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A B S T R A C T

Background: The requirement for mechanical ventilation has increased in recent years. Patients in
the intensive care unit (ICU) who undergo mechanical ventilation often experience serious illness,
contributing to a high risk of mortality. Predicting mortality for mechanically ventilated ICU patients
helps physicians implement targeted treatments to mitigate risk.
Methods: We extracted medical information of patients with invasive mechanical ventilation during
ICU admission from the Medical Information Mart for Intensive Care III (MIMIC-III) dataset. This
information includes demographics, disease severity, diagnosis, and laboratory test results. Patients
who met the inclusion criteria were randomly divided into the training set (n=11,549, 70%), the test
set (n=2,475, 15%), and the validation set (n=2,475, 15%). The Synthetic Minority Over-sampling
Technique (SMOTE) was utilized to resolve the imbalanced dataset. After literature research, clinical
expertise and an ablation study, we selected 12 variables which is fewer than the 66 features in the best
existing literature. We proposed a deep learning model to predict the ICU mortality of mechanically
ventilated patients, and established 7 baseline machine learning (ML) models for comparison, including
K-nearest Neighbors (KNN), Logistic Regression, Decision Tree, Random Forest, Bagging, XGBoost,
and Support Vector Machine (SVM). Area under the Receiver Operating Characteristic Curve (AUROC)
was used as an evaluation metric for model performance.
Results: Using 16,499 mechanically ventilated patients from the MIMIC-III database, the Neural
Network model outperformed existing literature by 7.06%. It achieved an AUROC score of 0.879 (95%
Confidence Interval (CI) [0.861-0.896]), an accuracy of 0.859 on the test set, and was well-calibrated
with a Brier score of 0.0974, significantly exceeding previous best results.
Conclusions: The proposed model demonstrated an exceptional ability to predict ICU mortality among
mechanically ventilated patients. The SHAP analysis showed respiratory failure is a significant indicator
of mortality prediction compared to other related respiratory dysfunction diseases. We also incorporated
mechanical ventilation duration variable for the first time in our prediction model. We observed that
patients with higher mortality rates tended to have longer mechanical ventilation times. This highlights
the model’s potential in guiding clinical decisions by indicating that longer mechanical ventilation
may not necessarily enhance patient survival chances.

1. BACKGROUND
An intensive care unit (ICU) is designated for individuals

facing severe illnesses or injuries. Most of these patients re-
quire assistance from medical equipment, such as mechanical
ventilation, to sustain normal bodily functions, and they need
to be monitored continuously and intensively [1, 2, 3].

Mechanical ventilation is a crucial life-support method
for critically ill patients in the intensive care unit (ICU).
In the ICU, more than 25% of patients require mechanical
ventilation [4], and approximately 40% of ICU patients in
the United States receive invasive mechanical ventilation
at any given time [7]. Despite its importance in supporting
organ function [6], the use of invasive mechanical ventilation
is associated with a high risk of mortality and various
complications [5], resulting in notably high mortality rates
among patients requiring this intervention [8]. Furthermore,
the use of mechanical ventilation contributes to 12% of overall
hospital expenditures in the United States [7], highlighting
its significant financial impact.

With the growing life expectancies and extended survival
times of individuals with chronic conditions, the utilization
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of mechanical ventilation for artificial support is anticipated
to increase [9, 10]. Mechanically ventilated patients usually
experience acute respiratory failure or reduced lung function
due to an underlying condition, such as pneumonia, sepsis,
or heart disease [11, 12, 13]. Alternatively, the need for
respiratory assistance may arise from neurological disabili-
ties, disorders of consciousness, or fatigue after significant
surgical procedures [14].

In recent years, machine learning algorithms have been
widely employed to predict diverse critical health outcomes
[15, 16], more specifically those associated with mechanical
ventilation [17, 18]. Developing a mortality prediction model
for patients with mechanical ventilation may offer valuable
support to ICU physicians for timely alerts and informed
clinical judgment [19].

Neural network modeling has gained widespread recog-
nition for its effectiveness and it has become a powerful tool
for sophisticated modeling in various domains [20]. Neural
networks employ a multi-layered structure to autonomously
generate distinctive features. Each neuron in the network
computes a weighted sum of its inputs, which is then passed
through a nonlinear activation function. As a result, neural
networks often demonstrate an advantage over traditional
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machine learning models, such as Logistic Regression, Deci-
sion Trees, or SVM, in capturing nonlinearities, particularly
when a large amount of data is available [21, 22]. However,
the performance advantage of neural networks may vary
depending on the size of the dataset.

The primary aim of this research was to establish a deep
learning model designed for forecasting the mortality of
ICU patients undergoing mechanical ventilation, utilizing
comprehensive patient medical history data. Our model
achieved higher evaluation performance compared to the best
existing literature while using fewer predictive variables.The
inclusion of additional variables CHF and respiratory failure
significantly enhanced the results of our proposed model. The
predictive model was achieved based on guidelines of the
Transparent Reporting of Individual Prognostic or Diagnostic
Multivariate Predictive Model (TRIPOD) initiative.

2. METHODOLOGY
2.1. Data Source and Study Design

The Medical Information Mart for Intensive Care (MIMIC-
III) database, a comprehensive database containing rich
clinical patient data, was used in our study [23]. Specific
data, including patients’ clinical physiological parameters and
disease diagnosis reports, were extracted from the database
to cover specific patient cohorts. We selected the MIMIC-
III database because it provides a substantial amount of
real-world patient data. This data contributes to a more
comprehensive understanding of the research questions and
hypotheses. Following the completion of data extraction,
necessary data preprocessing was conducted to ensure data
quality and alignment with the requirements for model
training. The data from the MIMIC-III database provided a
crucial foundation for our study, offering robust support for
in-depth analysis and model construction, benefiting medical
institutions and researchers.

2.2. Patient extraction
Our study focused on adult patients who underwent inva-

sive mechanical ventilation during their ICU stay. Figure 1
shows the patient extraction process. First, we selected 61,532
patients with ICU stays records and extracted 28,861 patients
whose records indicated a ventilation duration greater than
0. Among those patients, we excluded patients under 18 or
over 90 years of age upon ICU admission, as well as patients
with missing records of relevant physiological indicators.
Initially, we encountered 51 rows with missing values in
five features (Minimum PaO2, Maximum PaCO2, Minimum
PaCO2, Minimum Lactate, Minimum BUN), representing
only 0.036% of our dataset (16,550 patients). Given that
this was less than 1% of the data, we removed these rows,
assuming it would not affect our results. However, to ensure
the robustness of our approach, we also imputed the missing
values using the mean of the respective features and found
that the model’s accuracy remained consistent, confirming
that either approach did not affect the model’s effectiveness.
In the end, we extracted a total 16,499 patients who met the
established inclusion criteria for the final analyses.

Figure 1: Flow diagram of the selection process of patients.

2.3. Statistical analysis between cohorts
The train and validation cohorts were compared using Chi-

Square tests and two-sided t-tests with a significance level
of P < 0.05 to help determine whether there are significant
differences between the training set and the validation set. Chi-
Square tests were utilized for comparing categorical variables,
while t-tests were employed for continuous variables.

2.4. Feature selection
We started with 65 variables based on literature research

and expert opinion. Initially, we excluded features with more
than 80% missing values. Then, we used the XGBoost model
to calculate the importance of the remaining features, exclud-
ing those with importance below the threshold.This process
left us with 14 key predictors that were chosen for their
high importance scores and documented impact on patient
outcomes. The subject IDs and ICU stay IDs serve as the
unique identifiers for patients and records of ICU admission,
respectively. All physiological test indicators and disease
diagnoses were referred to ICD-9 codes. Table 1 illustrates the
proposed 14 predictors, including: (i) age: patients’ age when
entering the ICU; (ii) respiratory dysfunction: all diseases
related to ’respiratory’ in the diagnostic table; (iii) SAPS
II: Simplified Acute Physiology Score II; (iv) maximum
hemoglobin: patients’ maximum value of blood hemoglobin
in the lab events records; (v) minimum lactate: patients’
minimum levels of lactate in the lab events records; (vi)
respiratory failure: patients diagnosed with respiratory failure;
(vii) minimum BUN: patients’ minimum levels of blood
urea nitrogen in the lab events records; (viii) CHF: patients
diagnosed with chronic heart failure; (ix) diabetes: patients
diagnosed with diabetes; (x) malignancy: patients diagnosed
with malignancy; (xi) maximum PaCO2: patients’ maximum
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Table 1
Features category table. Demographic: Age. Disease severity: SAPS II. Diagnosis: Respiratory
dysfunction, Respiratory failure, CHF, Diabetes, Malignancy. Laboratory results: Maximum hemoglobin
(g/dl), Minimum lactate (mmol/L), Minimum BUN (mg/dl), Minimum PaO2(mmHg), Maximum
PaCO2(mmHg), Minimum PaCO2(mmHg). Others: Vent Duration (Hour).

Category Features Category Features

Demographic Age (years) Laboratory results Maximum hemoglobin (g/dl)

Disease severity SAPS II Minimum lactate (mmol/L)

Diagnosis Respiratory dysfunction Minimum BUN (mg/dl)
Respiratory failure Minimum PaO2(mmHg)

CHF Maximum PaCO2(mmHg)
Diabetes Minimum PaCO2(mmHg)

Malignancy Others Vent Duration (Hour)

levels of partial pressure of carbon dioxide in the arterial
blood; (xii) minimum PaCO2: patients’ minimum levels of
partial pressure of carbon dioxide in the arterial blood; (xiii)
vent duration: the duration of invasive mechanical ventilation;
and (xiv) maximum PaO2: patients’ maximum levels of
partial pressure of oxygen in the arterial blood.

First, we applied the XGBoost model to get the feature
importance of these variables and we selected the top 5
important features: age, respiratory dysfunction, SAPS II
score, maximum hemoglobin, and minimum lactate. XG-
Boost is a powerful ML model which has been widely used for
feature selection [19, 24]. This model includes regularization
parameters such as ’gamma’, ’alpha’, and ’lambda’ that help
prevent overfitting, ensuring that the selected features are not
chosen purely based on noise in the data.

After conducting related research and considering expert
opinion, we also added other possible influencing factors:
malignancy, BUN (Blood urea nitrogen), CHF (Congestive
heart failure), diabetes, vent duration, respiratory failure,
maximum PaCO2, minimum PaCO2, and maximum PaO2
as our variables. We decided to include these factors because
their impact on respiratory health is well-documented and
they have the potential to significantly impact outcomes for
patients requiring mechanical ventilation.

Malignancies can directly affect the respiratory system,
such as lung cancer or metastases to the lungs, leading to
compromised lung function. Especially in advanced stages,
it can be a crucial factor leading to respiratory failure and the
need for mechanical ventilation [25]. BUN is a medical test
that measures the amount of urea nitrogen found in blood.
High BUN levels can be associated with conditions that
may lead to respiratory failure, such as severe infections,
sepsis, or organ dysfunction. The decision to use mechanical
ventilation is based on a combination of factors, including
the underlying condition causing the high BUN level [26].
CHF can cause pulmonary effusion (pulmonary edema),
leading to severe breathing difficulties and respiratory failure,
thus requiring the use of mechanical ventilation to support
breathing [24]. Diabetes can contribute to conditions such
as respiratory infections, acute respiratory distress syndrome

(ARDS), or other respiratory complications that may lead
to the need for mechanical ventilation. Ventilator duration
is a critical factor in the management of patients requiring
mechanical ventilation, particularly in the ICU. The use of
a ventilator can prolong the lifespan of patients, and the
duration of ventilator use may also be a factor that can affect
the outcome. During mechanical ventilation, the goal is to
maintain adequate gas exchange and ensure that the patient’s
blood is fully oxygenated, which includes removing carbon
dioxide (CO2) from the body. If the PaCO2 levels are too
high (hypercapnia) or too low (hypocapnia), it indicates
that the patient is not effectively ventilating, which can
lead to respiratory acidosis and potentially life-threatening
complications. Monitoring the maximum PaO2 level helps
doctors evaluate the oxygenation of blood in a patient’s
lungs and whether adjustments to the ventilator settings are
necessary to maintain optimal oxygen levels [25]. We also
considered patients with various respiratory system diseases
specifically in respiratory dysfunction from the MIMIC-III
database.

2.5. Ablation process
We planned to determine if the currently selected 14

features would negatively impact the model’s performance.
We decided to progressively eliminate variables that had a
negative effect on the model’s performance, assessing the
model’s performance on the validation set by calculating
the 95% CI for AUROC. We sequentially removed one
variable at a time and assessed the resulting degradation
in model performance. The variable that caused the most
significant deterioration in model performance was identified
and removed in each round. This process was repeated until
further removal of variables did not result in a noticeable
improvement in model performance. This approach allows
us to filter out variables that do not contribute significantly
to the predictive power of the model. After applying this
iterative feature selection process, we retained 12 out of the
14 initially selected variables. We excluded the variables
malignancy and respiratory dysfunction from the final set of
features, as they were found to have a negative impact on the
model’s performance.
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2.6. Modeling
The dataset was imbalanced between the number of

survivors and non-survivors, with 14,441 survivors and
2,058 non-survivors. The Synthetic Minority Over-sampling
Technique (SMOTE) method was used to address the data
imbalance issue. Moreover, the train_test_split method was
utilized for hierarchical stratified sampling. The dataset was
split into three groups: training set, test set and validation
set. We proposed a novel deep learning neural network
to predict the mortality of ICU patients with mechanical
ventilation. Seven baseline ML models were established
for result comparison, including KNN, Logistic Regression,
Decision Tree, Random Forest, Bagging, XGBoost, SVM[28,
29, 30, 31, 32, 33, 34, 35].

The proposed model is a fully connected neural network
comprising an input layer with a dimensionality of 12,
followed by a batch normalization (BN) layer for input
normalization to improve the stability of the model [36]. Sub-
sequently, three hidden layers are incorporated, each utilizing
the rectified linear unit (ReLU) activation function. Between
these hidden layers, dropout (DP) layers are employed to
randomly discard 50% of the neurons, mitigating overfitting
[37]. The first hidden layer consists of 100 neurons, the
second hidden layer consists of 50 neurons, and the third
hidden layer consists of 25 neurons. The model concludes
with an output layer containing a single neuron, utilizing
the sigmoid activation function for binary classification with
an output probabilities between 0 and 1. This architecture
is designed to capture complex patterns in the data while
addressing potential overfitting through the strategic use of
dropout layers. Figure 2 shows the architecture of our NN
model. The model is trained with the Adam optimizer, using
binary cross-entropy as the loss function and the AUROC
as the evaluation criterion. The training process is run for
100 epochs with a batch size of 256. The model iteratively
refines its parameters to minimize the loss function and
enhance AUROC performance, aiming to improve its ability
to discriminate between positive and negative instances.

Figure 2: Neural network architecture op-level. This figure
shows the details of the neural network architecture.

For the KNN model, we performed Grid Search CV to
find the optimal n_neighbors parameter within the range of 1
to 20. The cross-validation (cv) was set to 5, with AUROC
employed as the evaluation metric. Regarding the Logistic
Regression model, the maximum iteration was set to 1000,
and ’liblinear’ was chosen as the solver. We utilized Grid
Search CV across all baseline ML models to identify the best
hyperparameter values, optimizing the performance of each
prediction model. This process automated the optimization
of hyperparameters.

The best model was chosen based on its performance
in AUROC on the validation set. Calibration plots were
created to assess the models’ accuracy in making probabilistic
predictions. A well-calibrated model should have a calibration
curve that closely follows the diagonal line, indicating that the
predicted probabilities accurately reflect the true likelihood
of the outcome. Also, we calculated accuracy for evaluating
our models’ performance. The AUROC metric is less affected
by class imbalance than accuracy and gives a better picture
of the model’s discriminative ability.

In our project, we extracted the dataset using BigQuery,
performed data cleaning and conducted model training using
Python 3.9.17. The models were derived from the Python
libraries scikit-learn 1.2.2 and TensorFlow 2.14.0.

3. RESULTS
3.1. Cohort Comparison

We obtained 16,499 patients from the MIMIC-III database
for model establishment in the patient extraction part. The
cohort was then randomly split into a 70% training set, 15%
test set, and 15% validation set, respectively, allocating 11,549
patients to the training set, 2,475 patients to the test set, and
2,475 patients to the validation set. The train and validation
cohorts were used to train the models. The model with the
highest AUROC value was chosen as the best prediction
model which was utilized for further assessment on the
test set. Table 2 illustrates the comparison of the training
set and validation set. In terms of respiratory failure, the
proportion of patients (36%) was slightly greater than the
validation cohort (35%). The training set (34%) also had
slightly higher the share of patients with diabetes than the
validation set (33%). We used the Chi-square test to detect
whether there is a significant difference in the distribution of
categorical features between the training set and the validation
set. The null hypothesis (H0) is that the distribution of a
particular feature is not significantly different between the
training set and the validation set, meaning the feature’s
distribution is independent across these sets.However, the
p-values of respiratory failure and diabetes were 0.380
and 0.248, respectively, showing no significant difference
between cohorts. This suggests that the train and validation
cohorts are well-matched, supporting the validity of our
model’s training process. Moreover, there was no significant
difference among all variables between cohorts based on their
p-values.
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Table 2
Characteristics between train cohort (N=11,549) and validation cohort (N=2,475) with P value.
Demographic: Age. Disease severity: SAPS II. Diagnosis: Respiratory dysfunction, Respiratory failure, CHF,
Diabetes, Malignancy. Laboratory results: Maximum hemoglobin (g/dl), Minimum lactate (mmol/L),
Minimum BUN (mg/dl), Minimum PaO2(mmHg), Maximum PaCO2(mmHg), Minimum PaCO2(mmHg).
Others: Vent Duration (Hour).

Train cohort (N=11,549) Validation cohort (N=2,475) P

Demographic
Age (years) 63.6(22.0) 63.6(22.0) 0.985
Disease severity
SAPS II 40.4(19.0) 40.2(18.0) 0.515
Diagnosis
Respiratory dysfunction 4,273(0.37) 892(0.36) 0.382
Respiratory failure 4,114(0.36) 858(0.35) 0.380
CHF 4,109(0.36) 888(0.36) 0.795
Diabetes 3,908(0.34) 807(0.33) 0.248
Malignancy 1,468(0.13) 297(0.12) 0.350
Laboratory results
Maximum hemoglobin (g/dl) 12.2(2.6) 12.2(2.4) 0.414
Minimum lactate (mmol/L) 1.3(0.6) 1.3(0.6) 0.612
Minimum BUN (mg/dl) 13.3(8.0) 13.4(8.0) 0.653
Minimum PaO2(mmHg) 67.7(45.0) 68.3(46.0) 0.531
Maximum PaCO2(mmHg) 58.9(17.0) 58.0(16.0) 0.056
Minimum PaCO2(mmHg) 31.1(8.0) 31.2(8.0) 0.728
Treatment
Vent Duration (Hour) 98.2(102.2) 97.7(95.1) 0.900

Target
Dead in ICU or not 1,441(0.12) 307(0.12) 0.947

In addition, a detailed comparison between the survivors
group and the non-survivors group was presented in Ta-
ble 3. Diagnosis and target variables were displayed on the
number of diagnosed patients or non-survivors with their
proportion, other variables were calculated using the median
with standard deviation in parentheses to provide both the
central tendency and the variability of the data. The p-values
between two subgroups were calculated using the t-test, with
the significance level set as P < 0.05. All variables had
significant differences between the two groups, indicating a
higher association with mortality, except for malignancy.

3.2. Ablation Study on Variable
In our validation set, we evaluated the impact of each

variable on the model performance by dropping one variable
at a time, measured by AUROC. Firstly, we collected 65
variables from related literature research and applied feature
importance to select 14 variables. After training the model,
we found that the model with 14 features yielded an AUROC
of 0.862. After excluding the ’malignancy’ variable, the
model achieved a slightly increase in AUROC to 0.864,
suggesting that ’malignancy’ may not significantly contribute
to the outcome. After removing the ’respiratory dysfunction’
variable, the AUROC improved to 0.866. This iterative pro-
cess indicated a potential improvement in model performance.
Respiratory failure is a type of disease within the category
of ’respiratory dysfunction’. Retaining respiratory failure

while removing respiratory dysfunction indicates that the
confirmed diagnosis of respiratory failure has a higher impact
on the patient’s survival rate compared to other respiratory
dysfunctions. In the end, we obtained the 12 most important
variables for model establishment. Figure 3, Figure 4 and
Figure 5 show the AUROC improvement process of deleting
insignificant features one by one.

3.3. Evaluation results
Table 4 and Table 5 show the detailed results summary of

our proposed model and baseline ML models. Our proposed
neural network model resulted in test set, validation set, and
training set, AUROC=0.879, 95% CI = [0.860-0.896], AU-
ROC=0.866, 95% CI = [0.846-0.886], and AUROC=0.958,
95% CI = [0.955-0.960]. The baseline models encompassed
KNN, Logistic Regression, Decision Tree, Random Forest,
Bagging, XGBoost, and SVM algorithms, yielded the fol-
lowing scores: 0.605, 95% CI [0.578-0.634], 0.851, 95% CI
= [0.829-0.871], 0.623, 95% CI = [0.595-0.652]], 0.809,
95% CI = [0.784-0.833], 0.765, 95% CI = [0.734-0.794],
0.854, 95% CI = [0.832-0.872], and 0.851, 95% CI = [0.828-
0.874], respectively. We also calculated the accuracy score of
KNN 0.809, Logistic Regression 0.783, Decision Tree 0.809,
Random Forest 0.860, Neural Network 0.859, Bagging 0.845,
XGBoost 0.878, and SVM 0.881. These scores provided
insights into how well the models would perform on new
unseen data.
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Table 3
Characteristics between survivors (N=14,441) and non-survivors (N=2,058) with P value. Demographic:
Age. Disease severity: SAPS II. Diagnosis: Respiratory dysfunction, Respiratory failure, CHF, Diabetes,
Malignancy. Laboratory results: Maximum hemoglobin (g/dl), Minimum lactate (mmol/L), Minimum
BUN (mg/dl), Minimum PaO2(mmHg), Maximum PaCO2(mmHg), Minimum PaCO2(mmHg). Others:
Vent Duration (Hour).

Survivors (N=14,441) Non-survivors (N=2,058) P

Demographic
Age (years) 63.2(21.0) 66.6(22.0) <0.0001
Disease severity
SAPS II 38.6(17.0) 52.4(23.0) <0.0001
Diagnosis
Respiratory dysfunction 4,918(0.34) 1,112(0.54) <0.0001
Respiratory failure 4,721(0.33)) 1,090(0.53) <0.0001
CHF 5,085(0.35) 789(0.38) 0.0060
Diabetes 4,956(0.34) 600(0.29) <0.0001
Malignancy 1,867(0.13) 251 (0.12) 0.3715
Laboratory results
Maximum hemoglobin (g/dl) 12.3(2.5) 11.8(2.8) <0.0001
Minimum lactate (mmol/L) 1.2(0.5) 1.9(1.0) <0.0001
Minimum BUN (mg/dl) 12.3(8.0) 19.7(13.8) <0.0001
Minimum PaO2(mmHg) 69.1(48.0) 56.6(32.0) <0.0001
Maximum PaCO2(mmHg) 58.1(15.0) 62.7(23.0) <0.0001
Minimum PaCO2(mmHg) 31.4(7.0) 28.7(8.0) <0.0001
Treatment
Vent Duration (Hour) 89.4(81.7) 167.2(194.0) <0.0001

Table 4
Evaluation results and confidence interval for proposed model. Trained the model on different sets: test
set, validation set and training set. The evaluation metrics included AUROC, AUROC 95% CI, precision,
recall value, accuracy score, and F1 score.

Models AUROC AUROC 95% CI Accuracy

Proposed model performance on test set 0.879 [0.860-0.896] 0.859
Proposed model performance on validation set 0.866 [0.846-0.886] 0.855
Proposed model performance on training set 0.958 [0.955-0.960] 0.881

Figure 6 and Figure 7 display Receiver Operating Charac-
teristic (ROC) curves of our proposed model neural network
and the seven baseline models, KNN, Logistic Regression,
Decision Tree, Random Forest, Bagging, XGBoost, and SVM
on test set and validation set. We observed that all models

except KNN and Logistic Regression exhibited smoother
ROC curves and achieved higher AUROC values.

Figure 8 displays the AUROC boxplots of our proposed
model and baseline models. We observed that the AUROCs
of Logistic Regression, neural network, XGBoost, and SVM

Table 5
Evaluation metrics and confidence interval for seven models. We used a total of seven different models,
KNN, Logistic Regression, Decision Tree, Random Forest, Bagging, XGBoost, and SVM. The evaluation
metrics included AUROC, AUROC 95% CI and accuracy score.

Models AUROC AUROC 95% CI Accuracy

KNN 0.605 [0.578-0.634] 0.809
Logistic Regression 0.851 [0.829-0.871] 0.783
Decision Tree 0.623 [0.595-0.652] 0.809
RF 0.809 [0.784-0.833] 0.860
Bagging 0.765 [0.734-0.794] 0.845
XGBoost 0.854 [0.832-0.872] 0.876
SVM 0.851 [0.828-0.874] 0.881
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Figure 3: AUROCs boxplots of neural network models with
14 features. Each boxplot displays the AUROC with 95% CI
after deleting the corresponding variables. The column baseline
shows the result that keeps all the variables. Nothing has been
deleted.

exceeding 0.8, showing the strong predictive ability. Among
these boxplots, the mean AUROC of our proposed model
exceeds the maximum value of the AUROCs of other baseline
models.

Also, we applied calibration techniques and rigorous eval-
uation methods. Calibration plots were generated by plotting
the mean predicted probability against the observed frequency
of outcomes in each decile. The Brier Score measured the
mean squared difference between predicted probabilities and
actual outcomes, with lower scores indicating better calibra-
tion. Isotonic Regression, a non-parametric method, was used
for calibration. Figure 9 shows that the predicted probabilities
are well-calibrated, with points close to the diagonal line.
Among the models, the two best-performing ones in terms of
Brier score were SVM (0.0905) and neural network (0.0974),
demonstrating very good calibration. These results confirm
that our model’s predicted probabilities are highly accurate
and well-calibrated. The low Brier Score and high AUROC
substantiate its accuracy and reliability. These findings align
with existing literature on well-calibrated prediction models
and demonstrate the strength of our approach in providing
reliable predictions for clinical decision-making in the ICU
setting.

3.4. SHAP analysis
SHAP (SHapley Additive exPlanations) is a method used

in ML to understand the impact of individual variables
on model predictions. It provides a way to interpret the

Figure 4: AUROCs boxplots of neural network models with
13 features. Each boxplot displays the AUROC with 95% CI
after deleting the corresponding variables. The column baseline
shows the result that keeps all the variables. Malignancy has
been deleted.

output of any ML model by quantifying the contribution
of each feature to the predicted outcome [38]. Figure 10,
along with Table 6, displays the SHAP (SHapley Additive
exPlanations) values for the test set, providing a detailed
analysis of how each variable affects the model’s prediction.
The SHAP analysis identifies ‘respiratory failure’ as the
most significant predictor, followed by ‘minimum lactate’,
‘SAPS II’, ‘ventilation duration’, ‘minimum BUN’, ‘dia-
betes’, ‘maximum PaCO2’, ‘CHF’, ‘minimum PaCO2’, ‘age’,
‘minimum PaO2’ and ‘maximum hemoglobin’. Here, the
‘respiratory failure’ shows a notable positive impact on the
model’s predictions. The ‘minimum PaO2’ and ‘maximum
hemoglobin’, in comparison, demonstrate more moderate
effects. The shift in the order of feature importance in the
training set highlights the importance of considering diverse
metrics for a comprehensive model evaluation.

The difference between the feature importance ranking
in Figure 11 and the average SHAP value in Table 6 could be
attributed to the different methodologies underlying these two
approaches. It is also worth mentioning that while ‘CHF’ and
‘diabetes’ held moderate importance in the SHAP ranking,
they appeared as top contributors in the feature importance
ranking. This divergence underscores the complexity of
variable interactions within the model and highlights the
necessity of employing multiple interpretability methods to
fully understand the model’s behavior.
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Figure 5: AUROCs boxplots of neural network models with 12
features. Each boxplot displays the AUROC with 95% CI after
deleting the corresponding variables. The column baseline shows
the result that keeps all the variables. Respiratory dysfunction
has been deleted.

Figure 6: ROC curves of the eight models for the test set. KNN,
Logistic Regression, Decision Tree, Random Forest, Neural
Network, Bagging, XGBoost, and SVM.

Furthermore, the minimal impact of ‘minimum PaCO2’
and ‘maximum Hemoglobin’ on the model output, as in-
dicated by their low feature importance and SHAP values,
suggests that these factors are less discriminative for the
predictive task at hand. The comprehensive analysis of
these indicators provides valuable insights into the model’s
decision-making process, guiding practitioners in refining

Figure 7: ROC curves of the eight models for the validation
set. KNN, Logistic Regression, Decision Tree, Random Forest,
Neural Network, Bagging, XGBoost, and SVM.

Figure 8: AUROCs boxplots of the eight models. KNN, Logistic
Regression, Decision Tree, Random Forest, Neural Network,
Bagging, XGBoost, and SVM. The upper line of the single
boxplot represents the maximum value of AUROC, the lower
line represents the minimum value of AUROC, and the middle
line represents the mean value of AUROC.

the model and focusing on the most pertinent predictors for
outcome prediction.

4. DISCUSSION
4.1. Existing model compilation summary

In our study, we proposed a neural network model to
predict the ICU mortality of patients undergoing invasive
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Figure 9: Calibration plots of the eight models. KNN, Logistic
Regression, Decision Tree, Random Forest, Neural Network,
Bagging, XGBoost, SVM.

Figure 10: SHAP value based on neural network model for the
test set. Predictors: Respiratory failure, diabetes, age, SAPS
II Score, maximum hemoglobin, minimum lactate, CHF, vent
duration, minimum bun, minimum PaCO2, maximum PaCO2,
minimum PaO2.

mechanical ventilation. The result of our mortality prediction
model was better than the best existing literature by Y.Zhu et
al [19]. The effectiveness of our model demonstrated 7.06%
improvement in AUROC.

Although the existing literature result effectively pre-
dicted mortality rates among ICU patients, it exhibited
certain limitations. They used a total of 66 variables to
predict the model outcome. This approach may raise concerns
related to model complexity and overfitting. Additionally, the
outcome of their research was considered unsatisfactory and
inadequate for practical use in clinical exercising.

For our research, we used advanced feature selection
techniques to select only 12 variables as our features. The
results of our model had a significant improvement, which

Table 6
Average SHAP value for 12 features in the test set. The 12
predictors: Respiratory failure, diabetes, age, SAPS II Score,
maximum hemoglobin, minimum lactate, CHF, vent duration,
minimum bun, minimum PaCO2, maximum PaCO2, minimum
PaO2.

Features Average SHAP Value (Test Set)

Respiratory Failure 0.096
Minimum Lactate 0.080
SAPS II 0.075
Vent Duration 0.075
Minimum Bun 0.052
Diabetes 0.043
Maximum PaCO2 0.040
CHF 0.034
Minimum PaCO2 0.025
Age 0.019
Minimum PaO2 0.010
Maximum Hemoglobin 0.008

Figure 11: Feature importance is based on Neural Network
model for the test set. Predictors: Respiratory failure, diabetes,
age, SAPS II Score, maximum hemoglobin, minimum lactate,
CHF, vent duration, minimum bun, minimum PaCO2, maximum
PaCO2, minimum PaO2.

provided a more reliable result for clinical use and highlights
the efficiency and effectiveness of our model in delivering
superior predictive performance with a more concise feature
set. Moreover, we used the training set, validation set and test
set for evaluation. The best existing model only used training
and test sets. Using different sets for hyperparameter tuning
and model evaluation could avoid information leakage and
enhance the model’s generalization assessment capabilities.
Furthermore, our proposed neural network model was easy
set up and replicated, had fewer layers which helps prevent
overfitting and trains faster than other deep neural networks.
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These features made our model efficient and practical for
real-world applications.

We found that respiratory failure had a higher association
with patient mortality than respiratory dysfunction from
SHAP analysis and feature importance, which means the con-
dition of respiratory failure was much more important than
the general comprehensive disease of respiratory dysfunction.
This suggests that clinicians should pay more attention to
patients with a history of respiratory failure. The ventilation
duration was also a clinically meaningful variable that directly
reflects the severity and duration of respiratory failure. It
provides insight into the patient’s respiratory status and the
level of support needed. From the SHAP value analysis
(Figure 10), we found that the longer the ventilation use time,
the higher the patient’s mortality rate, proving that prolonged
use of a ventilator does not improve patient survival.

Additionally, the SVM and XGBoost baseline models
had AUROCs of 0.841 and 0.825, respectively, which were
similar to the performance of our proposed NN model. We
observed that an overlap in the AUROC boxplots of these
two models in Figure 8, which illustrates the performances of
these two models were also powerful in predicting mortality
since NN had multiple layers and required more time for
training.

4.2. Study limitations
In our model development, we used training and val-

idation datasets to construct the model. The test dataset
was used for evaluating the performance of the model. The
training, validation, and test sets were all from the MIMIC-III
database. However, using independent datasets from different
systems would be beneficial for testing the performance of
the model. The MIMIC-III database is a large but outdated
database, which contains the dataset of related ICU patients
only between 2001 and 2012. Exploring newer datasets could
enhance the predictive capabilities of our model. Additionally,
integrating other types of data, such as images and text, could
further improve the accuracy and utility of our results.

5. CONCLUSION
The goal of our paper is to build a novel neural network

model to predict the mortality of ICU patients undergoing
mechanical ventilation. Compared with the results of baseline
ML models and existing literature, deep learning methods
for modeling ICU patient data in the MIMIC-III database
to predict mechanical ventilation mortality have provided
significant improvements in predicting observed outcomes.
This improvement may be due to the efficiency of the
variables, such as the time series variables we selected for
predicting the model. Our framework provides valuable
support for clinicians to identify patients at high risk of death
in the ICU. This predictive tool is particularly beneficial
for patients and clinicians, as it can assess the time when
a patient leaves the ICU and guide clinicians in arranging
patient treatment plans.

Future research could focus on validating our methods
with datasets from different healthcare systems or exploring

their applicability to various diseases and outcomes. Explor-
ing the applicability of our methods to various diseases and
outcomes can uncover new insights and potential applications.
Additionally, other researchers could explore different types
of data based on our dataset and this can lead to innovative
research directions. For example, integrating image data or
text data with our existing dataset could provide a more
comprehensive understanding of patient health and improve
the accuracy of our predictions.
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