZ) interventions on child LAZ at 28 months. These findings are 
consistent with the observational results of the MAL-ED study [47,48,75]. This information 
regarding the relationships between pathogens, EED biomarkers, and treatment effectiveness 
highlights biological mechanisms that may indicate an individual’s ability to respond to 
N+WSH, WSH, and N interventions. These results may help distinguish what defines a 
responsive versus nonresponsive individual to these interventions and should motivate future 
etiological research that seeks to estimate the causal impact of EED and pathogen burden on 
intervention effectiveness.  
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Table 1. Descriptive statistics of sample population. 

   

n (%) or median (IQR) 

Child 

 

Female 748 (49%) 

 

Anthropometry (14 months, Year 1) Length-for-age z-score -1.41 (-2.06, -0.74) 

  

Weight-for-age z-score -1.31 (-2.01, -0.63) 

  

Weight-for-length z-score -0.89 (-1.55, -0.21) 

  

Head circumference-for-age z-score -1.78 (-2.34, -1.12) 

 

Anthropometry (28 months, Year 2) Length-for-age z-score -1.56 (-2.27, -0.94) 

  

Weight-for-age z-score -1.58 (-2.2, -0.93) 

  

Weight-for-length z-score -1.03 (-1.62, -0.38) 

  

Head circumference-for-age z-score -1.81 (-2.39, -1.2) 

 

Diarrhea (14 months, Year 1) Caregiver-reported 7-day recall 192 (13%) 

 

Diarrhea (28 months, Year 2) Caregiver-reported 7-day recall 114 (7%) 

Mother 
 

Age (years) 23 (20, 27) 

 

Anthropometry at enrollment Height (cm) 150.28 (146.81, 154.15) 

 

Education Schooling completed (years) 7 (4, 9) 

 

Depression at Year 1 CESD-R score 9 (6, 16) 

 

Depression at Year 2 CESD-R score 10 (5, 17) 

 

Perceived stress at Year 2 Perceived Stress Scale score 14 (10, 18) 

 

Intimate partner violence Any lifetime exposure 835 (57%) 

IQR: Interquartile range; CESD-R: Center for Epidemiologic Studies Depression Revised scale. 
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Table 2. Biomarker and Pathogen Correlation with NWSH Conditional 

Average Treatment effect 

Biomarker or pathogen Correlation 

Treatment effect (LAZ 
difference) at non-detection 
(pathogen) or below median 
(EED biomarker) 

Treatment effect (LAZ 
difference) at detection 
(pathogen) or above 
median (EED biomarker) 

Difference in Treatment 
effect (95% CI) 

Any Enterotoxigenic 
Escherichia coli 

0.45 -0.0006 0.0013 0.0019 (0.0018,0.0021) 

Campylobacter 
jejuni/coli 

0.37 -0.0004 0.0013 0.0016 (0.0015,0.0018) 

Campylobacter spp. 0.33 -0.0004 0.0008 0.0011 (0.001,0.0013) 

REG 1B 0.20 -0.0003 0.0003 5e-04 (4e-04,7e-04) 

Myeloperoxidase 0.15 -0.0003 0.0004 7e-04 (5e-04,8e-04) 

Any Enteropathogenic 
Escherichia coli 

-0.22 0.0006 -0.0003 -9e-04 (-0.001,-7e-04) 

Alpha-1-antitrypsin -0.38 0.0007 -0.0006 -0.0013 (-0.0014,-0.0011) 

Enteroaggregative 
Escherichia coli 

-0.39 0.0012 -0.0002 -0.0015 (-0.0016,-0.0013) 

Atypical 
enteropathogenic 
Escherichia coli 

-0.41 0.0006 -0.0011 -0.0018 (-0.0019,-0.0016) 

LAZ: Length for age Z-score; EED: Environmental enteric dysfunction; REG 1B: regenerating gene 1β. 
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Table 3. Biomarker and Pathogen Correlation with Conditional Average WSH 

Treatment effect 

Biomarker or pathogen Correlation 

Treatment effect (LAZ 
difference) at non-detection 
(pathogen) or below median 
(EED biomarker) 

Treatment effect (LAZ 
difference) at detection 
(pathogen) or above 
median (EED 
biomarker) 

Difference in Treatment 
effect (95% CI) 

Myeloperoxidase 1.00 -0.1973 -0.0941 0.1032 (0.0988,0.1075) 

Alpha-1-antitrypsin 0.26 -0.1586 -0.1328 0.0259 (0.0215,0.0302) 

REG 1B 0.17 -0.151 -0.1405 0.0105 (0.0062,0.0149) 

Campylobacter 
jejuni/coli 

0.15 -0.1486 -0.1343 0.0143 (0.0099,0.0186) 

Campylobacter spp. 0.13 -0.1494 -0.1375 0.0119 (0.0076,0.0163) 

Any Enteropathogenic 
Escherichia coli 

0.11 -0.1535 -0.1395 0.014 (0.0097,0.0183) 

Atypical 
enteropathogenic 
Escherichia coli 

0.08 -0.1483 -0.1384 0.0099 (0.0056,0.0142) 

Enteroaggregative 
Escherichia coli 

0.04 -0.1522 -0.1434 0.0088 (0.0045,0.0132) 

Any Enterotoxigenic 
Escherichia coli 

0.03 -0.1452 -0.1445 7e-04 (-0.0036,0.005) 

LAZ: Length for age Z-score; EED: Environmental enteric dysfunction; REG 1B: regenerating gene 1β. 
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Table 4. Biomarker and Pathogen Correlation with Nutrition Conditional 

Average Treatment Effect 

Biomarker or pathogen Correlation 

Treatment effect (LAZ 
difference) at non-detection 
(pathogen) or below median 
(EED biomarker) 

Treatment effect (LAZ 
difference) at detection 
(pathogen) or above 
median (EED 
biomarker) 

Difference in Treatment 
effect (95% CI) 

Campylobacter spp. 0.17 -0.008 0.0175 0.0255 (0.0195,0.0314) 

Campylobacter 
jejuni/coli 

0.15 -0.0049 0.0221 0.0269 (0.021,0.0329) 

Myeloperoxidase 0.06 0.0038 0.0075 0.0037 (-0.0023,0.0096) 

Any Enterotoxigenic 
Escherichia coli 

0.05 -0.0015 0.0083 0.0098 (0.0039,0.0158) 

REG 1B 0.04 -0.0046 0.016 0.0207 (0.0147,0.0266) 

Atypical 
enteropathogenic 
Escherichia coli 

-0.01 0.001 0.0026 0.0017 (-0.0043,0.0076) 

Any Enteropathogenic 
Escherichia coli 

-0.01 0.0053 -0.0008 -0.006 (-0.0119,-1e-04) 

Alpha-1-antitrypsin -0.05 0.0102 0.0007 -0.0095 (-0.0155,-0.0036) 

Enteroaggregative 
Escherichia coli 

-0.07 0.0157 -0.0024 -0.0181 (-0.024,-0.0122) 

LAZ: Length for age Z-score; EED: Environmental enteric dysfunction; REG 1B: regenerating gene 1β. 
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Table 5. Average child growth given optimized vs randomized treatment. 

Study arms n 

Observed 
growth in 
treatment arm 

Observed 
growth in 
control arm 

Optimal 
allocation 
ratio  
 (treatment: 
control) 

Overall 
observed 
child 
growth 

Optimized child 
growth 

Predicted growth 
difference 

N+WSH 
vs. control 

756 -1.62 -1.54 (331:425) -1.58 -1.35 ( -1.53 , -1.17 ) 0.23 ( 0.05 , 0.41 ) 

WSH vs. 
control 

752 -1.69 -1.54 (9:743) -1.62 -1.45 ( -1.58 , -1.32 ) 0.17 ( 0.04 , 0.3 ) 

Nutrition 
vs. control 

726 -1.53 -1.54 (317:409) -1.53 -1.47 ( -1.62 , -1.31 ) 0.07 ( -0.09 , 0.22 ) 

N+WSH: Combined nutrition, water, sanitation, and hygiene intervention; WSH: Water, sanitation, and hygiene intervention. 
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Table 6. Conditional average treatment effect given levels of both 

Campylobacter and myeloperoxidase at 14 months 

Treatment 
arm 

Treatment effect (LAZ difference) 
given Campylobacter non-detection 
and below median myeloperoxidase 

Treatment effect (LAZ difference) 
given Campylobacter detection and 
above median myeloperoxidase 

Difference in 
treatment 
effect (LAZ 
difference) 

Difference 95% 
CI 

N+WSH -0.0007 0.0011 0.0018 0.0017 , 0.002 

WSH -0.1981 -0.0917 0.1064 0.1021 , 0.1107 

Nutrition -0.0029 0.0187 0.0216 0.0157 , 0.0276 

 

N+WSH: Combined nutrition, water, sanitation, and hygiene intervention; WSH: Water, sanitation, and hygiene intervention; 

LAZ: Length for age Z-score 
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