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Abstract

Introduction: The application of machine learning (ML) techniques in classifi-
cation and prediction tasks has greatly advanced our comprehension of biological
systems. There is a notable shift in the trend towards integration methods that
specifically target the simultaneous analysis of multiple modes or types of data,
showcasing superior results compared to individual analyses. Despite the avail-
ability of diverse ML architectures for researchers interested in embracing a
multimodal approach, the current literature lacks a comprehensive taxonomy
that includes the pros and cons of these methods to guide the entire process.
Closing this gap is imperative, necessitating the creation of a robust framework.
This framework should not only categorise the diverse ML architectures suitable
for multimodal analysis but also offer insights into their respective advantages
and limitations. Additionally, such a framework can act as a guide for selecting
an appropriate workflow for multimodal analysis. This comprehensive taxon-
omy would furnish a clear guidance and aid in informed decision-making within
the progressively intricate realm of biomedical and clinical data analysis, and is
imperative for advancing personalised medicine.

Objective: The aims of the work are to comprehensively study and describe the

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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harmonisation processes that are performed and reported in the literature and
present a working guide that would enable planning and selecting an appropriate
integrative model.

Methods: A systematic review of publications that report the multimodal har-
monisation of biomedical and clinical data has been performed.

Results: We present harmonisation as a dual process of representation and inte-
gration, each with multiple methods and categories. The taxonomy of the various
representation and integration methods are classified into six broad categories
and detailed with the advantages, disadvantages and examples. A guide flowchart
that describes the step-by-step processes that are needed to adopt a multimodal
approach is also presented along with examples and references.

Conclusions: This review provides a thorough taxonomy of methods for harmon-
ising multimodal data and introduces a foundational 10-step guide for newcomers
to implement a multimodal workflow.

Keywords: multimodal integration, feature representation, data integration, deep
learning, digital health
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. 1 Introduction

> The growth of biological and healthcare data, in terms of volume, velocity and variety,
s has been exponential and driven by technological advances in electronics, communi-
4+ cation and infrastructure (Laney (2001); Dash et al. (2019)). Concurrently, there has
s been an increase in data analysis tools to understand and analyse the data. Progress
s in computational techniques, artificial intelligence (AI) and machine learning (ML)
7 methods have been identified to contribute towards the analysis and interpretation
s better than traditional analytical methods (Acosta et al. (2022); Li and Ngom (2015)).
0 Data generated in the context of biological systems can manifest in various forms
10 such as quantitative, qualitative or narrative; each of these has its subtypes, which
1 are collectively referred to as a ‘modality’. These diverse modalities can capture sev-
12 eral aspects of a biological system, such as nucleic acid and protein sequences (Neidle
13 (2008)), gene expression (Raghavachari and Garcia-Reyero (2018)) and the biomolec-
1 ular structure and its activity (Vergoten and Theophanides (2012)). Other modalities
15 include the epigenetic state and methylation information (Paro et al. (2021)) of the
16 genome, metabolites, and anatomic and phenotypic data.

17 Each data type has driven research towards elucidating the corresponding func-
18 tional aspects to understand the system. Numerous studies using a single data
19 modality have presented valuable additions to the literature in disease mapping, path-
2 way and network elucidation (Aburajab et al. (2023); Mansuri et al. (2023); Pang
2 et al. (2023)). However, a vast portion of the biological complexity still requires an
» explanation, which is an ongoing challenge for the research community.

2 Different modalities capture different aspects of the system. Thus, integrating them
2 provides a comprehensive multi-view understanding of both biological and clinical con-
»s  ditions (Li and Ngom (2015); Nie et al. (2007)). Combining multiple types of omics
»% data or a ‘multiomics’ approach to study biological systems has gained momentum
x lately due to their demonstrated superiority over single-omics approaches (Chen et al.
s (2021); Chen and Tyagi (2020); Baltrusaitis et al. (2018); Acosta et al. (2022); Sum-
2 maira et al. (2021)). Furthermore, healthcare data is integrated with omics datasets to
s reveal their interconnections, providing a comprehensive 360-degree view of an indi-
s vidual’s condition. (Schiano et al. (2020); Dargazanli et al. (2020)). Such studies have
» reported results with significant validation and reliability over independent analysis.
33 Thus, the integration of multiple modalities can reveal synergistic effects, where the
s combined information enhances the overall performance of the model beyond what
35 individual modalities can achieve.

36 Existing literature primarily focuses on the model architecture and merits of the
s general ML methods used for analysis (Li and Ngom (2015); Summaira et al. (2021);
s Sapoval et al. (2022)). However, a gap still persists in delineating between integrated
3 learning and co-learning (harmonisation). Harmonisation aims to elucidate the low-
w level relationship between features of different modalities (Baltrusaitis et al. (2018)).
o Often, articles incorporating ’integration’ as part of their pipeline do not necessarily
2 perform a harmonisation process, instead they focus on the correlation between indi-
s vidual data type analysis (Chen et al. (2021)). The effect of an analysis using multiple
«  modalities is not adequately captured by methods that do not harmonise the features.
s A co-learning set-up is distinct from an individual analysis since it necessitates fusion
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s of features. Published articles relay information to mitigate data challenges but lack
« information on the multimodal process (Mirza et al. (2019); Kline et al. (2022); Acosta
s et al. (2022); Zitnik et al. (2019)). A definitive explanation of the methods involved in
s a multimodal harmonisation approach is missing. The absence of adequate informa-
s tion impedes interested researchers from fully grasping the process and implementing
51 a workflow. In summary, this literature review addresses the aforementioned gap by
»» offering insights into data modalities, challenges encountered in data, the processes
53 involved in a multimodal setup, and a beginner’s guide to multimodal analysis.

« 2 Methods

Records Identified

metal\[/)[lézul;grthon Suggested Reviews
n =60 n=8
Additional articles
Selected identified from
n =40 ] Google Scholar
n=4
Additional articles identified Additional articles
through citations identified from
(collected using PubMed) ~ | Connected Papers
n=15 n=5

Fig. 1: Flowchart of literature screening. The blocks on the left indicate articles
searched for representation and integration methods. The blocks on the right describe
the targeted search for review articles on biomedical multimodal harmonisation.

55 This systematic review was performed based on the standards of the Preferred
ss  Reporting Items for Systematic Reviews and Meta-analyses (PRISMA 2020) statement
s»  (Page et al. (2021)).

58 Based on existing literature reviews published over the past decade, a general out-
so line was followed to select articles that mentioned multimodal learning techniques.
o An extensive search of various ML methods focused on biomedical data was initially
st gathered using the metapub (https://github.com/metapub/metapub) python module
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&2 based on the following keywords:

6 ‘Multimodal’, ‘Machine learning’, ‘Integrated learning’, ‘Multiomics’, ‘Genomics’,
e ‘Proteomics’, ‘Biomedical’, ‘Healthcare data’, ‘Biological network’, ‘Deep learning’,
o ‘Multitask learning’, ‘Data fusion’, ‘Representation’, ‘Interpretable model’, ‘Neural
6 network’.

67 The title and the abstract of the search results reported by the keywords using
e the python script was used to select papers for complete reading. A few suggested
e articles from co-authors on were used to initiate the search for reviews on biomedical
7 multimodal integration. Citations from suggested papers were manual searched using
n Google Scholar and PubMed. Connected Papers (https://www.connectedpapers.com)
= was used to identify related articles. We identified less than 10 articles that described
7z on the topic. Few papers were selected for reading on general multimodal integration
» methods. Figure 1 describes the count of articles.

7 The inclusion criteria for this review primarily focused on studies that incorporated
» multiple different types of biological and medical data towards a singular analysis
77 using machine learning algorithms. Reports that did not use biomedical datasets but
s employed a multimodal approach for data analysis were also included for review. The
7 exclusion criteria was marked by the absence of a multimodal approach only. However,
s studies that focused on representation methods of different data types were included
a1 for full-text reading. The last date of article search and selection was 20 October 2023.
8 The methods for selected articles were reviewed in detail and information on the
s data type, machine learning framework, model advantages, research gaps were col-
s lected. They have been classified into groups and presented in tabular format (Tables
ss 1, 4) and the results are discussed in following sections.

s 3 Results

e In the following sections, we integrate our findings regarding data types, techni-
s cal hurdles, and harmonisable methodologies gleaned from the literature we have
s examined.

o 3.1 Typical Study Designs in biological and clinical studies

o All data generated are usually based on a study or an objective that has a focused
o2 rationale. The richness of information in collected or generated data depends on its
e type, determining the range of possible analyses (Ranganathan and Aggarwal (2019)).
o4 A static study design acquires data as a ‘snapshot’, that is, collected at a point
os in time. Case series refer to static data collected from positive-group criteria within a
s population subgroup, while case-control studies include a negative dataset (controls)
o7 for comparison. On the other hand, cohort studies and randomised controlled trials
s sample data over a period of time, capturing the dynamic nature of a biological system,
o which allows for a realistic investigation. However, they are resource-intensive methods
w0 that must be maintained regularly, and constant follow-up with the subjects considered
w1 in the study is crucial.

102 Many efforts are being taken to enhance the data collection methods and acces-
03 sibility across various domains, such as in cancer ( The Cancer Genome Atlas,


https://www.connectedpapers.com
https://doi.org/10.1101/2024.03.21.24304655
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2024.03.21.24304655; this version posted March 22, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Data Modalities Data Representation Data Integration
! Unimodal Representation Unimodal Integration
£ L %
@ ercccroues 5
+ Matrices/Tensors w ) 4
- <4 +
] e 3 T + + +
§ = Special Representations . Mow om HOE X
& e T B e e O s
= % f— % Early Fusion Joint Fusion Late Fusion
©
2 Graph Grammar Auto- . .
g Networks based Encoders RES poualiicoraion
3 L ]
= Multimodal Representation = — pa N\
8 Joint A\ ™ < VAVAVAV
g @ - Multiple
E Probabilistic Ke mpe / Deep Neural
Coordinate {% Learning e Network
Legend | g lnstz?aafl;ies Features Representations Mgﬁo 7 Output /CZZ dr(;;

Fig. 2: An illustration briefly depicting the broad categories of data modalities and the
representation and integration methods used in a multimodal harmonisation analysis.
The representation methods are split into three groups based on the number and type
of datasets. The integration methods are split based on the type of fusion performed.
Made with BioRender.

e https://www.cancer.gov/ccg/) and preterm birth (Garbh-Ini). Current literature pre-
105 dominantly reports on results based on single, static datasets. Correlation studies use
s multiple datasets to support conclusions through overlapping results (Clarke et al.
w7 (2017)). Only a few methods take a complementary approach between modalities
s (Welch et al. (2017); Chen et al. (2021)).

w 3.2 Common data modalities studied in the literature

no  Data can be collected in forms such as text, numbers, and multimedia. Based on
w  the sources, they can be classified as ‘biological’ data and ‘health’ data (Dash et al.
uz (2019)). We refer to ‘biological data’ as information from high-throughput experiments
us  such as sequencing, expression profiling, microscopic imaging and the vast literature
ms  corpus for functional annotation. This also includes metadata related to samples,
us experimental design, assay protocols and technologies. ‘Health’ sources refer to data
ue primarily collected through healthcare providers in digital forms. This data contains
n7  an individual’s valuable health and medical history and is stored as time-stamped
us  electronic medical records (EMR). EMR data displays significant structural diversity
no  since it can be structured data, including vital signs and pathology measurements
120 organised in tabular formats, or presented as unstructured data, consisting of clinical
121 notes, images, and documents. Table 1 describes the different modalities that stem
122 from clinical and biomedical sources.
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v 3.2.1 Text Modality

122 Text as a modality comprises various types, encompassing narrative and sequence
125 forms of data. Sequence data stemming from biological macromolecules such as DNA,
12 RNA, and proteins describe and define the relationship between the genotype and the
127 phenotype of an organism. Differences in sequences among groups differing in demog-
s raphy or phenotype are represented as single nucleotide polymorphism (SNP) or small
129 insertions and deletions of DNA bases and are generated by genome-wide association
o studies (GWAS) (Uffelmann et al. (2021)). Information on motifs, interaction net-
1m works and annotations about biomolecules, drugs and diseases belong to this class.
12 Healthcare data, such as EMR, contain unstructured clinical notes and prescriptions
133 manually entered by medical practitioners, which are included in the text category of
1 datasets (Lima et al. (2019)).

135 3.2.2 Spectral and Signal Modality

13s  Spectral data, typically acquired through mass spectrometry experiments to study
137 protein molecules and metabolites, provides detailed insights into the structural com-
138 position, constitution and organisation of the molecules under investigation (Mansuri
1w et al. (2023); Mou et al. (2022)). ML analysis of spectral data involves features
1o representing three-dimensional conformations and spatial relationships of molecules,
w1 enabling classification based on functional groups and elements (Mou et al. (2022);
12 Sachdev and Gupta (2019)). Proteomics, examining proteins through expression, func-
13 tional relationships, and structural information, includes investigations into protein
s folding and structural orientations using methods such as NMR and X-ray crystal-
us  lography (Malet-Martino and Holzgrabe (2011)). Structural metabolomics stores the
s structural data collected from metabolites.

147 Healthcare data in spectral form includes time-dependent Electroencephalogram
s (EEG) and electrocardiogram (ECG) analysed with signal processing methods (Subha
1o et al. (2010); Abarbanel et al. (2009)). Audio data, such as voice notes, undergoes
10 analysis using appropriate methods after feature extraction (Camastra and Vinciarelli
s (2015)).

12 3.2.3 Numerical Modality

153 A numerical form of biological data can be from any quantifiable assay, broadly called
15« ‘omics’ data. Transcriptomics represents digital counts of identified expressed tran-
155 script molecules, available as a two-dimensional (2D) matrix of genes/transcripts and
156 samples. Similarly, proteomic, lipidomic and metabolomic counts data portray the
157 expression levels of proteins, lipids or metabolite molecules as a 2D data matrix. This
155 modal information allows understanding of individual differences regarding genetic
159 expression and linking related biological pathways. EMR readings document vital and
1o pathological parameters such as heart rate, weight, height, age, and blood pressure as
1en  numerical time-series data. Frequent time-stamped EMRs enable longitudinal analysis,
162 capturing changes in the recorded values over time (Haghverdi et al. (2016)).
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Type Data Source Features of Interest Reference
DNA, RNA and Protein  Sequence order and (Tyagi et al.
Text Sequence motifs (2008);
Andrikos et al.
(2022)
GWAS Data Genetic variants (Chang et al.
(2018)
Clinical Notes Correlated medical terms  (Banerjee et al.
and phrases (2019)
Spectral X-Ray crystallography, Structural composition (Mou et al.
and signal NMR, Mass Spec-  and identified functional — (2022)
troscopy groups, topology
Audio signals Speech to text patterns (Summaira
et al. (2021)
Biomolecular profiles Expression levels of (Zitnik et al.
(Lipids, biomolecules (2019)
Metabolites, Nucleic
acids, Proteins)
Numerical EMR (Vitals, Lab mea- Health factors, trends (Banerjee et al
surements) and trajectories (2019)
Interaction Networks Regulatory and Func- (Lee et al
(Diseases, drugs, genes, tional relationships (2020)
proteins)
Images EMR (CT, X-ray, Ultra- Patterns and localisa- (Zhao et al
8 sound) tions (2021)
Cell Imaging Patterns and localisa- (Schiano et al.

tions (2020)
Table 1: The four distinct modalities biological and clinical data investi-
gated in this study are listed and categorised based on their sources and the
features targeted for modelling.

s 3.2.4 Image Modality

1sa  This modality encompasses visual information, including images and videos. Videos
165 are also considered under this modality because each frame can be considered an image
s for processing but in a time-dependent manner (Camastra and Vinciarelli (2015)).
17 Microscopy and cell imaging data are often analysed for morphology studies, protein
168 localisation and DNA tagging (Fu and Rui (2017)). Manual image analysis methods
1o include segmentation tasks to identify regions of interest and cell morphology assess-
w  ment (Kan (2017)). Cell movement and tracking studies creating animated clips from
i multiple fluorescence-tagged cell images are a modality of this category. Additionally,
12 X-rays, CT and MRI images from EMRs supporting non-invasive diagnosis fall in this
w3 category.
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3.3 Common challenges associated with biomedical data

s Datasets require extensive pre-processing due to incompleteness and imperfections
ws before analysis (Lépez de Maturana et al. (2019)). Key challenges include high
17 dimensionality, heterogeneity, missing data, class imbalances, bias and accessibility.
178 Complex high-dimensional data, characterised by large features and file sizes,
w  Tequire extensive computational resources for understanding the variables (Stephens
o et al. (2015)). Addressing the ‘p>>n’ problem, considering the ratio of available sam-
w1 ples (n) to features (p), is crucial to prevent specific features from being overlooked in
12 small sample groups (Baltrusaitis et al. (2018); Stephens et al. (2015)).

183 Bias refers to a variety of imbalances found within a dataset and can lead to an
18« unfair interpretation of results. Bias can manifest in various forms, such as representa-
s tion bias or class imbalance, measurement bias (due to incorrect or unrelated values),
s aggregation bias (when models are applied to new datasets with a mutually exclusive
w7 relationship to training samples) and evaluation bias (when generic models are used
s as benchmarks for targeted datasets) (Suresh and Guttag (2021)). Comparative ana-
189 lytical methods utilise representative datasets, subsets of the population with samples
10 from distinct groups like case and control. It is crucial for groups to have samples in
11 a comparable and an equivalent number to understand the true differences.

102 Irregular clinical data collection processes lead to inconsistent data entries and
13 contribute to missing data. In datasets, all samples may not provide data for all
14 possible features, and the resulting matrix could be sparse in a few cases. Importantly,
15 & missing measurement may carry meaning and should be considered subjectively.

196 Heterogeneity refers to the variety that exists within and across modalities. Within
17 a modality, the data collected across variables can vary in terms of scale, distribution
s and recorded value, such as discrete, continuous, categories and intervals, due to non-
100 standardised procedures. For example, clinical and genomic data can not be directly
20 compared and analysed, requiring methods to address heterogeneity.

201 These challenges obstruct the potential in any analysis, but the problem exac-
22 erbates when multiple datasets are involved in a multimodal set-up (Zhang et al.
203 (2019)). Multimodal methods are affected by coherence between dataset sets (due to
2¢  heterogeneity and missing data), accessibility and computational resources (due to
205 high-dimensional datasets and bias).

206 Data preprocessing steps prepare a path to check, sort, and select data points so
207 that informed decisions can be taken to handle samples with anomalies and poor qual-
28 ity. The lack of data standardisation between multiple collection sites poses a challenge
20 for seamless data harmonisation (Ramakrishnaiah et al. (2023)) and requires specific
a0 preprocessing for different sources. While imputation methods partially handle missing
an data, they are not universal solutions, as approximations may not accurately reflect
a2 the system (Schafer (1997)). Hence, more data-driven approaches may be adopted in
a3 different scenarios (Ramakrishnaiah et al. (2023)). Large datasets can be converted
24 to latent values to reduce computational load. Representation methods (Section 3.5)
a5 effectively resolve these issues.

216 Biomedical and health data containing personal and sensitive information are
a7 restricted for global access, which limits the extent and scope of analysis. Implement-
a8 ing ethical and legal data practices, both nationally and internationally, is crucial for
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20 easing the data sharing process (Tyagi (2023)). These practices establish a structured
20 and transparent approach to handling data, creating an environment conducive to
21 sharing valuable information.

» 3.4 Multimodal Data Integration: a systematic investigation of
23 data formats and methodologies

24 Multimodal analytical methods aim to combine information from multiple modalities
25 towards one or many of the following goals: 1) Explain a biological phenomenon or
»s phenotype through overlapping results. 2) Account for and impute missing data in one
27 modality through another linked dataset/modality. 3) Condense the high-dimensional,
28 sparse and noisy data to a low-dimensional latent representation.

229 The fundamental difference between an unimodal and a multimodal analysis is the
20 number of different modalities used. The complete dataset can be directly fed into
an an ML architecture for an unimodal analysis, but a multimodal approach requires
222 the fusion of features from multiple datasets. The process of merging and modelling
23 of features can be classified under ‘representation’ and ‘integration’. The choice of
24 method varies depending on the task to be achieved and the dataset combinations.
235 Section 3.5 describes the different ways of feature representation, and section 3.6 briefs
236 about the fusion methods currently used with examples.

» 3.5 Data Representation

23 As discussed earlier, biomedical and health data is generated in many forms (Table
20 1). Data representation methods are crucial as they transform diverse data types
20 into machine-processable formats such as vectors, matrices, or tensors. Vectors are
. one-dimensional representations of numerical values, while matrices and tensors hold
a2 data in 2-dimensional and multidimensional scales. These methods keep track of rela-
23 tionships between elements of each modality via predefined rules, facilitate feature
a4 extraction by using relevant information, and help in mapping data from one modality
25 to another. Importantly, the representation methods can be modified to suit the study
25 conducted (Sapoval et al. (2022)). In this context, we have classified three groups of
a7 data representation approaches.

25 3.5.1 Unimodal Data Representation

20 Unimodal data representation involves using a single mode or source of information
0 to represent features. Each modality qualifies as an unimodal representation when
1 independently transformed into a numerical format through an encoding or embedding
2 approach.

253 Encoding involves the conversion of original data into a numerical format, whereas
4 embedding refers to portraying the original data in a vector space that incorpo-
5 rates semantic information. The information from biological sequence and text can
6 be encoded by converting them to a numerical representation based on composition
7 (tallying frequency of words/monomers), K-mers (segmenting a biological sequence as
s a window of ‘k’ letters) and distribution (percentage of occurrence of each monomer
250 within user-defined ranges) of the sequence (Yang et al. (2020)). K-mers serve as the

10
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%0 counterparts to n-grams or tokens in NLP methods, and ongoing efforts are focused
s on developing more advanced, data-driven approaches to derive them from sequen-
2 tial data (Chen et al. (2023)). Many tools have been created to embed text data
%3 into a numerical representation, such as word2vec (Church (2017)) or doc2vec (Lau
»¢ and Baldwin (2016)), which preserves the order of information and local neighbouring
25 relationships.

266 Numerical data, obtained as-is or in other formats is commonly represented as
27 matrices for analysis purposes. Time-series information is represented as tensors, where
s the data is nested within matrices, extending in dimensions to include the tempo-
20 ral relationship (Zhu et al. (2021)). Similarly, image data is converted to a matrix
a0 representation by splitting a digital pixel into a numerical value between 0-255 for
on constituent colours. Further, spectral information from biological mass spectrometry
o studies generates coordinate data and is represented as a matrix.

273 Unimodal representation is the fundamental way to proceed with any ML analysis.
o The complete set of features obtained through representation methods can vary in
a5 size and dimension depending on the dataset. To alleviate the computational load and
a  resources during modelling, feature selection and feature reduction methods reduce the
a7 representation into a smaller latent space portraying the complete dataset, which is
as used for analysis. There are multiple feature reduction methods, such as the Principal
29 Component Analysis (PCA), Joint Non-negative Matrix Factorisation (Joint NMF)
20 and Autoencoders. Wrapper methods (forward, backwards, and stepwise selection),
s Filter methods (ANOVA, Pearson correlation, variance thresholding), and embedded
22 methods (Lasso, Ridge, Decision Tree) are all part of feature selection techniques
23 (Mirza et al. (2019)).

w4 3.5.2 Multimodal Representation

25 Multimodal data representation involves using multiple modes or sources of infor-
26 mation to represent data. A multimodal representation fuses multiple unimodal
27 representations together onto a shared feature space (joint) or co-represents the
s features from the different datasets (coordinate).

289 Each modality is condensed in a joint multimodal representation, and the defin-
20 ing features selected are concatenated to form a single collective representation. The
201 ratio of features from each modality contributing to the concatenated representation
202 is maintained uniformly. This prevents modalities with fewer features from being over-
23 whelmed by modalities with large dimensions. Zhao et al. describe the application
24 of joint representation in two publications using image data and clinical information
205 (Zhao et al. (2020, 2021)). They merge representations of image data (CT scans) and
26 clinical information in different ratios and predict lymph node (LN) metastasis (Zhao
207 et al. (2020)). In a subsequent publication focusing on the same diagnosis, they intro-
26 duce the 3M-CN architecture that utilises a ‘refine layer’ to predict LN metastasis
20 (Zhao et al. (2021)). The refine layer is a concatenation of key features identified from
s0  clinical information and processed 3D images.

301 Coordinated representations reduce and present the features within each modal-
s ity individually but link them towards the same meaning over a common coordinate
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33 space. Trajectory inference or pseudotemporal ordering is a method to classify the dif-
s0¢  ferent stages of the same cell type along an axis representing evolution (Saelens et al.
305 (2019)). Pseudotime ordering is an excellent example of coordinate representations,
w5 where data from single-cell experiments are projected onto an evolutionary axis (Sae-
sor lens et al. (2019)). The relationships established with identified patterns and domain
w8 knowledge help associate the features. MATCHER is a tool that has depicted impu-
s tation and correlation between modalities using a coordinate representation (Welch
s et al. (2017)). The manifold alignment method used in this tool achieved this task by
su  representing data in low dimensions called a manifold and aligning them in a common
sz space (alignment) (Wang and Mahadevan (2009)).

313 Multimodal representation methods empower ML architectures to investigate the
s interplay between features across diverse modalities. The entities in a biological sys-
a5 tem interact with each other in varied ways. Hence, the ratio of representations in
a6 the shared space as a parameter also affects the results of a multimodal analysis
s (Zhao et al. (2020)). Coordinate representations become more difficult than joint
sis  representations when there is no common ground to link the features.

a0 3.5.3 Special representations

20 Special approaches represent data non-conventionally through a generative or a rule-
a1 based approach. These are not mutually exclusive to the previous two categories but
32 process one or more source modalities differently to generate a representation. Gen-
3 erative representations learn the underlying patterns and structure of the data and
324 are capable of generating new instances of data that are similar to the examples they
s were trained on. On the other hand, rule-based representations leverage formal rules
s and semantics to describe the features within a dataset.

a7 Auto-Encoders (AE)

2 AE methods compress the entire dataset into a compact set of dimensions through an
2o ‘encoding’ process, eliminating any non-representative features. A ‘decoding’ process
30 then reconstructs the original data using the condensed representation, validating the
s reduced feature space. The decoding layers are generative of the relationships between
s all the variables within the data, and hence, this method is classified under a generative
33 representation approach.

33 Detlefsen et al. extensively explores AE-based representations, emphasising the
35 superior results achieved through the non-linear representation method in various tasks
a6 (Detlefsen et al. (2022)). Zhang et al. introduce OmiEmbed as a multitask framework,
a7 utilising the low-dimensional latent space generated by AEs for downstream tasks like
s cancer classification and survival prediction (Zhang et al. (2021)). AE representations
a0 also find applications in gene identification and cancer detection using expression
s data (Danaee et al. (2017)) and predicting carcinoma primary sites through DNA
s methylation data (Leitheiser et al. (2022)).

u2 The encoding process in AEs can incorporate any type of model, such as a fully-
us  connected neural network (FCNN) or convolutional neural network (CNN), to generate
s the latent space (Zhang et al. (2021)). Multiple modalities can also be combined at the
us input to generate a joint latent space (Huang et al. (2020)). This allows to generate
us different variants of the latent space and increases the choices available to work with.

12
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w7 The validation by the decoding process makes the latent space devoid of errors or data
us misrepresentation. However, the interpretability of AEs is generally low, and reducing
us  the dimensions of the latent layer further diminishes the model understanding.

350 Graph-based

s Graph representations portray relationships between different biological entities as a
2 network by considering all features as ‘nodes’, and the relationship is depicted using
3 ‘edges’. The edge values denote characteristics like similarity, interaction, and affinity
s between features based on the data. The representation of features as graphs is not
355 limited to local, adjacent points but links them globally with edges.

6 Intramodal networks describe relationships between identical molecule types (for
7 example protein-protein), while intermodal networks depict links between distinct
s types (Lee et al. (2020)). Clinical information about diseases and drugs can also be
0 represented as graphs with links depicting common pathologies and targets. Omics
0 modalities such as genome, lipidome, metabolome, proteome and transcriptome can
s be fused with environment and EMR modalities and represented as a Heterogeneous
sz Multi-layer Network (HMLN) (Himmelstein and Baranzini (2015)).

363 Specific ML architectures are devised to best use a graph network representa-
¢ tion. Graph Convolutional Networks (GCN) are used to learn local graph structures
s and scale up based on the number of interactions to represent complex relationships
s (Kipf and Welling (2016)). Graph Attention Networks (GAT) incorporate attention
7 mechanisms to overcome the structural overfitting for higher order GCNs (Velickovié
s et al. (2017)). Ghorbani et al. present MGCN architecture, which implements graph
30 representations to consolidate multilevel data (Ghorbani et al. (2019)).

370 Graphs can be generated using data from experimental protocols (e.g. omics),
sn theory and literature (e.g. disease networks) to represent qualitative and quantitative
sz information. Appropriate architectures (Section 3.6.2) assist to map and predict links
a3 between nodes using multilevel graph network data. The methods are highly sensitive
s to missing and unseen information but excel at discovering links within datasets.
a5 Sparse data matrices are easily translatable into graphs, as they efficiently condense
s large dimensional data to relevant nodes.

377 Grammar-based

s Grammar-based methods, or semantic methods, rely on a predetermined, ordered set
s of ‘vocabulary’ to generate a representation, usually for a text-based modality. High-
0 level patterns observed in the modality are identified and the complete dataset is
s represented based on the discovered patterns through a feature generation procedure.
2 Additionally, data can either be embedded based on the provided dataset or refer-
;3 enced from the complete knowledge bank. Dictionary-based embedding methods create
s embeddings for the complete corpus, and the available data is represented based on
s the closest relationship from the complete dictionary (Baltrusaitis et al. (2018)).

386 Tyagi et al. used grammar-based representations to model the syntactic and
sr semantic rule of RNA folding and used context-free grammars (CFG) to generate
;s sequences and parse their structures (Tyagi et al. (2008)). Andikos et al. created Kno-
0 tify (Andrikos et al. (2022)), a tool to predict RNA pseudoknots using CFG. Onokpasa
a0 et al. asserts that CFG representations improve compression ratios of RNA sequences
s and structures (Onokpasa et al. (2023)). Grammar-based representations have been

13
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used to embed the motif information from sequences with the domain knowledge to
depict the functionally connected regulatory regions (Soylu and Sefer (2023)).

Although grammar-based representations are powerful in capturing structured
information, they may face challenges in handling the inherent ambiguity and vari-
ability in real-world data. They require large amounts of data and computing power
to process and generate the rule-based representation (Baltrusaitis et al. (2018)).

In a few cases, ML methods do not differentiate between the representation steps
and model training. For instance, dense neural networks and deep-learning architec-
tures do not explicitly have a joint representation stage. They are directly processed
for learning the features of the data and training the model (Section 3.6.2).

Table 2: Representation methods detailed with their advantages and disadvantages.

Representation

Advantages

Disadvantages

Unimodal

Simple; Interpretable; Allows inter-
depencies

Cannot capture contextual infor-
mation; Susceptible to noise or
biases; High feature sizes

Multimodal Joint

Combines features to common
space; Controls modality size
effects; Allows interdependencies;
Interpretable; Reduces dimensions;

Requires  tailored architecture;
Relies on meaningful cross-modal
relationships;

Coordinate Aligns features to common space; Requires common axis for represen-
Controls modality size effects; tation; representation depends on
Allows interdependencies; Inter- quality and definition of common
pretable; Reduces dimensions; space
Imputes information; Captures
contextual Information
Special AEs Creates latent representations; Low interpretability; Computation-
Controls modality size effects; ally expensive;
Allows interdependecies; Reduces
dimensions; Low susceptibility to
noise
Graph Represents qualitative and quan- Requires domain-specific knowl-
titative; Interpretable; scales with edge for feature extraction; Com-
feature size; covers global informa- plex algorithms needed for irregu-
tion lar structures and dynamic graphs;
Susceptible to missing information
Grammar  Applies for text modality; Captures  Affected by ambiguity and complex

patterns and semantic information;
Reduces dimensions; Interpretable;

language constructs; Computa-
tionally expensive; Large datasets
needed for processing; Susceptible
to missing information
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w0 3.6 Fusion of Data Modalities: Integrating Multifaceted
104 Information

ws Data fusion methods harmonise the different data modalities available towards tasks
ws such as clustering, regression or classification, utilising the representations from meth-
w7 ods discussed above (Section 3.5). Different modalities can be harmonised using two
ws broad ML approaches: Unimodal learning and Multimodal learning.

w 3.6.1 Unimodal Learning

a0 Unimodal learning algorithms elicit information from individual modalities to pre-
an  dict an output. Here, three categories of unimodal integration exist based on how
a2 the features from different modalities are fused: (i) Early, (ii) Late, and (iii) Joint
a3 integration.

414 Early Fusion

ss  Early fusion methods describe ML architectures that concatenate feature representa-
s tions from multiple modalities at the input stage for modelling. The data is minimally
a7 processed, primarily to resolve heterogeneity, and samples are removed if imputation
as  is impossible for missing data. This method disregards prior selection bias and allows
ne us to investigate all features across modalities. It is time-consuming and computa-
a0 tionally expensive to process the complex combinations of all features from modalities
= (Dash et al. (2019)).

a2 The benefits of using early integration methods are discussed and reported by Bar-
w3 num et al. (Barnum et al. (2020)). They assert that using immediate fusion techniques
22 to merge modalities before feeding them into a model works better by integrating
s the lowest statistical correlations between input features. Banerjee et al. describe the
2 PERFORM algorithm, utilising EMR data represented as temporal vectors, to assess
w2 its prediction performance in diagnosing acute pulmonary embolism (PE) (Banerjee
ws et al. (2019)) with ElasticNet architecture (Zou and Hastie (2005)).

429 In the case of early fusion, class imbalance and differing sample sizes across modal-
a0 ities can affect the contribution of individual datasets, potentially biasing the analysis.
a1 Moreover, as the number of harmonised modalities increases in early fusion methods,
a2 the interpretability of the model drastically reduces. The limited coherence among
.3 data modalities restricts their combined usage, creating challenges in achieving a uni-
«  fied representation. For example, input data as a combination of metabolomics and
a5 chromatin accessibility data may hinder a unified representation. Chen et al. describe
s data agnostic and data specific methods, with choices of modalities that can be used
ar  for coherent analysis (Chen and Tyagi (2020)).

438 Late Fusion

a0 Late fusion methods analyse multiple modalities independently using a model that best
a0 fits its representations to a predicted output, and the outputs from each are aggregated
a1 towards a singular result or inference. Late integration is generally performed either
w2 by taking an aggregated average of the predicted probabilities (outputs) from each
a3 modality or passing all the predictions from each modality into a FCNN to process a
aas final output.
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us Wang et al. presented MOGONET as a tool to classify cancer subtypes using
ws  three modalities: mRNA expression, methylation and miRNA expression (Wang et al.
wr (2021)). A late fusion architecture was established using GCN to predict an initial
us  class label and an FCNN to generate a final class label prediction. Luo et al. presented
ao  a modified version of MOGONET, called GRAMINet with GATSs instead of GCNs
0 (Luo et al. (2023)). Both examples pass the same combination of modalities through
1 different architectures to learn a model for biomedical data classification. However,
ss2  this is not universally applicable since the late integration methods provide flexibility
»s3  in model selection for different modalities. Huang et al. investigated a multimodal
s approach to predict PE and reported the results on seven different architectures,
w5 one early, two joint and four late fusion architectures (Huang et al. (2020)). The
w6 early fusion methods had the highest sensitivity, while the late ElasticNet architecture
7 outperformed in all other metrics, such as accuracy, AUROC, specificity and positive
w3 predictive value.

450 Ensemble learning may be considered a variant of the late fusion model, where
wo the outputs of multiple ML models are combined towards a final decision (Zhou
w1 (2012)). The late fusion focuses on combining features or representations after individ-
w2 ual processing, whereas ensemble learning leverages the diversity of multiple models
w3 to improve overall predictive performance.

264 Late fusion methods do not directly allow for the interaction of features from
w5 multiple modalities. This enables to train each modality with independent, unique
ws models without any interference from other data types. As a result, concerns about
w7 different dataset sizes, heterogeneous measurements, and model compatibility vanish.
ws The ability of late fusion methods to capture all information within each modality
w0 in an equivalent manner makes it the widely reported harmonisation method in the
a0 literature.

an Joint Fusion

a2 Joint fusion methods endeavour to extract a representation of all initial modalities
a3z and model them together to a predicted output. Direct concatenation methods, often
s used in early fusion, are not possible between modalities that have different quantities
w5 and may require a heavy preprocessing step. In late integration, the interdependency
s between features across modalities is ignored. Joint integration methods provide an
a7 advantage through the interaction of features from different modalities in the training
as phase, irrespective of the observed heterogeneity. The heterogeneity is mitigated since
ao  the feature representation and selection procedures reduce and unify the information
a0 numerically.

481 Joint integration methods have been explored using modalities such as CT scans,
2 EMR, methylation, and expression data to achieve biomedical tasks of classification
3 towards prognosis and diagnosis (Zhao et al. (2020, 2021); Wang et al. (2021); Huang
e et al. (2020)). Zhao et al. investigated the effect of different ratios of EMR features
a5 during an integrated analysis of CT images using the DensePriNet architecture (Zhao
s et al. (2021)). Huang et al. propose a joint representation of CT images and clinical
w7 features in a ‘refine layer’ to predict an output that performs better in detecting pul-
e monary embolism in comparison to other models (Huang et al. (2020)). MATCHER
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o utilises a joint fusion method to interpolate instances based on the alignment of
w0 multiple modalities to the pseudotime scale (Welch et al. (2017)).

401 Joint methods are more complex than late fusion but easier to interpret than
w2 early fusion methods. Using representations rather than the raw features from each
w3 modality greatly reduces the computational load compared to early fusion. However,
sajoint harmonisation methods are not data agnostic and may require carefully curated
w5 model designs.

ws  3.6.2 Multimodal Learning or Co-learning

a7 Multimodal learning is designed to integrate and model the features from different
ws  modalities more comprehensively than unimodal learning. Joint fusions merge repre-
w9 sentations, but multimodal learning enables co-learning through a direct feed of all
s the features interacting at a higher, complex level. They can be classified into three
so  distinct co-learning methods: probabilistic, multiple kernel learning and deep neural
s networks.

503 Probabilistic Models

se  Probabilistic methods involve building models that capture the relationships and
ss  dependencies between different modalities using joint or conditional probabilities.
s These models are highly interpretable, which allows for the models to integrate expert
sor  knowledge in the fusion approach, granting us the ability to interpret the results better
se  than other methods. The random walk method uses probabilistic values to simulate a
s0  particle moving between nodes and layers in a network, establishing the relationships
s and links between the nodes (Baptista et al. (2022)).

511 MultiXRank module, published by Baptista et al., is an example of the probabilistic
s method of integration using a multiplex network of intramodal and intermodal inter-
si3 actions (protein-protein interactions, gene multiplex and disease monoplex networks)
su  (Baptista et al. (2022)). Pio-Lopez et al. describe a use case of the random walk with
sis restart architecture, wherein the method predicts long-distance gene-disease interac-
si6 tions using gene interaction network and disease similarity network data (Pio-Lopez
si7 et al. (2021))

518 Probabilistic methods are applicable to any combination of modalities as long as
si9 they form a multiplex network. They rely heavily on theoretical knowledge to bridge
s0 relationships between elements of multiple domains and hence can be applied to data
s2 from any domain with multiplex and bipartite networks (Pio-Lopez et al. (2021)).

522 Multiple Kernel Learning

53 Kernels are linear classifiers that divide the data linearly using lenient boundaries,
s and a combined multitude of them assist in classifying non-linear heterogeneous data
s (Gonen and Alpaydin (2011)). This method is implemented in support vector machines
s6 (SVM), a popular method to analyse complex data.

527 Liu et al. used SVM to model MRI datasets from multiple sources towards
s Alzheimer’s disease classification (Liu et al. (2013)). Lancktiet et al. predict the func-
s0 tions of yeast proteins using kernel-based learning (Lanckriet et al. (2003)). Multiple
s matrices describing the protein data were used in the algorithm, and results were
sa reported on the different combinations of kernels used to classify the proteins as per
s their functions (Lanckriet et al. (2003)).
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533 In MKL, different kernels are applied to each modality, and the combination of
s these kernels is learned to optimise the model’s overall performance. Kernels can
35 identify linear boundaries in datasets, making MKL a highly suitable method for clas-
s  sification tasks (Wilson et al. (2019)). Kernels can be combined in different ways (sum,
s product) to generate new kernels. A combination of multiple kernels accounts for a
s better classifier than using a single kernel (Hofmann et al. (2008)). This method is
s resistant to outliers but is susceptible to missing data (Wilson et al. (2019)).

540 Deep neural networks (DNNs)

s Deep neural integration methods are characterised by a substantial number of neu-
s2  rons and layers constituting neural networks with significant depth and complexity.
s DNNs utilise representations of different modalities to reduce the features and pass
s them through high-level, intricate architectures, which enable them to uncover hidden
ss information within the datasets.

546 DNNs are extensively used to understand data at a microscopic level, especially
se7 in the biomedical domain. EMR data can be modelled with omics modalities to
sss shed light on physical and phenotypic changes and their relationships across time.
sa9 Zhu et al. address an ML model to fuse and learn time-series data, with the use of
sso  Stacked Sparse Auto-Encoder (SSAE) and Long Short-Term Memory (LSTM) archi-
st tecture (Zhu et al. (2021)). Zhang et al. have reported about OmiEmbed, a multitask
2 deep-learning framework based on an autoencoder architecture (Zhang et al. (2021)).
53 AffinityNet, proposed by Ma et al., uses k-nearest neighbours (kNN) attention pooling
s+ where the cluster representations of the data is processed as a GAT (Ma and Zhang
55 (2019)). The method has asserted good performance for both labelled and unlabelled
56 datasets.

557 DNNs are computationally expensive to perform due to their dense and complex
s architecture. They model data at high degrees of non-linearity, but the process becomes
sso hard to decipher and elucidate. The meaning of data is lost when modelling and
ss0 remains a black box with very low interpretability.
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Table 3: A description of the integration methods and their advantages and disadvantages
for a multimodal set-up.

Integration Advantages Disadvantages
Unimodal  Early Performs lowest level of statistical =~ Computationally complex and
correlation between features; Disre-  expensive; Requires tailored mod-
gards selection bias els for effectively modelling and
interpreting features

Joint Mitigates heterogeneity during Requires tailored models for mod-
modelling; Reduced feature size elling joint representations
due to representations eases com-
putational load

Late Independent models for different Does not allow for feature interac-
modalities; Ignores representation  tion
bias

Multimodal Probabilistic Highly interpretable; Establishes Requires domain-specific multilayer

links between entities across differ- network information; Susceptible to
ent modalities missing data

Multiple Models based on overlapping Susceptible to missing data

kernel results; Applicable for non-linear

Learning relationships; Resistant to outliers;
Interpretable

DNNs Uncovers hidden information with-  Low interpretability; Computation-

out explicit rules; Utilises complex
architectures to understand the
non-linear relationships between
features and modalities

ally complex and expensive

« 4 Guidelines for Model Selection

s We propose ten recommendations for initiating a multimodal harmonisation analysis
ss  (Figure 3. Before starting out on an analysis, clearly articulate the objectives and aims
s of the study before initiating the harmonisation analysis. These objectives will guide
s subsequent data collection, representation, and model selection steps.

s 1. Tailor Study Design to Objectives: Tailor the study design to the defined
567 objectives, taking into consideration the scale of the study and available resources.
568 Ensure effective study design for sample identification and data collection that
569 aligns with the study’s goals.

s 2. Implement Optimised Experimental Protocols: The data is either already
571 available or generated through new experiments. Employ or select optimised experi-
572 mental protocols and assays for data collection, ensuring consistency and reliability.
573 These protocols form the foundation for subsequent analysis steps and contribute

574 to the quality of collected data.

s 3. Digitised Data and Global Sharing: Digitise collected data to facilitate analysis
576 and global data sharing through repositories and databanks. Adopting data and
577 metadata standards enhances data sharing and harmonisation. This step is crucial
578 for collaborative research efforts and ensures data accessibility for future studies.

19


https://doi.org/10.1101/2024.03.21.24304655
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.03.21.24304655; this version posted March 22, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Longitudinal Data Collection

i,

Single Point Data Collection

e €O
Study Control mm Case
Design 1’ .
7
Time Time
I ) -
e N =
Data T A.“A“
Collection = :_- HOAEAMEORY =4
Omics Methylation Sequences IE‘:{;?J&" EHR
o e
" 21 ass]
[omms 103 318 432 507}
Data ==
Preprocessing
Task
Selection

Classification ~ Regression  Structure Prediction

]
-I - = / \

Survival Analysis

ey A=

Clinical
Images

Cell Trajectory
Construction

Representation LR 77 0000
{11} - o
- - . . Graph Grammar Latent
Vectors/Matrices Joint Coordinate Network Embedding Space
@ m o
)4
Integration
. Multiple Deep
Early Joint Late Probabilistic Kernel Learning
-
‘_J_)
-
=, T
; (1}
[ ]

Models

Non-negative

Support
Vector Matrix
Machines Factorization

Decision Trees

Fully-connected ¢, NN GraphC
Neural Network Network

Mean Square Error

True | False | Accuracy Recall
Positive | Positive
Mean Average Error

F-score

Precision

Root Mean

Metrics False | True
Square Error

Negative| Negative|

Specificity o

3
Receiver Operating Curve

Global Local
Model-Agnostic Model-Agnostic

Confusion Matrix

Intrinsic Models

-
Decision Trees  Regression

Interpretation

g
-1 ' :
[-=
-
-
L~
%3{
4

Validation Model Performance

Datasets

v ? £ 5 ®
Benchmarki : w w Bl
e mgl BHe eMe EEEER | ACY [ 4
External Internal Public In-house

Fig. 3: A ten step guide flowchart that describes the process and order of execution
to perform a multimodal integration. The titles on the left of the timeline describe
the task order. The illustrations on the right are representative examples of different

methods under each category. Made with BioRender.
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s 4. Modality Identification and Data Preprocessing: Classify the collected data

580 into the broad modalities discussed here and systematically process the data indi-
581 vidually to create a working subset free of artefacts and low-quality elements. The
582 analysis and results can vary depending on the level of preprocessing done.

ss3 b. Task Selection: Task selection should be guided by the study’s goals, setting the
584 stage for subsequent processing and analysis. Choose tasks that reflect the aims
585 and are applicable to the dataset.

sss 6. Choose Feature Representation and Integration Methods Wisely: The
587 choice of representation or integration methods influences each other. Hence, select
588 them based on the data type, number of modalities, level of harmonisation, and
589 modality coherence. Recognise that a one-size-fits-all approach is impractical, and
590 tailored methods may be needed for different tasks.

s 7. Navigate Model Selection Complexity: Different ML models can be employed
502 for the same harmonisation set-up. Employ different models of varying complexity
503 to assess the data and evaluate their performance using appropriate metrics.

su 8. Model Performance Metrics: Select model performance metrics corresponding
505 to the task to compare and choose the optimal model. Provide an explanation of
596 the metrics used and their relevance to the task.

s 9. Prioritise Interpretable Models: Prioritise using interpretable models, either
508 intrinsic or through post-hoc interpretation. Especially in clinical settings, under-
599 standing how a model arrives at conclusions enhances trust and reliability.

oo 10. Validate and Benchmark Models: Validate models on different datasets and
601 sources to ensure robustness and generalizability. Benchmark models against state-
602 of-the-art approaches and external datasets to mitigate aggregation and evaluation
603 biases.

604 In the end, ensure that these recommendations are adapted to the specific context

es and goals of your multimodal harmonisation analysis.

s D Discussion

e07 Lack of Comprehensive Reviews:

608 The article points out a noticeable gap in the existing literature regarding
e comprehensive explanations of workflow and procedures for integrating biomedical
s multimodal data. Multiple reviews for machine learning strategies to process multi-
su  modal data are available, but there is a deficit of articles relating them to biological
e and clinical data. A predominant part of research literature presents results with infor-
sz  mation from a single modality. Studies that utilise different biological modalities often
eia interpret the results of independent analyses together. The concept of co-analysis,
eis or more aptly, ‘co-learning’ is missed. There is a lack of clarity on how to effec-
sis  tively integrate data from disparate sources at the lowest item level to extract holistic
a7 knowledge.

618 Diverse Taxonomies in Multimodal Analysis:

619 Biomedical multimodal data from the same sample set is now routinely available
60 from various research and development activities and healthcare. In the context of
e multimodal analysis, there is a distinction in the representation and integration steps
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62 compared to unimodal analysis. We highlight the various analysis methods and the
63 data types available under a limited set of taxonomic categorisation.

624 This classification of data types from biological and clinical sources allows one to
e identify methods that will suit the analysis of specific combinations and evaluate the
es advantages of each. We describe data harmonisation as a split of representation and
67 integration methods, each with six distinct categories. Most steps are similar to an
es unimodal analysis, and the distinction in a multimodal analysis arises in the represen-
60 tation and the integration steps. The representation methods proposed emphasise on
630 the features within the data. The various types of representation methods are key to
631 uniformly present the multimodal data prior to an analysis. The section on integration
62 focuses on the various methods to feed the data into ML architectures.

633 The article discusses this difference and provides insights into how to handle
e representation and integration methods for multimodal data effectively.

635 Framework and Model Suggestions for Biomedical Data Combinations:
636 There is a need for a structured framework or guideline to facilitate the harmoniza-

637 tion process for multimodal data. The article aims to address this gap by presenting
es  the first guideline framework towards a data harmonization process and providing a
69 complete workflow. The recommended procedure consists of 10 steps to plan through
s0 towards a multimodal analysis.

641 To assist those undertaking harmonisation for the first time, we present a guide
ez matrix showcasing examples from published literature, illustrating different combina-
&3 tions of data modalities. The combinations between the representation and integration
s« methods are presented as a non-exhaustive list in table 4. Existing studies show that
w5 different choices can yield different results when using the same datasets (Huang et al.
&5 (2020)). The diverse taxonomies outlined in this paper can assist in understanding the
er  significance of choosing an appropriate integration model for analysis, considering the
ss concern related to biomedical data and model challenges.

649 Future Focus for Harmonisable Models:

650 The article acknowledges the challenges related to data and model selection in
o1 the context of multimodal analysis. It suggests that diverse taxonomies outlined in
es2 the paper can assist in understanding the significance of choosing an appropriate
63 integration model for analysis, considering these challenges.

654 Data related challenges and model related challenges both arise when implementing
o5 a multimodal analysis. In addition to the challenges described in section 3.3 related to
ess biomedical data, concerns on data acquisition and maintenance also require attention.
ez The quality of biomedical data collected needs to be maintained, with appropriate
ess measures taken for de-identification of the data and global sharing. A vast majority
oo of the published literature on biomedical multimodal analysis focuses on the model
e0 metrics and parameters scores. However, due focus should be given to the model
61 interpretability as well. Multimodal analysis with complex architectures may yield
ez high performance scores, but they cannot be used to understand the biological and
63 clinical data if the models are not interpretable. Interpretable models are needed to
e« understand the process, especially with biomedical data to relate to further procedures,
65 such as diagnosis and intervention strategies .
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« 0 Conclusion:

67 The article highlights a significant gap in existing literature regarding the integra-
es tion of multimodal data, noting a lack of comprehensive explanations and holistic
o9 views in current research. While recognizing the transformative potential of multi-
e modal integration, it emphasizes the need for clarity on effectively integrating disparate
en data sources to extract comprehensive knowledge. Acknowledging challenges in data
ez and model selection, the article proposes using diverse taxonomies to aid integra-
ez tion model selection. Addressing the distinction between unimodal and multimodal
era analysis, the article provides insights into representation and integration methods for
e multimodal data. Furthermore, it underscores the necessity for a structured framework
e to facilitate the harmonization process, presenting the first guideline framework and
ez workflow. Additionally, it aims to assist researchers new to harmonization by offering
es  a guide matrix featuring examples from published literature, aiding in the selection of
69 appropriate integration models.
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