

- ⁷ Clinical Laboratory, General Hospital of Ningxia Medical University, Yinchuan,
- 24 China
- ⁸ Clinical Laboratory, The First People's Hospital of Foshan, Foshan, China
- ⁹ Clinical Laboratory, Sichuan Provincial People's Hospital, Sichuan Academy of
- 27 Medical Sciences, Chengdu, China
- 10 Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou,
- 29 China
- 30 ¹¹ Clinical Laboratory, Meizhou People's Hospital, Meizhou, China
- ¹² Clinical Laboratory, Zhongshan People's Hospital, Zhongshan, China
- 13 Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University,
- 33 Guangzhou, China
- ³⁴**Running title:** Epidemiology of vancomycin-resistant *Enterococcus faecium*
- 35
- ³⁶***These authors contributed equally to this article**
-
- 38 †**Corresponding author:**
- ³⁹**Cha Chen, M.D, Professor**
- 40 Mailing address: The Second Clinical Medical College, Guangzhou University of
- ⁴¹Chinese Medicine, Neihuanxi Road, Guangzhou 510080, China. Email:
- 42 chencha@gzucm.edu.cn, chencha906@163.com
- ⁴³**Cong Shen, Ph. D**
- ⁴⁴Mailing address: The Second Clinical Medical College, Guangzhou University of

- ⁴⁵Chinese Medicine, Neihuanxi Road, Guangzhou 510080, China. Email:
- ⁴⁶shencong@gzucm.edu.cn, shencong456@163.com

⁴⁷**Bin Huang, Ph. D, Professor**

- 48 Mailing address: The First Affiliated Hospital of Sun Yat-sen University, Guangzhou,
- ⁴⁹China. Zhongshan 2nd Road, Guangzhou 510080, China. Email:
- 50 huangb3@mail.sysu.edu.cn

⁵¹**Abstract**

⁵²**Background**

- ⁵³The surveillance system revealed that the prevalence of vancomycin-resistant
- ⁵⁴*Enterococcus faecium* (VREfm) has increased. We aim to investigate the
- 55 epidemiological and genomic characteristics of VREfm in China.

⁵⁶**Methods**

- ⁵⁷We collected 20747 non-redundant *E. faecium* isolates from inpatients across 19
- 58 hospitals in six provinces between Jan 2018 and June 2023. VREfm was confirmed by
- 59 antimicrobial susceptibility testing. The prevalence was analyzed using changepoint
- ⁶⁰package in R. Genomic characteristics were explored by whole-genome sequencing
- 61 and bioinformatic analysis.
- ⁶²**Results**
- ⁶³5.59% (1159/20747) of *E. faecium* isolates were resistant to vancomycin. The
- 64 prevalence of VREfm increased in Guangdong province from 5% before 2021 to
- 65 20%-50% in 2023 (p<0.0001), but not in the other five provinces. The two
- 66 predominant clones before 2021, ST17 and ST78, were substituted by an emerging
- 67 clone, ST80, from 2021 to 2023 (88.63%, 195/220). All ST80 VREfm from
- ⁶⁸Guangdong formed a single lineage (SC11) and were genetically distant from the
- ⁶⁹ST80 VREfm from other countries, suggesting a regional outbreak. All ST80 VREfm
- 70 in SC11 carried a new type of plasmid which harbored a *vanA* cassette (*vanRSHAXYZ*)
- 71 flanked by Tn1546/Tn3 clusters. However, no conjugation-related gene was detected
- ⁷²and no transconjugant was obtained in conjugation experiment, indicating that the

73 outbreak of ST80 VREfm could be attributed to clonal transmission.

⁷⁴**Conclusions**

- ⁷⁵We revealed an ongoing outbreak of ST80 VREfm with a new *vanA*-harboring
- 76 plasmid in Guangdong, China. This clone has also been identified in other provinces
- 77 and countries, foreboding a risk of wider spreading shortly. Continuous surveillance is
- 78 needed to inform public health interventions.

- ⁸⁰**Keywords**: *Enterococcus faecium*, ST80, vancomycin, molecular epidemiology,
- 81 whole-genome sequencing.

82

⁸³**Running title:** Outbreak of ST80 VREfm in Guangdong, China

⁸⁴**1. Introduction**

¹⁰⁶**2. Subjects**

¹²⁰**3.1 Clinical samples and identification of** *E. faecium*

121 Samples from patients with infections with *E. faecium* were collected as part of

- 122 routine clinical management and/or hospital surveillance. Clinical samples (urine,
- 123 blood, sputum, wound samples) from patients were plated on Columbia blood agar
- 124 (CBA) with 5% sheep blood (Luqiao, Beijing, China). Species identification was
- 125 confirmed by MALDI-TOF MS (Biotyper version 3.2, Bruker Daltonik GmbH,
- 126 Bremen, Germany).
-

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2024.03.20.24304567;](https://doi.org/10.1101/2024.03.20.24304567) this version posted March 20, 2024. The copyright holder for this preprint

¹²⁸**3.2 Antimicrobial susceptibility testing**

- 129 Vancomycin susceptibility testing was performed using the VITEK 2 (bioMérieuxTM)
- 130 automated system. Minimum inhibitory concentrations (MICs) for 13 antimicrobials
- 131 were determined by the broth dilution method.
- 132 We extracted the MIC breakpoints used to define resistance and non-susceptibility in
- ¹³³*E. faecium* for the thirteen antimicrobials studied, including EUCAST
- ¹³⁴epidemiological cut-offs, EUCAST clinical breakpoints v12.0 and CLSI breakpoints
- ¹³⁵(M100-S33). Non-susceptibility is defined as the category comprising both the
- 136 intermediate and the resistance categories. EUCAST clinical breakpoints were chosen
- 137 preferentially. For antibiotics with no EUCAST clinical breakpoints set (i.e.
- 138 daptomycin, rifampicin, erythromycin, and nitrofurantoin), we used CLSI breakpoints
- 139 instead (Table 1).
-

¹⁴¹**3.3 Changepoint analysis of VREfm prevalence**

- 142 A three-month moving average approach was used to remove noise of monthly
- 143 VREfm prevalence. The changepoint detection was conducted to identify the
- ¹⁴⁴significant changes. The function of cpt.meanvar from the changepoint package was
- 145 used to explore a variety of penalty values and methods, retaining the most
- 146 consistently identified changepoints with the proposed pruned exact linear time
- 147 (PELT) algorithm [9].
-
-

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2024.03.20.24304567;](https://doi.org/10.1101/2024.03.20.24304567) this version posted March 20, 2024. The copyright holder for this preprint

¹⁵⁰**3.4 Whole-genome sequencing and bioinformatic analysis of VREfm isolates**

- 151 For VREfm collected from Jan 2021 to Jun 2023 in Guangdong, we randomly
- 152 selected a subset $(20\%, n=220)$ of isolates from each month for WGS. For VREfm
- 153 collected from 2014 to 2020, or from other province, all isolates $(n=91)$ were included
- 154 for WGS due to its low prevalence. DNA was extracted and sequenced by Illumina
- ¹⁵⁵Hiseq 4000 platform. Draft genome was assembled using SPAdes v.13.1 [10]. *In*
- ¹⁵⁶*silico* multilocus sequence typing (MLST), antimicrobial resistance genes (ARGs),
- 157 virulence factors (VFs), insertion sequence (IS), and plasmid replicon were
- 158 established using ABRicate v0.2 [11-13]. Pan-genome analysis was done using Roary
- ¹⁵⁹v3.11.2, and core genome single-nucleotide polymorphisms (cgSNPs) were extracted
- 160 using SNP-sites [14, 15]. Phylogeny was constructed by RAxML using cgSNPs [16].
- 161 Sequence cluster (SC) was defined using hierBAPS [17]. Five representative isolates
- 162 that harbored *vanA*-plasmids were sequenced by Illumina PacBio RSII system. The
- 163 plasmid sequence was circled by Pilon, and plasmid structures were compared by

164 Easyfig [18, 19].

165

¹⁶⁶**3.5 Plasmid conjugation assay**

167 Plasmid conjugation was performed using fusidic acid-resistant *Enterococcus faecium*

168 BM4105 as the recipient. Donor and recipient isolates were cultured overnight and

- 169 sub-cultured at a 1:100 ratio for 3 hours at 37°C. Then, the donor and recipient were
- 170 mixed at a 1:9 ratio and incubated stationary for 6 hours at $37\degree$. Transconjugants
- 171 were selected on BHI agar plates supplemented with fusidic acid (50 mg/L) and

172 vancomycin (8 mg/L), and verified using MALDI-TOF and PCR for *vanA*.

173

¹⁷⁴**3.6 Statistical analyses**

- 175 Statistical analyses and random selection were performed using R v3.4. Differences in
- 176 antimicrobial resistance rates were assessed using the Fisher's exact test. Given that
- ¹⁷⁷MICs were derived from isolate growth in doubling dilutions of antimicrobials, MIC
- 178 values were log2-transformed. Differences in distributions of MICs and cgSNPs
- 179 between groups assessed using Wilcoxon-Mann-Whitney tests. A p-value <0.05 was
- 180 considered significant.
-
- ¹⁸²**4. Results**

¹⁸³**4.1 The prevalence of VREfm increased in Guangdong Province, China after**

- ¹⁸⁴**²⁰²¹**
- ¹⁸⁵Among 19 hospitals from six provinces, 20747 non-redundant *E. faecium* isolates
- 186 were collected from Jan 2018 to June 2023. Overall, 5.59% (1159/20747, 95%)
- 187 confidence interval [CI]: 5.27%-5.90%) of *E. faecium* isolates were resistant to
- 188 vancomycin (Figure 1). 54.79% (n=635) of VREfm were collected from urine
- 189 samples, followed by blood $(7.77\%, n=90)$, wound $(6.99\%, n=81)$ and sputum $(4.49\%, n=81)$
- 190 $n=52$). The median age of patients infected with VREfm was 70 years (interquartile
- 191 range: 57-79).
- 192
-

13

282

304

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2024.03.20.24304567;](https://doi.org/10.1101/2024.03.20.24304567) this version posted March 20, 2024. The copyright holder for this preprint

370 study, a small proportion of *vanA*-harboring ST80 VREfm co-carried *vanM*,

- 371 suggesting a rapid genomic interaction occurring in various lineages of ST80 VREfm.
-

³⁷³We found a new type of *vanA*-harboring plasmid associated with the outbreak clone of

- ³⁷⁶*vanA*-plasmid among VREfm populations. However, the sequence analysis and
- 377 plasmid conjugation experiments showed that this plasmid is not conjugative, at least
- ³⁷⁸*in vitro* and under the conditions tested in this study. This means that the
- 379 dissemination and outbreak of *vanA*-harboring ST80 VREfm is likely caused by
- 380 acquisition of insertion sequence element and clonal transmission. This new type of
- 381 plasmid has been detected in ST80 VREfm from Beijing and Sichuan province,
- 382 indicating a potential risk of spreading and outbreak in the future.
-
- ³⁸⁴Our study has several limitations. First, while our study has shed light on the
- 385 emergence and dramatic increase of ST80 VREfm in Guangdong, the genomic
- 386 epidemiological data we have presented may not be generalisable throughout China.
- 387 According to data published by CHINET, the prevalence of VREfm increased solely
- 388 in Guangdong province from January to June in 2023, which is in line with the
- 389 observations made in our study. Second, the underlying contributors to the rapid
- 390 transmission and outbreak of ST80 VREfm have yet to be determined, especially the
- ³⁹¹measures to contain COVID-19 were still being enforced during the initial half of

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2024.03.20.24304567;](https://doi.org/10.1101/2024.03.20.24304567) this version posted March 20, 2024. The copyright holder for this preprint

⁴⁰⁵**Author contributions**

- ⁴⁰⁶CS, LL, and YX contributed equally in this study. CS drafted the first version of the
- 407 manuscript, which was reviewed and edited by CC and BH. CS, LL, and YX were
- 408 responsible for concept, bioinformatical and statistical analyses. CS, LL, YX, HZ, JZ,
- ⁴⁰⁹LZ, JP, and JZ were responsible for the data collection and did the experiments. CS,
- 410 LL, YX, CC, BH, NZ, YJ, DC, GL, KW, MW, XG and JW were responsible for the
- ⁴¹¹sample collection. All authors had full access to all the data in the study and took
- 412 responsibility for the integrity of the data and the accuracy of the data analysis. All
- 413 authors reviewed, revised, and approved the final submission.

⁴¹⁴**Transparency declaration**

415 The authors declare no conflict of interest.

⁴¹⁶**Data Availability**

- ⁴¹⁷The genome assemblies of VREfm reported in this study have been deposited in the
- ⁴¹⁸NCBI GenBank genomic DNA database under BioProject accession number

419 PRJNA1003636.

⁴²⁰**Acknowledgements**

- 421 This work was supported by the National Natural Science Foundation of China (grant
- 422 numbers 82302598 to CS), Guangzhou Basic and Applied Foundation (grant number
- ⁴²³2023A04J0456 to CS), Guangdong Basic and Applied Research Foundation (grant
- ⁴²⁴number 2022A1515111171 to CS), China Postdoctoral Science Foundation (grant
- 425 numbers 2023T160150 and 2022M720922 to CS), Guangdong Provincial Hospital of

- 426 Chinese Medicine (grant numbers YN2022QN11 to CS), Guangdong Provincial Key
- 427 Laboratory of Research on Emergency in TCM (2023B1212060062 to CS).
-

Reference

- [1] Cairns KA, Udy AA, Peel TN, Abbott IJ, Dooley MJ, Peleg AY. Therapeutics for vancomycin-
- resistant enterococcal bloodstream infections. Clin Microbiol Rev. 2023;36:e0005922.
- http://doi.org/10.1128/cmr.00059-22
- [2] World Health Organization (WHO) Global Priority List of Antibiotic-Resistant Bacteria to Guide
- Research, Discovery, and Development of New Antibiotics. WHO; Geneva, Switzerland: 2017.
- [(accessed on 15 May 2018)]. Available online: http://www.who.int/medicines/publications/WHO-PPL-
- 436 Short_Summary_25Feb-ET_NM_WHO.pdf
- [3] Werner G, Neumann B, Weber RE, Kresken M, Wendt C, Bender JK, et al. Thirty years of VRE in
- Germany "expect the unexpected": The view from the National Reference Centre for *Staphylococci*
- and *Enterococci*. Drug Resist Updat. 2020;53:100732. http://doi.org/10.1016/j.drup.2020.100732
- [4] Rohde AM, Walker S, Behnke M, Eisenbeis S, Falgenhauer L, Falgenhauer JC, et al. Vancomycin-
- 441 resistant *Enterococcus faecium*: admission prevalence, sequence types and risk factors-a cross-sectional
- 442 study in seven German university hospitals from 2014 to 2018. Clin Microbiol Infect. 2023;29:515-22.
- http://doi.org/10.1016/j.cmi.2022.11.025
- [5] Lee RS, Goncalves da Silva A, Baines SL, Strachan J, Ballard S, Carter GP, et al. The changing
- landscape of vancomycin-resistant *Enterococcus faecium* in Australia: a population-level genomic
- study. J Antimicrob Chemother. 2018;73:3268-78. http://doi.org/10.1093/jac/dky331
- [6] Abdelbary MHH, Senn L, Greub G, Chaillou G, Moulin E, Blanc DS. Whole-genome sequencing
- revealed independent emergence of vancomycin-resistant *Enterococcus faecium* causing sequential
- 449 outbreaks over 3 years in a tertiary care hospital. Eur J Clin Microbiol Infect Dis. 2019;38:1163-70.
- 450 http://doi.org/10.1007/s10096-019-03524-z
- [7] Sundermann AJ, Babiker A, Marsh JW, Shutt KA, Mustapha MM, Pasculle AW, et al. Outbreak of
- vancomycin-resistant *Enterococcus faecium* in interventional radiology: Detection through whole-
- 453 genome sequencing-based surveillance. Clin Infect Dis. 2020;70:2336-43.

454 http://doi.org/10.1093/cid/ciz666

- ⁴⁵⁵[8] Peng Z, Yan L, Yang S, Yang D. Antimicrobial-resistant evolution and global Spread of
- 456 *Enterococcus faecium* clonal complex (CC) 17: Progressive change from gut colonization to hospital-
- ⁴⁵⁷adapted pathogen. China CDC Wkly. 2022;4:17-21. http://doi.org/10.46234/ccdcw2021.277
- ⁴⁵⁸[9] Killick R, Eckley IA. changepoint: An R package for changepoint analysis. Journal of Statistical
- 459 Software. 2014;58:1 19. http://doi.org/10.18637/jss.v058.i03
- ⁴⁶⁰[10] Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new
- 461 genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol.
- ⁴⁶²2012;19:455-77. http://doi.org/10.1089/cmb.2012.0021
- ⁴⁶³[11] Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. ResFinder 4.0 for
- 464 predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75:3491-500.
- ⁴⁶⁵http://doi.org/10.1093/jac/dkaa345
- ⁴⁶⁶[12] Carattoli A, Hasman H. PlasmidFinder and In Silico pMLST: Identification and typing of plasmid
- 467 replicons in whole-genome sequencing (WGS). Methods Mol Biol. 2020;2075:285-94.
- ⁴⁶⁸http://doi.org/10.1007/978-1-4939-9877-7_20
- ⁴⁶⁹[13] Liu B, Zheng D, Zhou S, Chen L, Yang J. VFDB 2022: a general classification scheme for
- 470 bacterial virulence factors. Nucleic Acids Res. 2022;50:D912-D7. http://doi.org/10.1093/nar/gkab1107
- ⁴⁷¹[14] Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. Roary: rapid large-scale
- 472 prokaryote pan genome analysis. Bioinformatics. 2015;31:3691-3.
- 473 http://doi.org/10.1093/bioinformatics/btv421
- ⁴⁷⁴[15] Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, et al. SNP-sites: rapid efficient
- 475 extraction of SNPs from multi-FASTA alignments. Microb Genom. 2016;2:e000056.
- 476 http://doi.org/10.1099/mgen.0.000056
- 477 [16] Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-
- 478 friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453-5.
- 479 http://doi.org/10.1093/bioinformatics/btz305
- ⁴⁸⁰[17] Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. RhierBAPS: An R implementation
- 481 of the population clustering algorithm hierBAPS. Wellcome Open Res. 2018;3:93.
- **482** http://doi.org/10.12688/wellcomeopenres.14694.1

- ⁴⁸³[18] Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool
- 484 for comprehensive microbial variant detection and genome assembly improvement. PLoS One.
- ⁴⁸⁵2014;9:e112963. http://doi.org/10.1371/journal.pone.0112963
- ⁴⁸⁶[19] Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics.
- ⁴⁸⁷2011;27:1009-10. http://doi.org/10.1093/bioinformatics/btr039
- ⁴⁸⁸[20] Liu S, Li Y, He Z, Wang Y, Wang J, Jin D. A molecular study regarding the spread of *vanA*
- 489 vancomycin-resistant *Enterococcus faecium* in a tertiary hospital in China. J Glob Antimicrob Resist.
- 490 2022;31:270-8. http://doi.org/10.1016/j.jgar.2022.10.010
- ⁴⁹¹[21] Sun HL, Liu C, Zhang JJ, Zhou YM, Xu YC. Molecular characterization of vancomycin-resistant
- ⁴⁹²*Enterococci* isolated from a hospital in Beijing, China. J Microbiol Immunol Infect. 2019;52:433-42.
- 493 http://doi.org/10.1016/j.jmii.2018.12.008
- ⁴⁹⁴[22] Yan MY, He YH, Ruan GJ, Xue F, Zheng B, Lv Y. The prevalence and molecular epidemiology of
- 495 vancomycin-resistant *Enterococcus* (VRE) carriage in patients admitted to intensive care units in
- 496 Beijing, China. J Microbiol Immunol Infect. 2023;56:351-7. http://doi.org/10.1016/j.jmii.2022.07.001
- ⁴⁹⁷[23] Sun L, Qu T, Wang D, Chen Y, Fu Y, Yang Q, et al. Characterization of *vanM* carrying clinical
- ⁴⁹⁸*Enterococcus* isolates and diversity of the suppressed *vanM* gene cluster. Infect Genet Evol.
- ⁴⁹⁹2019;68:145-52. http://doi.org/10.1016/j.meegid.2018.12.015
- ⁵⁰⁰[24] Yang J, Yuan Y, Tang M, Liu L, Yang K, Liu J. Phenotypic and genetic characteristics of
- 501 vancomycin-resistant *Enterococcus faecium*. Microb Pathog. 2019;128:131-5.
- 502 http://doi.org/10.1016/j.micpath.2018.12.046
- ⁵⁰³[25] Zhou W, Zhou H, Sun Y, Gao S, Zhang Y, Cao X, et al. Characterization of clinical enterococci
- ⁵⁰⁴isolates, focusing on the vancomycin-resistant *Enterococci* in a tertiary hospital in China: based on the
- 505 data from 2013 to 2018. BMC Infect Dis. 2020;20:356. http://doi.org/10.1186/s12879-020-05078-4
- ⁵⁰⁶[26] Egan SA, Kavanagh NL, Shore AC, Mollerup S, Samaniego Castruita JA, O'Connell B, et al.
- ⁵⁰⁷Genomic analysis of 600 vancomycin-resistant *Enterococcus faecium* reveals a high prevalence of
- ⁵⁰⁸ST80 and spread of similar *vanA* regions via IS*1216E* and plasmid transfer in diverse genetic lineages
- 509 in Ireland. J Antimicrob Chemother. 2022;77:320-30. http://doi.org/10.1093/jac/dkab393
- ⁵¹⁰[27] Leong KWC, Cooley LA, Anderson TL, Gautam SS, McEwan B, Wells A, et al. Emergence of
- 511 vancomycin-resistant *Enterococcus faecium* at an Australian hospital: A whole genome sequencing

- 512 analysis. Sci Rep. 2018;8:6274. http://doi.org/10.1038/s41598-018-24614-6
- ⁵¹³[28] Pinholt M, Bayliss SC, Gumpert H, Worning P, Jensen VVS, Pedersen M, et al. WGS of 1058
- 514 *Enterococcus faecium* from Copenhagen, Denmark, reveals rapid clonal expansion of vancomycin-
- 515 resistant clone ST80 combined with widespread dissemination of a *vanA*-containing plasmid and
- 516 acquisition of a heterogeneous accessory genome. J Antimicrob Chemother. 2019;74:1776-85.
- 517 http://doi.org/10.1093/jac/dkz118
- 518 [29] Pratama R, Beukers AG, McIver CJ, Keighley CL, Taylor PC, van Hal SJ. A *vanA* vancomycin-
- 519 resistant *Enterococcus faecium* ST80 outbreak resulting from a single importation event. J Antimicrob
- 520 Chemother. 2021;77:31-7. http://doi.org/10.1093/jac/dkab379
- 521 [30] Chen C, Sun J, Guo Y, Lin D, Guo Q, Hu F, et al. High prevalence of *vanM* in vancomycin-
- ⁵²²resistant *Enterococcus faecium* isolates from Shanghai, China. Antimicrob Agents Chemother.
- ⁵²³2015;59:7795-8. http://doi.org/10.1128/AAC.01732-15
- ⁵²⁴[31] Pidot S, Gao W, Buultjens A, Monk I, Guerillot R, Carter G, et al. Increasing tolerance of hospital
- ⁵²⁵*Enterococcus faecium* to handwash alcohols. Sci. Transl. Med. 2018;10:eaar6115.
- 526 http://doi.org/10.1126/scitranslmed.aar6115

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2024.03.20.24304567;](https://doi.org/10.1101/2024.03.20.24304567) this version posted March 20, 2024. The copyright holder for this preprint

- ⁵²⁹**this study.**
- 530

⁵³²**Figure 1. Geographic location of 19 hospitals from six provinces.**

- 533 Data showing in the box are $% (n/N)$. %, prevalence of VREfm. n, Number of VREfm.
- 534 N, sample size of *E. faecium*.

- ⁵³⁶**Figure 2. Time series of monthly VREfm prevalence in Guangzhou city (A),**
- ⁵³⁷**Guangdong province except for Guangzhou city (B) and other five provinces (C),**
- ⁵³⁸**January 2018-June 2023.**The solid line represents the three-month moving average
- 539 data of VREfm prevalence for each hospital. Vertical dashed lines indicate significant
- 540 changepoints identified in the changepoint analysis.
- 541

⁵⁴²**Figure 3. Minimum-spanning tree (A) and dynamic changes (B and C) of MLST**

⁵⁴³**distribution from 2014-2023.**

⁵⁴⁴(A) Each circle corresponds to a unique ST. The number outside the circle indicates

- 545 ST number. The size of the circle represents the number of isolates belonging to the
- 546 same ST. The colors inside the circle represent the proportion of the year of isolation.
- ⁵⁴⁷(B) and (C) The x-axis represents the year of isolates. The y-axis represents the

548 proportion of ST.

- ⁵⁵¹**VREfm isolates.**
- ⁵⁵²(A) Overall antimicrobial resistance rate. (B) Antimicrobial resistance rate between
- 553 ST80 and non-ST80 VREfm. VAN, Vancomycin. TEC, Teicoplanin. LNZ, Linezolid.
- ⁵⁵⁴TGC, Tigecycline. DAP, Daptomycin. RIF, Rifampicin. ERY, Erythromycin. AMP,
- ⁵⁵⁵Ampicillin. CIP, Ciprofloxacin. LVX, Levofloxacin. FOS, Fosfomycin. NIT,
- 556 Nitrofurantoin. HGEN, High concentration gentamicin.
-

```
558Figure 5. Phylogenetic tree and genomic characteristics of 311 VREfm isolates in 
559this study.
```
- 560 The ML phylogeny derived from cgSNPs is at the left of the plot. The lineage colors
- 561 in the first column denote sequence clusters (SCs). The second column represents the
- 562 ST. The red star in the third column represents the isolates carried the new type of
- ⁵⁶³*vanA*-harboring plasmid. The color strip in the fourth column represents the origin
- 564 where the isolate from. Light blue represents Guangzhou city; Light purple represents
- ⁵⁶⁵Guangdong province; Dark blue represents other provinces. The heatmaps from left to
- 566 right represents the presence of antimicrobial resistance genes (pink), virulence
- 567 factors (blue) and plasmid replicons (green).

⁵⁶⁹**Figure 6. Population structure of ST80 VREfm in different countries.**

⁵⁷⁰(A) The ML phylogeny was constructed using cgSNPs. The colored branch represents

- **Supplementary figure legends**
- **Supplementary figure 1. Distribution of location (A) and source (B) of 311**
- **VREfm isolates in minimum-spanning tree.**
- **Supplementary figure 2. Comparisons of MICs for 13 antimicrobials between**
- **ST80 and non-ST80 isolates.**
- 591 Vertical dash lines indicate the breakpoint of resistance according CLSI. Drug
- 592 abbreviations are as per figure 4.
- **Supplementary figure 3. Comparisons of ARGs, VFs and plasmid replicons**
- **between ST80 and non-ST80 VREfm.**
- 595 The calculations of statistical difference were done using student *t* test.

Figure 1. Geographic location of 19 hospitals from six provinces.

Figure 2. Time series of monthly VREfm prevalence in Guangzhou city (A), Guangdong province except for Guangzhou city (B) and other five provinces (C), January 2018-June 2023.

(A) Spanning tree

Figure 3. Minimum-spanning tree (A) and dynamic changes (B and C) of MLST distribution from 2014-2023.

(B) Gongdong province

(C) Other provinces

(A)

Figure 4. Antimicrobial susceptibility profiles of 13 antimicrobials for 311 VREfm isolates.

Figure 7. Genomic characteristics of the new type of *vanA*-harbouring plasmid.

Table 1. MIC breakpoints recommended by EUCAST, CLSI, and those used in this study.

EUCAST ECOFF extracted from https://mic.eucast.org/search/; EUCAST clinical breakpoints v13.0 download from https://www.eucast.org/clinical_breakpoints/; CLSI breakpoints extracted from CLSI M100-S33. CB, clinical breakpoint. CLSI, Clinical & Laboratory Standards Institute. ECOFF, epidemiological cut-off; EUCAST, The European Committee on Antimicrobial Susceptibility Testing; IE, insufficient evidence; ID, insufficient data; S, susceptible; I, intermediate; R, resistance; Non-S, non-susceptible; HGEN, high-level gentamycin resistance.