1	Emergence and ongoing outbreak of ST80 vancomycin-resistant Enterococcus
2	faecium in Guangdong province, China from 2021 to 2023: a multicenter, time-
3	series and genomic epidemiological study
4	
5	Cong Shen ^{1,2,#,*} , Li Luo ^{1,#} , Hongyun Zhou ^{1,#} , Yinglun Xiao ¹ , Jinxiang Zeng ¹ , Liling
6	Zhang ¹ , Jieying Pu ^{1,2} , Jianming Zeng ^{1,2} , Ni Zhang ³ , Yueting Jiang ⁴ , Lingqing Xu ⁵ ,
7	Dingqiang Chen ⁶ , Gang Li ⁷ , Kuihai Wu ⁸ , Hua Yu ⁹ , Min Wang ¹⁰ , Xuemin Guo ¹¹ , Juan
8	Wang ¹² , Bin Huang ^{13,*} , Cha Chen ^{1,*}
9	
10	¹ The Second Clinical Medical College, Guangzhou University of Chinese Medicine,
11	Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome,
12	Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
13	² Guangdong Provincial Key Laboratory of Research on Emergency in TCM,
14	Guangzhou, China.
15	³ Clinical Laboratory, Guangdong Provincial People's Hospital/Guangdong Academy
16	of Medical Sciences, Southern Medical University, Guangzhou, China
17	⁴ Clinical Laboratory, The First Affiliated Hospital of Guangzhou Medical University,
18	Guangzhou, China
19	⁵ The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's
20	Hospital
21	⁶ Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou,
22	China

- ⁷ Clinical Laboratory, General Hospital of Ningxia Medical University, Yinchuan,
- 24 China
- 25 ⁸ Clinical Laboratory, The First People's Hospital of Foshan, Foshan, China
- ⁹ Clinical Laboratory, Sichuan Provincial People's Hospital, Sichuan Academy of
- 27 Medical Sciences, Chengdu, China
- ¹⁰ Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou,
- 29 China
- 30 ¹¹ Clinical Laboratory, Meizhou People's Hospital, Meizhou, China
- 31 ¹² Clinical Laboratory, Zhongshan People's Hospital, Zhongshan, China
- 32 ¹³ Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University,
- 33 Guangzhou, China
- 34 **Running title:** Epidemiology of vancomycin-resistant *Enterococcus faecium*
- 35
- 36 *These authors contributed equally to this article
- 37
- 38 **†Corresponding author:**
- 39 Cha Chen, M.D, Professor
- 40 Mailing address: The Second Clinical Medical College, Guangzhou University of
- 41 Chinese Medicine, Neihuanxi Road, Guangzhou 510080, China. Email:
- 42 chencha@gzucm.edu.cn, chencha906@163.com
- 43 Cong Shen, Ph. D
- 44 Mailing address: The Second Clinical Medical College, Guangzhou University of

- 45 Chinese Medicine, Neihuanxi Road, Guangzhou 510080, China. Email:
- 46 shencong@gzucm.edu.cn, shencong456@163.com

47 Bin Huang, Ph. D, Professor

- 48 Mailing address: The First Affiliated Hospital of Sun Yat-sen University, Guangzhou,
- 49 China. Zhongshan 2nd Road, Guangzhou 510080, China. Email:
- 50 huangb3@mail.sysu.edu.cn

51 Abstract

52 Background

- 53 The surveillance system revealed that the prevalence of vancomycin-resistant
- 54 *Enterococcus faecium* (VREfm) has increased. We aim to investigate the
- 55 epidemiological and genomic characteristics of VREfm in China.

56 Methods

- 57 We collected 20747 non-redundant *E. faecium* isolates from inpatients across 19
- hospitals in six provinces between Jan 2018 and June 2023. VREfm was confirmed by
- 59 antimicrobial susceptibility testing. The prevalence was analyzed using changepoint
- 60 package in R. Genomic characteristics were explored by whole-genome sequencing
- 61 and bioinformatic analysis.
- 62 **Results**
- 63 5.59% (1159/20747) of *E. faecium* isolates were resistant to vancomycin. The
- 64 prevalence of VREfm increased in Guangdong province from 5% before 2021 to
- 20%-50% in 2023 (p<0.0001), but not in the other five provinces. The two
- 66 predominant clones before 2021, ST17 and ST78, were substituted by an emerging
- 67 clone, ST80, from 2021 to 2023 (88.63%, 195/220). All ST80 VREfm from
- 68 Guangdong formed a single lineage (SC11) and were genetically distant from the
- 69 ST80 VREfm from other countries, suggesting a regional outbreak. All ST80 VREfm
- 70 in SC11 carried a new type of plasmid which harbored a *vanA* cassette (*vanRSHAXYZ*)
- 71 flanked by Tn1546/Tn3 clusters. However, no conjugation-related gene was detected
- and no transconjugant was obtained in conjugation experiment, indicating that the

73 outbreak of ST80 VREfm could be attributed to clonal transmission.

74 Conclusions

- 75 We revealed an ongoing outbreak of ST80 VREfm with a new vanA-harboring
- 76 plasmid in Guangdong, China. This clone has also been identified in other provinces
- and countries, foreboding a risk of wider spreading shortly. Continuous surveillance is
- 78 needed to inform public health interventions.

79

- 80 Keywords: Enterococcus faecium, ST80, vancomycin, molecular epidemiology,
- 81 whole-genome sequencing.

82

83 **Running title:** Outbreak of ST80 VREfm in Guangdong, China

84 1. Introduction

85	Vancomycin-resistant Enterococcus faecium (VREfm) is one of the leading causes of
86	severe healthcare-associated infections, such as urinary tract infections, intra-
87	abdominal infections and bloodstream infections, which result in high mortality rates
88	and significant burdens of disease on human society [1-4]. Over the past decade,
89	VREfm has emerged in the hospital setting in high prevalence, causing outbreaks and
90	severe infections in Europe, America, and Australia [4-7]. Owing to the limited
91	therapeutic alternatives, VREfm were classified as high-priority pathogens among
92	antibiotic-resistant bacteria by the WHO [2].
93	
94	In China, the prevalence of VREfm has remained low (average <5%) in the past
95	decades, according to the China Antimicrobial Surveillance Network (CHINET)
96	(http://www.carss.cn/). Despite this low prevalence, VREfm infections are associated
97	with increased morbidity, mortality, healthcare costs and duration of hospital stay
98	compared with vancomycin-susceptible (VSE) infections [8]. The routine
99	surveillance of antimicrobial resistance in our hospital indicated that the prevalence of
100	VREfm has increased since January 2020. However, the epidemiological and genomic
101	characteristics of VREfm remain unknown.
102	
103	Herein, we collected VREfm isolates in 19 hospitals in six provinces in China from
104	January 2018 to June 2023, aiming to reveal the epidemiological and whole-genome
105	sequencing-based characteristics of the VREfm outbreak in Guangdong province.
	6

106 2. Subjects

119	3. Materials and methods
118	
117	number ZE2023-077).
116	Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China (Ethics
115	colonisation and were excluded. This study was approved by the ethics committee of
114	of infections. Patients who exhibited no infectious symptoms were classified as
113	the patients had typical clinical infectious symptoms and abnormal laboratory markers
112	were included if clinical samples were evidenced by a positive <i>E. faecium</i> culture, and
111	provinces or municipalities (Yunnan, Jiangsu, Sichuan, Ningxia and Beijing). Subjects
110	five hospitals in other five cities in Guangdong province, and six hospitals in five
109	Among them, eight hospitals are located in Guangzhou city of Guangdong province,
108	2018 to June 2023, in which 19 tertiary hospitals in China participated (Figure 1).
107	We conducted a multicenter and epidemiological survey of <i>E. faecium</i> from January

120 **3.1 Clinical samples and identification of** *E. faecium*

121 Samples from patients with infections with *E. faecium* were collected as part of

- 122 routine clinical management and/or hospital surveillance. Clinical samples (urine,
- 123 blood, sputum, wound samples) from patients were plated on Columbia blood agar
- 124 (CBA) with 5% sheep blood (Luqiao, Beijing, China). Species identification was
- 125 confirmed by MALDI-TOF MS (Biotyper version 3.2, Bruker Daltonik GmbH,
- 126 Bremen, Germany).
- 127

128 **3.2 Antimicrobial susceptibility testing**

- 129 Vancomycin susceptibility testing was performed using the VITEK 2 (bioMérieuxTM)
- 130 automated system. Minimum inhibitory concentrations (MICs) for 13 antimicrobials
- 131 were determined by the broth dilution method.
- 132 We extracted the MIC breakpoints used to define resistance and non-susceptibility in
- 133 *E. faecium* for the thirteen antimicrobials studied, including EUCAST
- 134 epidemiological cut-offs, EUCAST clinical breakpoints v12.0 and CLSI breakpoints
- 135 (M100-S33). Non-susceptibility is defined as the category comprising both the
- 136 intermediate and the resistance categories. EUCAST clinical breakpoints were chosen
- 137 preferentially. For antibiotics with no EUCAST clinical breakpoints set (i.e.
- 138 daptomycin, rifampicin, erythromycin, and nitrofurantoin), we used CLSI breakpoints
- instead (Table 1).
- 140

141 **3.3 Changepoint analysis of VREfm prevalence**

- 142 A three-month moving average approach was used to remove noise of monthly
- 143 VREfm prevalence. The changepoint detection was conducted to identify the
- significant changes. The function of cpt.meanvar from the changepoint package was
- 145 used to explore a variety of penalty values and methods, retaining the most
- 146 consistently identified changepoints with the proposed pruned exact linear time
- 147 (PELT) algorithm [9].
- 148
- 149

150 **3.4** Whole-genome sequencing and bioinformatic analysis of VREfm isolates

- 151 For VREfm collected from Jan 2021 to Jun 2023 in Guangdong, we randomly
- selected a subset (20%, n=220) of isolates from each month for WGS. For VREfm
- 153 collected from 2014 to 2020, or from other province, all isolates (n=91) were included
- 154 for WGS due to its low prevalence. DNA was extracted and sequenced by Illumina
- 155 Hiseq 4000 platform. Draft genome was assembled using SPAdes v.13.1 [10]. In
- 156 silico multilocus sequence typing (MLST), antimicrobial resistance genes (ARGs),
- 157 virulence factors (VFs), insertion sequence (IS), and plasmid replicon were
- established using ABRicate v0.2 [11-13]. Pan-genome analysis was done using Roary
- 159 v3.11.2, and core genome single-nucleotide polymorphisms (cgSNPs) were extracted
- using SNP-sites [14, 15]. Phylogeny was constructed by RAxML using cgSNPs [16].
- 161 Sequence cluster (SC) was defined using hierBAPS [17]. Five representative isolates
- that harbored *vanA*-plasmids were sequenced by Illumina PacBio RSII system. The
- 163 plasmid sequence was circled by Pilon, and plasmid structures were compared by

164 Easyfig [18, 19].

165

166 **3.5 Plasmid conjugation assay**

167 Plasmid conjugation was performed using fusidic acid-resistant *Enterococcus faecium*

168 BM4105 as the recipient. Donor and recipient isolates were cultured overnight and

- sub-cultured at a 1:100 ratio for 3 hours at 37°C. Then, the donor and recipient were
- 170 mixed at a 1:9 ratio and incubated stationary for 6 hours at $37\Box$. Transconjugants
- 171 were selected on BHI agar plates supplemented with fusidic acid (50 mg/L) and

172 vancomycin (8 mg/L), and verified using MALDI-TOF and PCR for *vanA*.

173

174 **3.6 Statistical analyses**

- 175 Statistical analyses and random selection were performed using R v3.4. Differences in
- antimicrobial resistance rates were assessed using the Fisher's exact test. Given that
- 177 MICs were derived from isolate growth in doubling dilutions of antimicrobials, MIC
- 178 values were log2-transformed. Differences in distributions of MICs and cgSNPs
- between groups assessed using Wilcoxon-Mann-Whitney tests. A p-value <0.05 was
- 180 considered significant.
- 181
- 182 **4. Results**

183 4.1 The prevalence of VREfm increased in Guangdong Province, China after

- 184 **2021**
- 185 Among 19 hospitals from six provinces, 20747 non-redundant *E. faecium* isolates
- 186 were collected from Jan 2018 to June 2023. Overall, 5.59% (1159/20747, 95%
- 187 confidence interval [CI]: 5.27%-5.90%) of *E. faecium* isolates were resistant to
- 188 vancomycin (Figure 1). 54.79% (n=635) of VREfm were collected from urine
- 189 samples, followed by blood (7.77%, n=90), wound (6.99%, n=81) and sputum (4.49%,
- 190 n=52). The median age of patients infected with VREfm was 70 years (interquartile
- 191 range: 57-79).
- 192
- 193

194	Time-series analysis showed that the prevalence of VREfm in all hospitals remained
195	low (<5%) before December 2020, except for two hospitals from Beijing were
196	fluctuated up to 20% (Figure 2). Remarkably, the prevalence of VREfm dramatically
197	increased up to 20%-50% after January 2021 (compared with 5% in 2014-2020,
198	p<0.0001) in the hospitals in Guangzhou City and other cities in Guangdong province
199	(Figure 2A and 2B). However, no significant increase was observed in the other five
200	provinces (Figure 2C). According to changepoint analysis, the increasing trend of
201	VREfm prevalence in Guangdong Province started between December 2020 and
202	December 2021 (mostly concentrated on January-June 2021), indicating an ongoing
203	outbreak of VREfm in Guangdong Province during the first half year of 2021 (Figure
204	2).
205	
206	4.2 MLST shift in dominating clones

207 To systematically investigate genomic characteristics, we randomly selected 291 208 VREfm isolates collected from 2018 to 2023 and 20 VREfm isolates from 2014 to 209 2017 in 19 hospitals for whole-genome sequencing. All isolates (N=311) were typed 210 into 22 sequence types (STs), of which all belong to hospital-associated E. faecium 211 clade A1 (Figure 3A and supplement figure 1). The most prevalent STs were ST80, 212 ST78 and ST17, which accounted for 82.99% (n=255) of VREfm. A total of 208 213 isolates (66.88%) belong to ST80, which have been rarely detected in China [8, 20-214 22], but commonly detected in Europe, Australia, and America [4-7].

215

11

216	We discovered that ST17 was predominant in Guangdong Province before December
217	2020 (55%, 11/20). Remarkably, ST80 appeared in 2021 and became predominant ST $$
218	from 2021 to 2023 (88.63%, 195/220), suggesting an outbreak of ST80 VREfm in
219	Guangdong Province (Figure 3B). In other provinces, ST78 was the most prevalent
220	ST from 2014 to 2021 (32.56%, 14/43). However, we observed that the predominant
221	ST in 2022 and 2023 has been changed to ST80 (32.14%, 9/28), even though the
222	prevalence of VREfm has not increased (Figure 3C). Our results demonstrated that
223	hospital-associated clade A1 VREfm is consistently endemic in China, while the
224	predominance of ST78 and ST17 could have been replaced by ST80 VREfm, which
225	implied a latent risk that ST80 VREfm could trigger an outbreak in other provinces
226	beyond Guangdong province.
227	
227 228	4.3 Antimicrobial susceptibility profile of VREfm
227 228 229	4.3 Antimicrobial susceptibility profile of VREfm Overall, more than 90% of VREfm isolates were non-susceptible to ampicillin (99.0%,
227 228 229 230	4.3 Antimicrobial susceptibility profile of VREfm Overall, more than 90% of VREfm isolates were non-susceptible to ampicillin (99.0%, n=308), followed by teicoplanin (98.4%, n=306), fosfomycin (98.1%, n=305),
227 228 229 230 231	4.3 Antimicrobial susceptibility profile of VREfm Overall, more than 90% of VREfm isolates were non-susceptible to ampicillin (99.0%, n=308), followed by teicoplanin (98.4%, n=306), fosfomycin (98.1%, n=305), ciprofloxacin (97.4%, n=303), and levofloxacin (96.7%, n=301) (Figure 4A). A low
227 228 229 230 231 232	4.3 Antimicrobial susceptibility profile of VREfm Overall, more than 90% of VREfm isolates were non-susceptible to ampicillin (99.0%, n=308), followed by teicoplanin (98.4%, n=306), fosfomycin (98.1%, n=305), ciprofloxacin (97.4%, n=303), and levofloxacin (96.7%, n=301) (Figure 4A). A low non-susceptible rate was observed in linezolid (0.3%, n=1) and tigecycline (9.3%,
227 228 229 230 231 232 232 233	4.3 Antimicrobial susceptibility profile of VREfm Overall, more than 90% of VREfm isolates were non-susceptible to ampicillin (99.0%, n=308), followed by teicoplanin (98.4%, n=306), fosfomycin (98.1%, n=305), ciprofloxacin (97.4%, n=303), and levofloxacin (96.7%, n=301) (Figure 4A). A low non-susceptible rate was observed in linezolid (0.3%, n=1) and tigecycline (9.3%, n=29). Notably, 16.7% (n=52) of VREfm are non-susceptible to daptomycin, which
227 228 229 230 231 232 233 233	4.3 Antimicrobial susceptibility profile of VREfm Overall, more than 90% of VREfm isolates were non-susceptible to ampicillin (99.0%, n=308), followed by teicoplanin (98.4%, n=306), fosfomycin (98.1%, n=305), ciprofloxacin (97.4%, n=303), and levofloxacin (96.7%, n=301) (Figure 4A). A low non-susceptible rate was observed in linezolid (0.3%, n=1) and tigecycline (9.3%, n=29). Notably, 16.7% (n=52) of VREfm are non-susceptible to daptomycin, which was considered as a significant antimicrobial for treating VREfm. Non-susceptibility
227 228 229 230 231 232 233 234 235	4.3 Antimicrobial susceptibility profile of VREfm Overall, more than 90% of VREfm isolates were non-susceptible to ampicillin (99.0%, n=308), followed by teicoplanin (98.4%, n=306), fosfomycin (98.1%, n=305), ciprofloxacin (97.4%, n=303), and levofloxacin (96.7%, n=301) (Figure 4A). A low non-susceptible rate was observed in linezolid (0.3%, n=1) and tigecycline (9.3%, n=29). Notably, 16.7% (n=52) of VREfm are non-susceptible to daptomycin, which was considered as a significant antimicrobial for treating VREfm. Non-susceptibility rate of rifampin, nitrofurantoin, daptomycin and high concentration gentamycin in
227 228 229 230 231 232 233 234 235 236	4.3 Antimicrobial susceptibility profile of VREfm Overall, more than 90% of VREfm isolates were non-susceptible to ampicillin (99.0%, n=308), followed by teicoplanin (98.4%, n=306), fosfomycin (98.1%, n=305), ciprofloxacin (97.4%, n=303), and levofloxacin (96.7%, n=301) (Figure 4A). A low non-susceptible rate was observed in linezolid (0.3%, n=1) and tigecycline (9.3%, n=29). Notably, 16.7% (n=52) of VREfm are non-susceptible to daptomycin, which was considered as a significant antimicrobial for treating VREfm. Non-susceptibility rate of rifampin, nitrofurantoin, daptomycin and high concentration gentamycin in ST80 VREfm were significantly higher than other STs (p<0.05, Figure 4B). The

238	nitrofurantoin and high concentration gentamycin among ST80 VREfm were
239	significantly higher than non-ST80 (p<0.05, supplement figure 2). In summary, the
240	antimicrobial resistance rate and MIC of most antimicrobials were higher in ST80
241	VREfm isolates than non-ST80 STs.
242	
243	4.4 Population structure and genomic characteristics of VREfm
244	Pan-genome analysis of 311 VREfm identified 1833 core genes representing a 1.6 Mb
245	alignment in \geq 99% of genomes. hierBAPS analysis of VREfm based on 6511 cgSNPs
246	identified 12 sequence clusters (SCs), of which SC12 comprised low-frequency
247	genotypes (Figure 5). ST80 VREfm were distributed into four SCs (SC4, SC5, SC11
248	and SC12), of which SC11 was the leading lineage. Notably, all ST80 VREfm isolates
249	that were collected after January 2021 belonged to SC11, indicating that the outbreak
250	of VREfm in Guangdong was attributed to SC11. Genetic distance within SC11
251	showed that they are highly similar (median of cgSNP distance = 6, IQR: 3-8). Six
252	isolates in SC11 were collected from Sichuan province $(n=5)$ and Beijing $(n=1)$ from
253	2021 to 2023, indicating a potential risk of causing an outbreak beyond Guangdong
254	province.
255	
256	A total of 20 ARGs were identified, which attributed to eight antimicrobial classes
257	(Figure 5). 98.07% (306/311) of VREfm isolates harbored vanA, of which 7.51%
258	(n=23) co-harbored <i>vanA</i> and <i>vanM</i> . One isolate only harbored <i>vanM</i> . Four isolates

259 harbored vanB which was rarely identified in China. Ten VFs and 15 plasmid

260	replicons were verified. However, there is no significant difference in the average
261	number of ARGs, VFs and plasmid replicons between ST80 and other STs VREfm
262	(Supplement figure 3), although the antimicrobial resistance spectrum and MICs
263	varied between ST80 and non-ST80. The distribution of ARGs and plasmid replicons
264	was not significantly different between ST80 and non-ST80 VREfm isolates. Only a
265	virulence gene ecbA in the non-ST80 group (17.5%, 18/103) was significantly higher
266	than in the ST80 group (5.8%, 12/208, p=0.0018).
267	
268	4.5 Comparison of ST80 isolates in outbreaks among Guangdong and other
269	countries
270	To identify the origin and global transmission of ST80 VREfm causing an outbreak in
271	Guangdong province, we additionally included 322 genomes of ST80 VREfm from
272	22 countries. All the VREfm isolates obtained from Guangdong province exhibit a
273	remarkable convergence within a single lineage (SC11), which was distinctly
274	separated from the isolates found in other countries (Figure 6A). Consistently, this
275	lineage exhibited distinct pan-genome profiles marked by both cgSNPs and accessory
276	genes (Figure 6B). The number of SNPs among ST80 VREfm from China is
277	significantly lower than other countries (p<0.0001), suggesting a clonal transmission
278	(Figure 6C). Notably, one isolate (GCF_012933345.2) collected in 2020 from an
279	Indian patient with a bloodstream infection genetically belonged to this lineage.
280	Nevertheless, ST80 VREfm are not common in India, indicating that the outbreak of
281	ST80 VREfm in Guangdong may not associated with this strain.

282

283	4.6 Genetic context and transferability of <i>vanA</i> -harboring plasmid in ST80
284	VREfm
285	Among 311 VREfm isolates, the van-harboring contigs of 100 (32.2%) isolates were
286	matched to the plasmid sequence on GenBank database with >99% identity. However,
287	the vanA-harboring contig in 211 (67.8%) of VREfm was not identified against the
288	non-redundant database. One typical isolate (23VRE019) harboring this unique contig
289	was selected for third-generation sequencing, and we noticeably found that this new
290	type of plasmid was identified in all ST80 isolates (n=195) causing outbreaks in
291	Guangdong province from 2021 to 2023 (Figure 5).
292	
293	Most of the CDSs in p23VRE019 (45,935 bp) were functionally related to IS, plasmid
294	stability and antimicrobial resistance (Figure 7A). This plasmid harbored a vanA
295	cassette (vanRSHAXYZ) flanked by Tn1546/Tn3 clusters, and a Tn4001 containing
296	aminoglycosides resistance gene $aac(6')-aph(2'')$, which was flanked by inverted
297	repeats of IS256. No conjugation-related gene was detected in the plasmid. To
298	confirm plasmid transferability, we performed conjugation experiments for all 311
299	VREfm isolates. Among 100 VREfm carrying van-harboring plasmid other than
300	p23VRE019, transconjugants were obtained in 40 isolates. Notably, no transconjugant
301	was obtained among 211 VREfm isolates carrying p23VRE019. Therefore, we
302	speculated that this new vanA-harboring plasmid is not conjugative in vitro under the
303	experiment condition in this study.

304

305	Genetic context analysis revealed that p23VRE019 could be formed by three
306	segments from three plasmids (Figure 7B). The plasmid backbone encoded several
307	CDSs associated with plasmid stability and homologised to pW208, which is an
308	environmental <i>E. faecalis</i> isolate from China, and pK80-15b-B which is from an <i>E</i> .
309	faecium isolate in Switzerland. The vanA cassette of p23VRE019 was homologised to
310	pVEF4_A which lack of IS1678 and ISL3. Overall, we concluded that outbreak of
311	vanA-positive ST80 VREfm in Guangdong could be attributed to clonal transmission
312	and transposon-mediated horizontal gene transfer of the vanA gene cassette.
313	
314	5. Discussion
315	Emergence and transmission of VREfm pose significant challenges to public health
316	and clinical medicine. Our investigation reveals that the prevalence of VREfm in
317	patients with infection substantially increased in Guangdong province from 2021 to
318	2023, which was associated with a sub-lineage of ST80 clone harboring a new type of
319	vanA-plasmid. To our knowledge, this work represents the largest effort conducted to
320	date to investigate the prevalence and genomic characterizations of VREfm at
321	multicenter scales in China.
322	
323	In recent decades, the prevalence of VREfm in China has shown low incidence rates,
324	with an average of less than 5%. This is consistent with the findings in other five
325	province, suggesting that the spread of VREfm has not been a significant issue in

326	China [8, 20-23]. However, the dramatic increase of VREfm prevalence in
327	Guangdong province indicated a rapid transmission and outbreak. The monthly
328	epidemiology presented here reflects the pattern with a sharp increase from the
329	beginning of 2021, despite the ongoing COVID-19 containment measures being
330	enforced during the initial half of 2021. Since the disinfectant could facilitate the
331	tolerance of <i>E. faecium</i> [31], we speculate that the thrive of VREfm may be associated
332	with the overwhelming use of disinfectants during COVID-19 pandemic. VREfm
333	outbreaks have been reported in healthcare settings, particularly in ICU department,
334	causing various types of healthcare-associated infections including bacteremia [5, 26-
335	29]. It is worth noting that the majority of VREfm isolates were collected from
336	urinary sample from patients suffering from urinary tract infections, indicating that
337	this particular lineage of VREfm could be associated with uropathogenicity.
337 338	this particular lineage of VREfm could be associated with uropathogenicity.
337 338 339	this particular lineage of VREfm could be associated with uropathogenicity. Several studies have shown that ST17 and ST78 emerged as the predominant types of
337 338 339 340	this particular lineage of VREfm could be associated with uropathogenicity. Several studies have shown that ST17 and ST78 emerged as the predominant types of VREfm in China [8, 22, 24, 25]. Our study, which covers the period from 2014 to
337 338 339 340 341	 this particular lineage of VREfm could be associated with uropathogenicity. Several studies have shown that ST17 and ST78 emerged as the predominant types of VREfm in China [8, 22, 24, 25]. Our study, which covers the period from 2014 to 2020, confirmed this observation. However, we noticed a change in the predominant
 337 338 339 340 341 342 	this particular lineage of VREfm could be associated with uropathogenicity. Several studies have shown that ST17 and ST78 emerged as the predominant types of VREfm in China [8, 22, 24, 25]. Our study, which covers the period from 2014 to 2020, confirmed this observation. However, we noticed a change in the predominant clone of VREfm in Guangdong province since 2021, which is now ST80.
 337 338 339 340 341 342 343 	this particular lineage of VREfm could be associated with uropathogenicity. Several studies have shown that ST17 and ST78 emerged as the predominant types of VREfm in China [8, 22, 24, 25]. Our study, which covers the period from 2014 to 2020, confirmed this observation. However, we noticed a change in the predominant clone of VREfm in Guangdong province since 2021, which is now ST80. Phylogenetic analysis showed that ST78 and ST80 VREfm in this study are
 337 338 339 340 341 342 343 344 	this particular lineage of VREfm could be associated with uropathogenicity. Several studies have shown that ST17 and ST78 emerged as the predominant types of VREfm in China [8, 22, 24, 25]. Our study, which covers the period from 2014 to 2020, confirmed this observation. However, we noticed a change in the predominant clone of VREfm in Guangdong province since 2021, which is now ST80. Phylogenetic analysis showed that ST78 and ST80 VREfm in this study are genetically distant, demonstrating that ST80 could be attributed to the introduction of
 337 338 339 340 341 342 343 344 345 	this particular lineage of VREfm could be associated with uropathogenicity. Several studies have shown that ST17 and ST78 emerged as the predominant types of VREfm in China [8, 22, 24, 25]. Our study, which covers the period from 2014 to 2020, confirmed this observation. However, we noticed a change in the predominant clone of VREfm in Guangdong province since 2021, which is now ST80. Phylogenetic analysis showed that ST78 and ST80 VREfm in this study are genetically distant, demonstrating that ST80 could be attributed to the introduction of a new clone into hospitals, rather than genome recombination or horizontal gene
 337 338 339 340 341 342 343 344 345 346 	this particular lineage of VREfm could be associated with uropathogenicity. Several studies have shown that ST17 and ST78 emerged as the predominant types of VREfm in China [8, 22, 24, 25]. Our study, which covers the period from 2014 to 2020, confirmed this observation. However, we noticed a change in the predominant clone of VREfm in Guangdong province since 2021, which is now ST80. Phylogenetic analysis showed that ST78 and ST80 VREfm in this study are genetically distant, demonstrating that ST80 could be attributed to the introduction of a new clone into hospitals, rather than genome recombination or horizontal gene transfer. ST80 VREfm was identified as a high-risk clone causing VREfm outbreaks

348	isolates in our study (SC11) were genetically distinct from ST80 VREfm found in
349	other countries. The only identical ST80 VREfm in India was identified in the
350	Genbank database, but it is not the predominant type in India. These results implied
351	that this sub-lineage could be sporadically distributed around the world, but certain
352	factors could trigger and facilitate its transmission, causing outbreaks in Guangdong,
353	China. The pan-genome analysis conducted on the isolates of SC11 signified a high
354	degree of genomic diversity, plasticity and unique attributes, implying a potential to
355	spreading and becoming a prevalent clone.
356	
357	Based on the results of multiple antimicrobial susceptibility tests, the ST80 VREfm
358	exhibits to have a significantly high level of resistance to vancomycin compare to
359	non-ST80 isolates. Currently, daptomycin and linezolid are the most utilised "last-
360	line" antibiotics for the treatment of VRE infections [1]. However, our research
361	reveals that a significant percentage of ST80 VREfm is resistant to daptomycin,
362	which limits treatment options. Conversely, only one single isolate was found to be
363	resistant to linezolid, demonstrating its effectiveness against ST80 VREfm.
364	
365	The vancomycin resistance mechanisms of ST80 VREfm isolates caused outbreak in
366	other countries mostly attributed to vanA or vanB [5, 26, 27]. In this study, all VREfm
367	isolates in Guangdong harbored a vanA gene flanked by Tn1546, which is
368	consistently the predominant mechanism of VREfm in China [8]. vanM gene was first
369	found in VREfm in Shanghai in 2006 and is locally prevalent in China [30]. In this

18

370 study, a small proportion of *vanA*-harboring ST80 VREfm co-carried *vanM*,

- 371 suggesting a rapid genomic interaction occurring in various lineages of ST80 VREfm.
- 372

373	We found a new type of vanA-harboring plasmid associated with the outbreak clone of
374	ST80-type VREfm in Guangdong. Notably, this plasmid also detected in various STs
375	such as ST78, ST17, implying that there is an interaction and transmission of this
376	vanA-plasmid among VREfm populations. However, the sequence analysis and
377	plasmid conjugation experiments showed that this plasmid is not conjugative, at least
378	in vitro and under the conditions tested in this study. This means that the
379	dissemination and outbreak of vanA-harboring ST80 VREfm is likely caused by
380	acquisition of insertion sequence element and clonal transmission. This new type of
381	plasmid has been detected in ST80 VREfm from Beijing and Sichuan province,
382	indicating a potential risk of spreading and outbreak in the future.
383	
384	Our study has several limitations. First, while our study has shed light on the
385	emergence and dramatic increase of ST80 VREfm in Guangdong, the genomic
386	epidemiological data we have presented may not be generalisable throughout China.
387	According to data published by CHINET, the prevalence of VREfm increased solely
388	in Guangdong province from January to June in 2023, which is in line with the
389	observations made in our study. Second, the underlying contributors to the rapid
390	transmission and outbreak of ST80 VREfm have yet to be determined, especially the
391	measures to contain COVID-19 were still being enforced during the initial half of
	19

392	2021. Further case-control studies, risk factor analyses and metagenomic investigation
393	would be helpful to bridge this gap. Finally, the pathogenicity of ST80 VREfm, and
394	the stability and fitness cost of this new plasmid were not resolved, and are part of
395	future work.
396	
397	Despite of these limitations, our study revealed an ongoing outbreak of ST80 VREfm
398	with a new type of <i>vanA</i> -harboring plasmid in Guangdong province. It is concerning
399	that this outbreak clone has also been detected in several provinces in China and other
400	countries, foreboding a potential risk that the prevalence of VREfm may increase in
401	the coming years. Continuous surveillance is needed to monitor the prevalence,
402	transmission, and outbreak of this high-risk ST80 VREfm clone to inform public
403	health officials and adapt infection prevention and control interventions.
404	

405 Author contributions

- 406 CS, LL, and YX contributed equally in this study. CS drafted the first version of the
- 407 manuscript, which was reviewed and edited by CC and BH. CS, LL, and YX were
- 408 responsible for concept, bioinformatical and statistical analyses. CS, LL, YX, HZ, JZ,
- 409 LZ, JP, and JZ were responsible for the data collection and did the experiments. CS,
- 410 LL, YX, CC, BH, NZ, YJ, DC, GL, KW, MW, XG and JW were responsible for the
- sample collection. All authors had full access to all the data in the study and took
- 412 responsibility for the integrity of the data and the accuracy of the data analysis. All
- 413 authors reviewed, revised, and approved the final submission.

414 Transparency declaration

415 The authors declare no conflict of interest.

416 Data Availability

- 417 The genome assemblies of VREfm reported in this study have been deposited in the
- 418 NCBI GenBank genomic DNA database under BioProject accession number

419 PRJNA1003636.

420 Acknowledgements

- 421 This work was supported by the National Natural Science Foundation of China (grant
- 422 numbers 82302598 to CS), Guangzhou Basic and Applied Foundation (grant number
- 423 2023A04J0456 to CS), Guangdong Basic and Applied Research Foundation (grant
- 424 number 2022A1515111171 to CS), China Postdoctoral Science Foundation (grant
- numbers 2023T160150 and 2022M720922 to CS), Guangdong Provincial Hospital of

- 426 Chinese Medicine (grant numbers YN2022QN11 to CS), Guangdong Provincial Key
- 427 Laboratory of Research on Emergency in TCM (2023B1212060062 to CS).
- 428

429 **Reference**

- 430 [1] Cairns KA, Udy AA, Peel TN, Abbott IJ, Dooley MJ, Peleg AY. Therapeutics for vancomycin-
- 431 resistant enterococcal bloodstream infections. Clin Microbiol Rev. 2023;36:e0005922.
- 432 <u>http://doi.org/10.1128/cmr.00059-22</u>
- 433 [2] World Health Organization (WHO) Global Priority List of Antibiotic-Resistant Bacteria to Guide
- 434 Research, Discovery, and Development of New Antibiotics. WHO; Geneva, Switzerland: 2017.
- 435 [(accessed on 15 May 2018)]. Available online: http://www.who.int/medicines/publications/WHO-PPL-
- 436 Short_Summary_25Feb-ET_NM_WHO.pdf
- 437 [3] Werner G, Neumann B, Weber RE, Kresken M, Wendt C, Bender JK, et al. Thirty years of VRE in
- 438 Germany "expect the unexpected": The view from the National Reference Centre for *Staphylococci*
- 439 and Enterococci. Drug Resist Updat. 2020;53:100732. <u>http://doi.org/10.1016/j.drup.2020.100732</u>
- 440 [4] Rohde AM, Walker S, Behnke M, Eisenbeis S, Falgenhauer L, Falgenhauer JC, et al. Vancomycin-
- 441 resistant *Enterococcus faecium*: admission prevalence, sequence types and risk factors-a cross-sectional
- study in seven German university hospitals from 2014 to 2018. Clin Microbiol Infect. 2023;29:515-22.
- 443 http://doi.org/10.1016/j.cmi.2022.11.025
- 444 [5] Lee RS, Goncalves da Silva A, Baines SL, Strachan J, Ballard S, Carter GP, et al. The changing
- 445 landscape of vancomycin-resistant *Enterococcus faecium* in Australia: a population-level genomic
- 446 study. J Antimicrob Chemother. 2018;73:3268-78. http://doi.org/10.1093/jac/dky331
- 447 [6] Abdelbary MHH, Senn L, Greub G, Chaillou G, Moulin E, Blanc DS. Whole-genome sequencing
- 448 revealed independent emergence of vancomycin-resistant *Enterococcus faecium* causing sequential
- 449 outbreaks over 3 years in a tertiary care hospital. Eur J Clin Microbiol Infect Dis. 2019;38:1163-70.
- 450 http://doi.org/10.1007/s10096-019-03524-z
- 451 [7] Sundermann AJ, Babiker A, Marsh JW, Shutt KA, Mustapha MM, Pasculle AW, et al. Outbreak of
- 452 vancomycin-resistant Enterococcus faecium in interventional radiology: Detection through whole-
- 453 genome sequencing-based surveillance. Clin Infect Dis. 2020;70:2336-43.

454 http://doi.org/10.1093/cid/ciz666

- 455 [8] Peng Z, Yan L, Yang S, Yang D. Antimicrobial-resistant evolution and global Spread of
- 456 Enterococcus faecium clonal complex (CC) 17: Progressive change from gut colonization to hospital-
- 457 adapted pathogen. China CDC Wkly. 2022;4:17-21. http://doi.org/10.46234/ccdcw2021.277
- 458 [9] Killick R, Eckley IA. changepoint: An R package for changepoint analysis. Journal of Statistical
- 459 Software. 2014;58:1 19. http://doi.org/10.18637/jss.v058.i03
- 460 [10] Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new
- 461 genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol.
- 462 2012;19:455-77. <u>http://doi.org/10.1089/cmb.2012.0021</u>
- 463 [11] Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. ResFinder 4.0 for
- 464 predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75:3491-500.
- 465 http://doi.org/10.1093/jac/dkaa345
- 466 [12] Carattoli A, Hasman H. PlasmidFinder and In Silico pMLST: Identification and typing of plasmid
- replicons in whole-genome sequencing (WGS). Methods Mol Biol. 2020;2075:285-94.
- 468 http://doi.org/10.1007/978-1-4939-9877-7_20
- 469 [13] Liu B, Zheng D, Zhou S, Chen L, Yang J. VFDB 2022: a general classification scheme for
- 470 bacterial virulence factors. Nucleic Acids Res. 2022;50:D912-D7. http://doi.org/10.1093/nar/gkab1107
- 471 [14] Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. Roary: rapid large-scale
- 472 prokaryote pan genome analysis. Bioinformatics. 2015;31:3691-3.
- 473 <u>http://doi.org/10.1093/bioinformatics/btv421</u>
- 474 [15] Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, et al. SNP-sites: rapid efficient
- 475 extraction of SNPs from multi-FASTA alignments. Microb Genom. 2016;2:e000056.
- 476 http://doi.org/10.1099/mgen.0.000056
- 477 [16] Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-
- 478 friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453-5.
- 479 <u>http://doi.org/10.1093/bioinformatics/btz305</u>
- 480 [17] Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. RhierBAPS: An R implementation
- 481 of the population clustering algorithm hierBAPS. Wellcome Open Res. 2018;3:93.
- 482 <u>http://doi.org/10.12688/wellcomeopenres.14694.1</u>

- 483 [18] Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool
- 484 for comprehensive microbial variant detection and genome assembly improvement. PLoS One.
- 485 2014;9:e112963. http://doi.org/10.1371/journal.pone.0112963
- 486 [19] Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics.
- 487 2011;27:1009-10. http://doi.org/10.1093/bioinformatics/btr039
- 488 [20] Liu S, Li Y, He Z, Wang Y, Wang J, Jin D. A molecular study regarding the spread of vanA
- 489 vancomycin-resistant *Enterococcus faecium* in a tertiary hospital in China. J Glob Antimicrob Resist.
- 490 2022;31:270-8. <u>http://doi.org/10.1016/j.jgar.2022.10.010</u>
- 491 [21] Sun HL, Liu C, Zhang JJ, Zhou YM, Xu YC. Molecular characterization of vancomycin-resistant
- 492 *Enterococci* isolated from a hospital in Beijing, China. J Microbiol Immunol Infect. 2019;52:433-42.
- 493 <u>http://doi.org/10.1016/j.jmii.2018.12.008</u>
- 494 [22] Yan MY, He YH, Ruan GJ, Xue F, Zheng B, Lv Y. The prevalence and molecular epidemiology of
- 495 vancomycin-resistant *Enterococcus* (VRE) carriage in patients admitted to intensive care units in
- 496 Beijing, China. J Microbiol Immunol Infect. 2023;56:351-7. http://doi.org/10.1016/j.jmii.2022.07.001
- 497 [23] Sun L, Qu T, Wang D, Chen Y, Fu Y, Yang Q, et al. Characterization of vanM carrying clinical
- 498 *Enterococcus* isolates and diversity of the suppressed *vanM* gene cluster. Infect Genet Evol.
- 499 2019;68:145-52. http://doi.org/10.1016/j.meegid.2018.12.015
- 500 [24] Yang J, Yuan Y, Tang M, Liu L, Yang K, Liu J. Phenotypic and genetic characteristics of
- 501 vancomycin-resistant *Enterococcus faecium*. Microb Pathog. 2019;128:131-5.
- 502 <u>http://doi.org/10.1016/j.micpath.2018.12.046</u>
- 503 [25] Zhou W, Zhou H, Sun Y, Gao S, Zhang Y, Cao X, et al. Characterization of clinical enterococci
- 504 isolates, focusing on the vancomycin-resistant *Enterococci* in a tertiary hospital in China: based on the
- 505 data from 2013 to 2018. BMC Infect Dis. 2020;20:356. http://doi.org/10.1186/s12879-020-05078-4
- 506 [26] Egan SA, Kavanagh NL, Shore AC, Mollerup S, Samaniego Castruita JA, O'Connell B, et al.
- 507 Genomic analysis of 600 vancomycin-resistant *Enterococcus faecium* reveals a high prevalence of
- 508 ST80 and spread of similar vanA regions via IS1216E and plasmid transfer in diverse genetic lineages
- 509 in Ireland. J Antimicrob Chemother. 2022;77:320-30. http://doi.org/10.1093/jac/dkab393
- 510 [27] Leong KWC, Cooley LA, Anderson TL, Gautam SS, McEwan B, Wells A, et al. Emergence of
- 511 vancomycin-resistant Enterococcus faecium at an Australian hospital: A whole genome sequencing

- 512 analysis. Sci Rep. 2018;8:6274. http://doi.org/10.1038/s41598-018-24614-6
- 513 [28] Pinholt M, Bayliss SC, Gumpert H, Worning P, Jensen VVS, Pedersen M, et al. WGS of 1058
- 514 Enterococcus faecium from Copenhagen, Denmark, reveals rapid clonal expansion of vancomycin-
- 515 resistant clone ST80 combined with widespread dissemination of a *vanA*-containing plasmid and
- 516 acquisition of a heterogeneous accessory genome. J Antimicrob Chemother. 2019;74:1776-85.
- 517 http://doi.org/10.1093/jac/dkz118
- 518 [29] Pratama R, Beukers AG, McIver CJ, Keighley CL, Taylor PC, van Hal SJ. A vanA vancomycin-
- 519 resistant *Enterococcus faecium* ST80 outbreak resulting from a single importation event. J Antimicrob
- 520 Chemother. 2021;77:31-7. http://doi.org/10.1093/jac/dkab379
- 521 [30] Chen C, Sun J, Guo Y, Lin D, Guo Q, Hu F, et al. High prevalence of *vanM* in vancomycin-
- 522 resistant *Enterococcus faecium* isolates from Shanghai, China. Antimicrob Agents Chemother.
- 523 2015;59:7795-8. http://doi.org/10.1128/AAC.01732-15
- 524 [31] Pidot S, Gao W, Buultjens A, Monk I, Guerillot R, Carter G, et al. Increasing tolerance of hospital
- 525 *Enterococcus faecium* to handwash alcohols. Sci. Transl. Med. 2018;10:eaar6115.
- 526 http://doi.org/10.1126/scitranslmed.aar6115

- 527 Table legend
- 528 Table 1.MIC breakpoints recommended by EUCAST, CLSI, and those used in
- 529 this study.
- 530
- 531 Figure legends
- 532 Figure 1. Geographic location of 19 hospitals from six provinces.
- 533 Data showing in the box are % (n/N). %, prevalence of VREfm. n, Number of VREfm.
- 534 N, sample size of *E. faecium*.

535

- 536 Figure 2. Time series of monthly VREfm prevalence in Guangzhou city (A),
- 537 Guangdong province except for Guangzhou city (B) and other five provinces (C),
- 538 January 2018-June 2023. The solid line represents the three-month moving average
- 539 data of VREfm prevalence for each hospital. Vertical dashed lines indicate significant
- 540 changepoints identified in the changepoint analysis.
- 541

542 Figure 3. Minimum-spanning tree (A) and dynamic changes (B and C) of MLST

543 distribution from 2014-2023.

- 544 (A) Each circle corresponds to a unique ST. The number outside the circle indicates
- 545 ST number. The size of the circle represents the number of isolates belonging to the
- same ST. The colors inside the circle represent the proportion of the year of isolation.
- 547 (B) and (C) The x-axis represents the year of isolates. The y-axis represents the

548 proportion of ST.

549

550	Figure 4. Antimicrobial susceptibility profiles of 13 antimicrobials for 311	
-----	--	--

551 VREfm isolates.

- 552 (A) Overall antimicrobial resistance rate. (B) Antimicrobial resistance rate between
- 553 ST80 and non-ST80 VREfm. VAN, Vancomycin. TEC, Teicoplanin. LNZ, Linezolid.
- 554 TGC, Tigecycline. DAP, Daptomycin. RIF, Rifampicin. ERY, Erythromycin. AMP,
- 555 Ampicillin. CIP, Ciprofloxacin. LVX, Levofloxacin. FOS, Fosfomycin. NIT,
- 556 Nitrofurantoin. HGEN, High concentration gentamicin.
- 557

```
Figure 5. Phylogenetic tree and genomic characteristics of 311 VREfm isolates in
this study.
```

- 560 The ML phylogeny derived from cgSNPs is at the left of the plot. The lineage colors
- 561 in the first column denote sequence clusters (SCs). The second column represents the
- 562 ST. The red star in the third column represents the isolates carried the new type of
- 563 *vanA*-harboring plasmid. The color strip in the fourth column represents the origin
- solution where the isolate from. Light blue represents Guangzhou city; Light purple represents
- 565 Guangdong province; Dark blue represents other provinces. The heatmaps from left to
- right represents the presence of antimicrobial resistance genes (pink), virulence
- 567 factors (blue) and plasmid replicons (green).

568

569 Figure 6. Population structure of ST80 VREfm in different countries.

570 (A) The ML phylogeny was constructed using cgSNPs. The colored branch represents

571	the collected location of the isolate. (B) Matrixes of pairwise distance of core genes
572	(nucleotide divergence, lower left triangle) and accessory genes (Jaccard distance,
573	upper right triangle), ordered against the maximum likelihood phylogeny generated
574	from cgSNPs (left-hand side of panel). The two matrices were highly correlated
575	(p<0.0001, r=0.7727, Mantel test with 1000 permutations). (C) cgSNP distance of
576	ST80 VREfm collected in China and other countries.
577	
578	Figure 7. Genomic characteristics of the new type of <i>vanA</i> -harboring plasmid.
579	(A) The circle plot of the plasmid profile for p23VRE019. The arrows represent the
580	CDS with its annotated functions. Red, antimicrobial resistance. Green, plasmid
581	stability. Yellow, insertion sequence and transposon. Blue, other functions. Gray,
582	hypothetical proteins. (B) Comparisons of plasmid structures for p23VRE019 and
583	other three plasmids from NCBI. The colored regions represent homologous sequence
584	structures between the plasmids.

- 586 Supplementary figure legends
- 587 Supplementary figure 1. Distribution of location (A) and source (B) of 311
- 588 VREfm isolates in minimum-spanning tree.
- 589 Supplementary figure 2. Comparisons of MICs for 13 antimicrobials between
- 590 ST80 and non-ST80 isolates.
- 591 Vertical dash lines indicate the breakpoint of resistance according CLSI. Drug
- 592 abbreviations are as per figure 4.
- 593 Supplementary figure 3. Comparisons of ARGs, VFs and plasmid replicons
- 594 between ST80 and non-ST80 VREfm.
- 595 The calculations of statistical difference were done using student *t* test.

596

Figure 1. Geographic location of 19 hospitals from six provinces.

Figure 2. Time series of monthly VREfm prevalence in Guangzhou city (A), Guangdong province except for Guangzhou city (B) and other five provinces (C), January 2018-June 2023.

(A) Spanning tree

Figure 3. Minimum-spanning tree (A) and dynamic changes (B and C) of MLST distribution from 2014-2023.

(B) Gongdong province

(C) Other provinces

(A)

Figure 4. Antimicrobial susceptibility profiles of 13 antimicrobials for 311 VREfm isolates.

Figure 7. Genomic characteristics of the new type of vanA-harbouring plasmid.

	ECOFF	EUCAST clinical breakpoints			CLSI breakpoints			MIC breakpoints chosen in this study		Criteria for
Antibiotics		S	Ι	R	S	Ι	R	Non-S	R	choosing breakpoint
Vancomycin	>4	≤4	-	>4	≤4	8-16	≥32	>4	>4	EUCAST CB
Teicoplanin	>2	≤2	-	>2	≤ 8	16	≥32	>2	>2	EUCAST CB
Linezolid	>4	≤4	-	>4	≤ 2	4	≥ 8	>4	>4	EUCAST CB
Tigecycline	>0.25	≤0.25	-	>0.25	-	-	-	>0.25	>0.25	EUCAST CB
Daptomycin	>8	IE	IE	IE	≤4	-	≥ 8	>4	>4	CLSI CB
Rifampicin	ID	-	-	-	≤1	2	≥4	>1	>2	CLSI CB
Erythromycin	>4	-	-	-	≤0.5	1-4	≥ 8	>0.5	>4	CLSI CB
Ampicillin	>8	≤4	8	>8	≤ 8	-	≥16	>8	>8	EUCAST CB
Ciprofloxacin	>8	≤4	-	>4	≤1	2	≥4	>4	>4	EUCAST CB
Levofloxacin	>8	≤4	-	>4	≤2	4	≥ 8	>4	>4	EUCAST CB
Fosfomycin	>128	-	-	-	≤64	128	≥256	>64	>128	CLSI CB
Nitrofurantoin	>256	-	-	-	≤32	64	≥128	>32	>64	CLSI CB
HGEN	>32	≤128	-	>128	<500	-	≥ 500	>128	>128	EUCAST CB

Table 1. MIC breakpoints recommended by EUCAST, CLSI, and those used in this study.

EUCAST ECOFF extracted from https://mic.eucast.org/search/; EUCAST clinical breakpoints v13.0 download from https://www.eucast.org/clinical_breakpoints/; CLSI breakpoints extracted from CLSI M100-S33. CB, clinical breakpoint. CLSI, Clinical & Laboratory Standards Institute. ECOFF, epidemiological cut-off; EUCAST, The European Committee on Antimicrobial Susceptibility Testing; IE, insufficient evidence; ID, insufficient data; S, susceptible; I, intermediate; R, resistance; Non-S, non-susceptible; HGEN, high-level gentamycin resistance.