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Abstract 35 
Emerging evidence from neurophysiological brain vital sign studies show repeatable sensitivity 36 

to cumulative subconcussive impairments over a season of contact sports. The current study addressed 37 
the need for a large prospective study comparing a low-contact control group to high-contact group. 38 
Importantly, the study also expanded the scope of neurophysiological changes related to repetitive head 39 
impacts to include female athletes in addition to male athletes. In total, 89 high school student athletes 40 
underwent 231 brain vital sign scans over a full calendar year. The results replicated prior subconcussive 41 
cognitive impairments (N400 delays) and sensory impairments (N100 amplitude reductions) in male 42 
athletes and demonstrated similar subconcussive impairments for the first time in female athletes. 43 
While there was no significant subconcussive difference between female and male athletes, female 44 
athletes show overall larger responses in general. The findings demonstrated that subconcussive 45 
impairments are detectable in a controlled experimental comparison for both female and male high 46 
school athletes. The study highlights the opportunity to monitor subconcussive changes in cognitive 47 
processing for both female and male athletes to help advance prevention, mitigation and management 48 
efforts aimed at reducing athletes’ risk of potential long-term negative health outcomes related to 49 
cumulative exposure to repetitive head impacts. 50 

 51 

Introduction 52 
 53 

Background 54 
Head impact exposure from participating in contact or collision sports is commonly associated 55 

with concussion; however, subconcussion is a growing concern for athletes as well as a developing 56 
research area in parallel (Smith et al., 2018; 2019). Subconcussion has been increasingly implicated with 57 
potential short-term consequences on the developing brains and longer-term concerns related to chronic 58 
traumatic encephalopathy (McKee et al. 2009; Guskiewicz et al. 2005; Dioso et al. 2022). Concussion 59 
research has also historically been primarily focused on males (Valera et al. 2021; Snedaker et al. 2022). 60 
Therefore, emerging subconcussive research must be inclusive of both female and male athletes. This is a 61 
timely priority as new intervention options begin to emerge from the clinical trials literature (Breuer et al. 62 
2023). 63 

Operationally defined, a subconcussive impact is a mechanical force transmitted to the brain 64 
below the threshold for a diagnosis of an acute concussive injury. The effects of these repetitive head 65 
impacts (RHI) may neither be detectable to players nor to observers; however, it has been shown that RHI 66 
over time can result in both microstructural alterations and functional brain impairment (Mainwaring et 67 
al. 2018). The extent of impairment is highly correlated with the frequency of exposure to these impacts 68 
(Fickling, Smith, et al. 2021; Fickling, Poel, et al. 2021; Hirad et al. 2019; Saghafi et al. 2018; Fickling et al. 69 
2019). 70 

Recent research has increasingly focused on the role of cumulative RHI exposure rather than a 71 
concussion as a singular, acute traumatic event. Evidence suggests that even a single practice session 72 
involving head contact, such as heading a ball in soccer, can result in impairment (Nowak et al. 2020). 73 
Magnetic resonance imaging (MRI) studies have demonstrated that players exposed to RHI over the 74 
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course of a season of sport show significant structural abnormalities compared to controls over the same 75 
time period (Hirad et al. 2019; Saghafi et al. 2018; Veksler et al. 2020). Both Hirad et al. (2019) and Saghafi 76 
et al. (2018) used diffusion-tensor imaging, an MRI-derived technique, to show abnormalities in the white 77 
matter of a group of football athletes were related to different measures of head impact exposure. 78 
Interestingly, while detecting differences in permeability and white matter microstructure in the brains of 79 
contact sport athletes, Veksler et al. (2020) did not find any statistical differences in blood-brain barrier 80 
permeability between non-contact athletes and non-athlete healthy controls, leading the authors to 81 
merge the groups into a single control group. 82 

A major challenge for current medical imaging approaches, including MRI, relates to the need for 83 
accessible, objective, and sensitive measures of subconcussive impacts at points-of-care (PoC). Portable 84 
electroencephalography (EEG) provides the evaluation of individual neurophysiological event-related 85 
potentials (ERPs). These have recently been translated into a brain vital signs framework, facilitating 86 
access to sensitive measures for various PoC applications (Ghosh Hajra et al. 2016). Three well-established 87 
ERP responses are extracted within the brain vital signs framework: 1) the N100 for auditory sensation 88 
(Davis 1939); 2) the P300 for basic attention (Sutton et al. 1967); and 3) the N400 for cognitive processing 89 
(Kutas and Federmeier 2011). Brain vital signs have been successfully implemented in the evaluation of 90 
both concussion and subconcussion (Fickling et al. 2019; Fickling, Smith, et al. 2021; Fickling, Poel, et al. 91 
2021). 92 

Identification of subconcussive cognitive impairments over a season of contact sports was initially 93 
reported in male Junior-A ice hockey players (Fickling et al. 2019, N=23). Subsequent studies (Fickling, 94 
Smith, et al. 2021, N=23a; Fickling, Poel, et al. 2021, N=15b; Breuer et al. 2023, N=30) replicated and 95 
confirmed identification of accumulated subconcussive exposure in male athletes for different age ranges 96 
(12-14, 16-21, & 21-28, respectively) and different contact sports, including ice hockey, tackle football, 97 
and mixed martial arts. Importantly, this work demonstrated strong, significant, and linearly predictive 98 
relationships between brain vital sign changes and exposure to subconcussive impacts (Fickling, Smith, et 99 
al. 2021; Fickling, Poel, et al. 2021). These relationships were demonstrated both when subconcussive 100 
impacts were quantified directly by impact sensors or indirectly by the number of games and practices 101 
played. A pattern of subconcussive changes have emerged, identified by changes in the N400 (cognitive 102 
processing) and N100 (sensory processing). The N400 and N100 components have been implicated in the 103 
rate of information processing and synchronous pyramidal neural activation (Luck 2014): the two are 104 
interdependent factors reflecting an association with cognitive processing (Kutas and Federmeier 2011) 105 
and auditory sensation (Davis 1939). While the replications of N400 and N100 subconcussive changes in 106 
male athletes are noteworthy, a single prospective study with a large sample size including female athletes 107 
is critical. 108 

 109 

Objectives & Hypothesis 110 
The study was conducted at Brentwood College School (a Grade 8-12 high school in Mill Bay, 111 

British Columbia, Canada) by student researchers from the Brentwood Research, Action, and Innovation 112 
in Neuroscience (BRAIN) team. Brain vital signs were monitored in 89 female and male high school 113 
students (15-17 years of age) participating in high-contact (e.g. rugby, ice hockey, and soccer) and low-114 
contact sports (e.g. rowing, climbing, and tennis) over three academic terms across the school year (Figure 115 
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1). With respect to matching participants in high-contact versus low-contact sports, Brentwood is a private 116 
boarding school, in which all students follow a structured program with commonly matched ages, daily 117 
schedules, diets, academics, athletics, and sleep routines. The study used a mixed-model, repeated 118 
measures design evaluated across 3 terms before and after each of the three school year terms as well as 119 
after the summer break, resulting in 7 possible scan timepoints. The objectives were to replicate prior 120 
subconcussion findings in male athletes, as well as in female athletes, with the primary hypothesis 121 
predicting that brain vital sign subconcussive differences would be detectable in the comparisons for high-122 
contact sports relative to low-contact sports. Subsequent analyses were conducted to explore specific 123 
differences between female and male subconcussive and overall neurophysiological results.  124 

 125 
 126 

 127 
Figure 1: Overview of the experimental design and study timeline (N: Number of participants; n: brain 128 
vital signs scans completed).  129 
 130 
 131 

Results 132 
 133 

In the current study, 89 female and male student athletes were scanned a total of 231 times 134 
before and after varying terms of contact or non-contact sports. All three brain vital signs, the N100, 135 
P300, and N400, were verified at both the group- and individual- levels. Peak amplitude and latency 136 
values were examined in the multivariate analysis of variance (MANOVA), which were first examined 137 
with univariate tests of normality and Levene’s test of equality of error variances. N100 latency and 138 
N400 amplitude failed tests of normality (p < 0.05), while all amplitude and latency values passed 139 
Levene’s test (p > 0.05). Therefore, non-parametric Kruskal-Wallis test results are also included in 140 
Supplemental Data 1 to demonstrate the robustness of the following MANOVA results.  141 
 142 
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High-contact versus low-contact effects:  143 
Figure 2a shows brain vital sign differences in the N400 latency and N100 amplitude, while 144 

figure 2b provides the underlying waveform differences. The findings confirmed the consistent 145 
replication of subconcussive changes in the N400 and N100 at the overall group level, with a significant 146 
delay in N400 peak latency and a significant increase in N100 peak amplitude. Specifically, the MANOVA 147 
showed a significant main effect of condition between high- versus low-contact groups [F(6,104) = 7.95, 148 
p < 0.001, ηp

2 = 0.314] (Table 1). Separate univariate between-subjects tests on the outcome variables 149 
revealed significant effects of group on the N400 latency, [F(1) = 35.79, p < 0.001, ηp

2 = 0.247], and N100 150 
amplitude, [F(1) = 7.88, p = 0.006, ηp

2 = 0.067] (Figure 2, Table 2). Figure 3 provides the individual scatter 151 
plot data for both the N400 latency and N100 amplitude effects, including means and standard 152 
deviations. The current results addressed the planned high- versus low-contact group comparison to 153 
build on prior pre- versus post- season differences in male athletes. Specific pre- versus post- 154 
comparisons are provided as Supplemental data for comparison (Supplemental Figure 1). 155 
 156 
 157 

 158 
Figure 2: (A): Overall group (female and male combined) brain vital sign radar plot comparing high- 159 
versus low-contact groups. (B) Group-level grand average ERP waveforms from tones (top) and word 160 
pairs (bottom) for overall group comparing high- versus low-contact group differences. Deviant tones 161 
and incongruent word pair waveforms are plotted, with standard error shaded. N100, P300, and N400 162 
brain vital sign components of the high-contact group are highlighted with labels and arrows. Asterisks 163 
denote significant effects in both the brain vital sign and waveform results.  164 
 165 
Table 1: MANOVA multivariate effect results for high- and low-contact scans. 166 
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MANOVA DF PILLAI F-VALUE P-VALUE 
GROUP 6,104 0.314 7.947 <0.001* 

SEX 6, 104 0.148 3.020 0.009* 
GROUP X SEX 6, 104 0.003 0.047 1.000 

 167 
Table 2: MANOVA results for the group effect on each brain vital sign component. 168 

Brain vital sign 
High-contact 

mean (standard 
deviation) 

Low-contact 
mean (standard 

deviation) 
F-value p-value 

N100 Amplitude -4.60 (2.82) -3.15 (2.11) 7.883 0.006* 
N100 Latency 100.78 (16.58) 100.78 (25.64) 0.750 0.388 

P300 Amplitude 4.52 (2.84) 3.86 (3.26) 0.508 0.477 
P300 Latency 274.77 (40.03) 270.14 (35.22) 0.304 0.583 

N400 Amplitude -3.49 (2.85) -3.35 (2.26) 0.001 0.977 
N400 Latency 433.50 (70.42) 359.16 (57.86) 35.786 <0.001* 

 169 
 170 

 171 
Figure 3: Individual scatter plot data, including group means and standard deviations (middle) showing a 172 
significant N400 latency and N100 amplitude differences for high-contact (red) versus low-contact 173 
(blue). 174 
 175 
Female compared to male subconcussive effects:  176 

There was no significant sex by contact group interaction present [F(6,104) = 0.047, p = 1.00, ηp
2 177 

= 0.003] (Table 1), indicating female and male athletes experienced similar subconcussive effects. Figure 178 
4a shows brain vital sign radar plots for female and male athletes for high- versus low-contact and figure 179 
4b provides the corresponding waveform results. The MANOVA confirmed a significant main effect for 180 
female athletes compared to male athletes [F(6, 104) = 3.02, p = 0.009, ηp

2 = 0.148] (Table 1) across 181 
these scans. Separate univariate between-subjects tests revealed significant effects for the P300 182 
amplitude [F(1) = 7.45, p = 0.007, ηp

2 = 0.064] and N400 amplitude [F(1) = 4.71, p = 0.032, ηp
2 = 0.041] 183 

(Table 3). Note in Figure 4b that the vertical y-axis (Amplitude) for female athletes and male athletes is 184 
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fixed, highlighting the overall increased response amplitude in female responses relative to male 185 
responses across all peaks.  186 
 187 

 188 
Figure 4: (A) Radar plots comparing individual-level brain vital signs of the high-contact and low-contact 189 
groups for both female and male athletes. (B) Group-level grand average ERP waveforms from tones 190 
(top) and word pairs (bottom) for female athletes (left, dark shading) and male athletes (right, light 191 
shading) comparing high- versus low-contact group differences. Deviant tones and incongruent word 192 
pair waveforms are plotted (with standard error shading). N100, P300, and N400 brain vital sign 193 
components of the high-contact group are highlighted with labels and arrows. Note in Figure 4b that the 194 
vertical y-axis (Amplitude) for female athletes and male athletes is fixed, highlighting the overall 195 
increased response amplitude in female responses relative to male responses across all peaks. 196 
 197 
 198 
Table 3: MANOVA results for the main effect of sex on each brain vital sign component (high- and low-199 
contact scans). 200 
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Brain vital sign 
component 

Female athlete 
mean (standard 

deviation) 

Male athlete 
mean (standard 

deviation) 
F-value p-value 

N100 Amplitude -4.29 (2.47) -3.36 (2.47) 2.427 0.122 
N100 Latency 94.28 (15.32) 101.86 (25.74) 2.597 0.110 

P300 Amplitude 5.18 (3.24) 3.47 (2.85) 7.447 0.007* 
P300 Latency 273.21 (37.50) 271.17 (37.04) 0.025 0.874 

N400 Amplitude -4.07 (2.96) -3.00 (2.08) 4.707 0.032* 
N400 Latency 391.67 (78.34) 385.91 (69.232) 0.053 0.819 

 201 
 202 
Female compared to male effects:  203 

To further characterize brain vital sign profiles, the multivariate main effect of sex, and the 204 
univariate results above (Table 3) for female and male athletes, contact condition was collapsed across 205 
high- and low-contact scans to create Figure 5. P300 and N400 amplitude differences accounts for a 206 
significant main effect with a near significant effect in the N100 amplitude. The trends driving the main 207 
effect can be seen in Figure 6, which showed the individual scatter plots across female athletes and male 208 
athletes, including means and standard deviations. To further characterize female and male effects with 209 
a larger and closely weighted group number, Figure 7 provides radar plot and waveform results from 210 
female and male athletes for all collected scans (N=202 scans). The purpose of this comparison was to 211 
include all scans as an evaluation of robust differences between female and male athletes. 212 
Corresponding statistics are in Supplemental Data 3.  213 
 214 

 215 
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Figure 5: Comparison of all female and male high- and low-contact scans showing amplitude differences. 216 
(A) Radar plot showing overall female and male brain vital sign difference. (B) Group-level waveforms 217 
from deviant tones (top) and incongruent word pairs (bottom) are plotted (standard error shading) for 218 
female athletes (dark blue) and male athletes (light blue). N100, P300, and N400 components are 219 
highlighted with arrows. 220 
 221 
 222 

 223 
Figure 6: Scatter plots of individual-level data points for all scans of the amplitudes (top) and latencies 224 
(bottom) for all brain vital signs components in female athletes (left) and male athletes (right). 225 
Significant differences are highlighted by the asterisk, all p-values are reported as well (Bonferroni 226 
adjusted). 227 
 228 
 229 
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 230 
Figure 7: Comparison of all female and male scans. (A) Radar plot showing individual-level brain vital 231 
sign differences across all six components. (B) Group-level waveforms from deviant tones (top) and 232 
incongruent word pairs (bottom) are plotted (standard error shading) confirming lower amplitudes in 233 
male athletes (highlighted with arrows).  234 
 235 

The current analyses examined high- versus low-contact, using equivalent exposure durations to 236 
prior studies. For additional analyses (N=202 scans), contact exposure levels were compared between 237 
low-contact exposure and both a single term and two or more terms of high-contact exposure. These 238 
results were closely consistent with both subconcussive and sex effects above and are provided as 239 
Supplemental Data 4. 240 
 241 

Discussion 242 
 243 

The current findings replicated prior studies of subconcussive changes in brain vital signs. The 244 
study used a large, prospective, repeated measures design to compare high- versus low-contact exposure 245 
across both female and male athletes. The findings supported the primary hypothesis that prior 246 
subconcussive differences in the N400 and N100 would be detectable in a high- versus low- contact 247 
comparison (Figure 2), not only for male athletes but also in female athletes (Figure 4). Additional 248 
comparisons of female and male results showed significantly larger P300 and N400 responses for female 249 
athletes (Figure 6). 250 
 251 
Subconcussive analyses  252 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 22, 2024. ; https://doi.org/10.1101/2024.03.20.24304610doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.20.24304610


BRENTWOOD Research Study         
Manuscript  
 

 10 

Subconcussive N400 changes replicate four previous studies on subconcussion (Fickling et al. 253 
2019; Fickling, Smith, et al. 2021; Fickling, Poel, et al. 2021; Breuer et al. 2023). The N400 is commonly 254 
associated with high-order cognitive semantic processing (D’Arcy et al. 2004; Kutas and Federmeier 2011) 255 
and measures changes in semantic processing, suggesting the initial demonstration of cognitive changes 256 
due to contact (Connolly and D’Arcy 2000; D’Arcy et al. 2003; Gawryluk et al. 2010; Ghosh Hajra et al. 257 
2018). It is noteworthy that these replications have spanned across different sports and age ranges in 258 
male athletes. However, the specific N400 changes have varied with respect to latency delays and/or 259 
amplitude reductions, with the former directly measuring the rate of information processing and the latter 260 
related to synchronous pyramidal neural activation (Luck 2014). The two are interdependent factors 261 
reflecting a relative impairment in cognitive processing. While the initial results for female athletes 262 
showed comparable N400 latency delays, a specific pattern of change in N400 latency versus amplitude 263 
remains to be characterized. 264 

Similarly, subconcussive changes in the N100 have been replicated across a number of prior 265 
studies. While the studies have reported only N100 amplitude changes, the direction of the effects has 266 
varied (i.e., decreases, increases, and correlated variability (Fickling et al. 2019; Fickling, Smith, et al. 2021; 267 
Fickling, Poel, et al. 2021). In prior linear regression analyses of the relationship between brain vital signs 268 
and helmet mounted accelerometers, inclusion of the N100 with the N400 provided additional 269 
explanatory variance (Fickling, Poel, et al. 2021). Consequently, N100 changes suggest that subconcussive 270 
impairments can span from lower-level sensory processing to higher level cognitive processing. As with 271 
the N400 above, the common preliminary results showing N100 changes in both female and male athletes 272 
do not rule out the possibility of specific differences. Indeed, examination of the female and male 273 
waveforms shows early sensory and attention differences in other ERP components (see below). 274 
 Of note, the current findings are the first to compare brain vital signs between high- and low-275 
contact groups using a between-subjects design. To anchor to prior studies, a direct evaluation of the 276 
within-subjects pre- versus post- design has also demonstrated a significant delay in the N400 latency 277 
(Supplemental Data 2). The contribution of a control group is an important step, with the interpretation 278 
further underpinned by the nature of the closely matched comparison (i.e., related to questions about 279 
whether the effects are indeed attributable to subconcussive impact exposure). The student athletes in 280 
this study attended a private school with full time residence. Accordingly, all students follow a highly 281 
structured daily and weekly schedule, matched across programs, activities, diet, sleep, physical fitness, 282 
rest, and related factors. 283 

Another novel aspect of the current study was the ability to begin exploring differences between 284 
a single term versus two or more terms of exposure to subconcussive impacts (Supplemental Data 4). 285 
While preliminary, the findings suggested that there may be a graded effect of exposure on the N400 peak 286 
latency (Supplemental Data 4). These results highlighted important questions related to tracking the 287 
extent of exposure with increased temporal resolution to characterize the changes over time. As reflected 288 
in the study design (Figure 1), a large cohort of these students were also re-evaluated after the summer 289 
break to determine whether this duration of rest resulted in a return to pre- baseline levels following post- 290 
subconcussive changes. Evaluation of these results are currently being analyzed as a follow-up study. 291 
While the emerging subconcussive findings are concerning, the demonstrated utility of using brain vital 292 
signs to objectively identify acute cognitive changes associated with repeated impact exposure has 293 
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enabled clinical trials on potential interventions. A recent study on subconcussion focused on a 294 
prospective randomized placebo-controlled trial evaluating the effect of a dietary supplement effects 295 
created to reduce neuroinflammation and support energy production, on brain structure and function in 296 
Junior-A ice hockey players (Breuer et al. 2023). Breuer et al. (2023) randomized players into two groups: 297 
a group that took a supplement containing a combination of non-pharmacological ingredients shown to 298 
support brain health (Synaquell™ - Thorne Research Inc., NY, USA) daily over the season and a placebo 299 
control group who followed the same protocol without supplementation. Multivariate analyses showed 300 
significant neurocognitive pre- to post- season changes in only the control group, with significant negative 301 
impacts on the N100 and N400 along with reduced saccadic eye movement (King-Devick Test) and 302 
neurofilament light chain measures. 303 

 304 
Female and male comparison 305 

Robust P300 and N400 differences between female and male athletes were shown with and 306 
without subconcussive contact exposure as a factor. While the significant P300 and N400 differences 307 
demonstrated larger amplitudes for female athletes, examination of the overall waveforms showed this 308 
finding generally across all ERP responses. There are at least two potential factors related to interpretation 309 
of the difference between female and male athletes. One factor may relate to general attention difference 310 
during the approximately 6-minute test time, whereby female athletes showed increased sustained 311 
attention on average relative to male athletes. In this case, improved sustained attention to the task 312 
would result in a higher signal-to-noise ratio in the signal averaged ERPs and consequently higher response 313 
amplitudes. Alternatively, another factor may relate to a fundamental difference in ERP response size 314 
between female and male individuals. While these two factors are not mutually exclusive, the notable 315 
differences in baseline variance suggested sustained attention during the test time is likely a factor (Figure 316 
5). Differences in attention between female and male participants has been noted in prior literature, but 317 
these results are still mixed (Davidson, Cave, and Sellner 2000; Solianik, Brazaitis, and Skurvydas 2016; 318 
Riley et al. 2016).  319 
 As mentioned above, despite the subconcussive similarities between female and male athletes, it 320 
is too early to exclude differences, as an “absence of evidence is not evidence of absence.” For instance, 321 
examination of the ERP waveforms (Figure 4) shows noteworthy subconcussive differences in responses 322 
outside of the N100, P300, and N400. In particular, there appears to be a subconcussive reduction in the 323 
N200-P200 difference in female athletes, which is not present in male athletes. The N200-P200 is 324 
associated with early perceptual-attentional processing (Portella et al. 2012; D’Arcy, Connolly, and 325 
Crocker 2000; Patel and Azzam 2005), and further research should explore this in the context of sex-326 
specific changes in subconcussion and head-impact exposure. With respect to this, the clinical importance 327 
of even small attentional impairments can consequently have a larger impact on high-level processing for 328 
individuals in attention demanding professions. For example, we identified early on in clinical concussion 329 
evaluation that these changes can have a compounding effect on high demand jobs such as air traffic 330 
controllers relative to less attentionally-demanding positions (Mateer and D’Arcy 2000). A comparable 331 
impact may be a consideration for enhanced sustained attention processing in female athletes. Given 332 
recent advances in understanding functional neuroanatomical differences (Andrushko et al. 2023), further 333 
studies needed to better characterize female- versus male- specific subconcussive profiles.  334 
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 335 
Limitations and Future Directions 336 
  The current study included data across a large sample made up of smaller subsets across different 337 
sports, with differing contact levels. While this was beneficial to create a large sample size for this study, 338 
larger subsets of groups pertaining to each specific sport would help elucidate sport-specific differences. 339 
Similarly, history of high-contact sport participation and concussion are important variables that may 340 
affect the current state of participants. Nonetheless, the current study is the first in a continuing 341 
investigation that will subsequently focus on specific sports and recovery times following subconcussive 342 
impairment in contact sport. Future studies will expand to focus on recovery effects and differences 343 
following summer break. Also, the current study combined subjects in grades 10-12 in a highly structured 344 
school environment; however, previous work has shown differing neurological developmental rates 345 
between female and male adolescents (Paus 2010; Kaczkurkin, Raznahan, and Satterthwaite 2019; Gur 346 
and Gur 2016), which may have been a factor for female and male-specific profiles. Future work will 347 
include larger age subset sizes and longitudinal analyses, as well as controlling for age as a co-variate in 348 
future models, to have a better understanding of developmental differences between female and male 349 
individuals. Finally, the current study did not track important biological factors that differ between female 350 
and male athletes. These factors include but are not limited to menstrual cycle phase at time of exposure 351 
or in the case of multiple exposures, when the majority of exposures occurred (menstrual phase has been 352 
a predictor of mild TBI outcome (Wunderle et al. 2014) and progesterone shows neuroprotective as a TBI 353 
treatment (Wright et al. 2007)); body fat percentages given recent understanding of fat being a major 354 
endocrine organ (Musi and Guardado-Mendoza 2014); and diet given the understanding of diet impact 355 
on inflammation and brain function (Patel et al. 2023; Markovic et al. 2021). With clear neurophysiological 356 
differences identified between females and males, future work must include expanded characterization 357 
of these key biological factors to understand change that may affect results at the time of evaluation. 358 
Lastly, to better understand the resulting effect of these subconcussive neurophysiological changes and 359 
differences, additional study variables should include heart rate variability data to understand clinical and 360 
sub-clinical autonomic dysfunction and time to recovery, as well as changes in sleep and endocrine levels 361 
due to RHI, as TBI may lead to endocrine changes, specifically in developing adolescents (Richmond and 362 
Rogol 2014). 363 
 364 

Conclusion 365 
With increasing attention on subconcussive impairments and potential interventions to limit 366 

future risks (e.g., long-term neuropsychiatric impairment, chronic traumatic encephalopathy – CTE), the 367 
current findings provide a large sample demonstration of subconcussive changes between closely 368 
matched high- versus low-contact student athletes that replicate previous investigations. The findings 369 
provide strong support for continued focus on the role of subconcussive injuries in sport-related brain 370 
health research. Importantly, as this field of study has historically focused on male athletes, inclusion of 371 
female athletes in the current findings represents a critical milestone towards understanding specific 372 
neurophysiological differences before and after exposure to subconcussive impacts. Initial results strongly 373 
support continued investigations that span beyond male athletes in helmeted contact sports. 374 

 375 
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Methods 376 
 377 

A total of 89 high school students were scanned 231 times over the year (34 females and 55 378 
males). In total, 8 scans were removed due to attrition, 12 scans had a data collection error, failing to 379 
produce scan data, 5 due to dropping all epochs for a condition (i.e. deviant tones), and 4 due to excess 380 
noise (N=202 scans). For analysis and results we ended with N=81, n=202 (33 females and 48 males). The 381 
current study focused on a scan-based between contact groups analysis, instead of a pre-post subject 382 
based within-subjects analysis. I.e. results from a subject scan after a season of low contact sport would 383 
be characterized as a low contact data point (not a benchmark or pre data point), while if that same 384 
subject had a separate scan later in the school year after 2 terms of high contact, that scan would be 385 
characterized as a high contact data point. This was done to maximize the total data point number for 386 
analyses and provide more equal weighting across groups, as opposed to a repeated measure subject-387 
based analysis including only subjects that had not had any contact immediately prior to the study. 388 

All healthy participants were in grades 10 through 12 (age range: 15-17), fluent in English, no 389 
history of concussion in the past 6-months, no self-reported problems with brain function, and had no 390 
hearing problems. All participants were recruited from Brentwood College School athletic programs, 391 
which involve either high-contact (e.g., rugby, ice-hockey, soccer, field hockey, jujitsu, and basketball) or 392 
no-contact/low-contact sports (e.g., rowing, tennis, and climbing) over three distinct three-month terms 393 
in the school year (Fig. 1). As described above, Brentwood is a private boarding school in which all students 394 
follow a structured daily schedule and a similar diet, exercise, and sleep schedule throughout the 395 
academic year. Accordingly, participants were closely matched across a wide number of typical lifestyle 396 
factors. The study had Advarra institutional research ethics board approval and all participants along with 397 
their guardians provided informed consent. 398 
 399 

Data Collection 400 
The brain vital sign framework (Ghosh Hajra et al. 2016) was employed with the NeuroCatch® 401 

Platform (Version 1.1), which uses EEG to rapidly extract the N100, P300, and N400 ERPs. All three ERPs 402 
were stimulated using a compressed and standardized auditory stimulus sequence (approximately 6 403 
minutes) consisting of sets of tones and spoken word pairs. The brain vital signs framework utilizes an 404 
oddball paradigm, involving frequent standard tones with infrequent oddball tones, which elicit the N100 405 
and P300 components. The tone stimuli precede word pairs, which are either matched or mismatched 406 
semantically-related word-pair primes (e.g., match: bread-butter; mismatch: bread-window) to elicit the 407 
N400 component. Participants passively listened to the stimuli and decided if the word pairs matched or 408 
mismatched. 409 

Participants were fitted with an elasticized cloth cap containing an 8-channel EEG amplifier with 410 
standardized electrode locations (Fz, Cz, & Pz). Three additional electrodes were placed on the 411 
participant’s forehead to record the ground (GND) and electrooculogram (vEOG, hEOG) signals. A 412 
reference electrode was clipped to the participant’s right earlobe. Standard EEG skin preparation (70% 413 
isopropyl alcohol wipes) and conductive gel products (SignaGel) were used to ensure appropriate contact 414 
for all EEG sensors. Distractions were mitigated by performing the scans in a quiet and closed classroom. 415 
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The same environment was used for all scans. Participants were asked to listen attentively to the stimuli, 416 
but no active response was required. To reduce motor and ocular artifacts, participants were instructed 417 
to sit motionlessly, and maintain visual fixation on a cross positioned at eye level 2 m away.  418 
 419 
 420 

Data Processing  421 
The NeuroCatch® Platform was calibrated for any trigger latency delays. The most common delay 422 

was identified and applied to shift all trigger data. EEG data were processed using a fourth order 423 
Butterworth filter (0.5-10 Hz) and a Notch filter (60 Hz). Adaptive filtering using electrooculogram 424 
channels was used to correct for ocular artifacts. EEG was epoched based on stimulus events using an 425 
epoch from -100ms pre-stimulus to 1000ms post-stimulus. All epochs were linearly detrended and any 426 
epochs with noise exceeding ±75μV were rejected. N100, P300, and N400 peaks were calculated using 427 
the maximal peak within a standard temporal window and manually verified. Amplitude and latency 428 
metrics from these peaks were then linearly transformed into standardized scores on a scale from 0 to 429 
100, derived from entire group means (Fickling et al. 2019). All preprocessing was completed in Python 430 
using the Scipy and MNE libraries.  431 

 432 
 433 

Statistical Analysis 434 
All individual-level statistical analyses of peak amplitude and latencies were performed using 435 

SPSS (Version 29.0.0, IBM, NY, USA). In the current study, individual-level can be defined as amplitudes 436 
and latencies from each individual scan data, not derived from the group-level average waveforms. To 437 
assess differences in brain vital signs between contact groups and sex, brain vital sign scores were 438 
compared using a multivariate analysis of variance (MANOVA) (Between: Group: low-contact and high-439 
contact; Sex: Female and Male) on N100, P300, and N400 amplitudes and latencies for only scans 440 
characterized as low-contact or high-contact for two or more terms. To further assess differences in 441 
brain vital signs between sex in a larger number of scans, brain vital sign scores were compared using a 442 
multivariate analysis of variance (MANOVA) (Between: Sex: Female and Male) on N100, P300, and N400 443 
amplitudes and latencies for all 202 scans collected. All univariate results are adjusted for multiple 444 
comparisons using Bonferroni adjustment. All statistics were also rerun only with subjects with less than 445 
50% of epochs dropped (12 of 202 scans dropped) due to the 75μV thresholding measures mentioned 446 
above. To keep our participant number large and because the analysis resulted in very similar outcomes, 447 
the current manuscript reports the statistics from the full group data, including subjects with more than 448 
50% of epochs dropped. 449 

 450 
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