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Abstract 
Large Language Models (LLM) are increasingly multimodal, and Zero-Shot Visual Question Answering (VQA) shows 
promise for image interpretation. If zero-shot VQA can be applied to a 12-lead electrocardiogram (ECG), a prevalent 
diagnostic tool in the medical field, the potential benefits to the field would be substantial. This study evaluated the 
diagnostic performance of zero-shot VQA with multimodal LLMs on 12-lead ECG images. The results revealed that 
multimodal LLM tended to make more errors in extracting and verbalizing image features than in describing 
preconditions and making logical inferences. Even when the answers were correct, erroneous descriptions of image 
features were common. These findings suggest a need for improved control over image hallucination and indicate 
that performance evaluation using the percentage of correct answers to multiple-choice questions may not be 
sufficient for performance assessment in VQA tasks. 
 
Introduction 
Electrocardiography (ECG) is a diagnostic test used to measure the electrical activity of the heart, primarily to detect 
arrhythmias and ischemic heart diseases. Due to its noninvasive nature and cost-effectiveness, it has emerged as a 
crucial component of health screening and the initial assessment of cardiac conditions(1). Deriving clinically 
meaningful assessments from ECG images involves a multifaceted process that integrates background medical 
knowledge with image feature recognition, culminating in informed judgment. Although 12-lead ECGs initially 
consist of waveform data, they are commonly depicted in two dimensions for clinical assessments. Early attempts 
to automate the clinical diagnosis of 12-lead ECGs were rule-based(2-4). However, with the advent of machine learning, 
various neural network models based on supervised learning have been proposed(5,6). These methods entail the 
utilization of machine learning models trained on extensive ECG datasets, with many focusing on classification tasks 
to predict labels established before training. 
With the development of natural language processing, the recent emergence of large language models (LLMs) has 
enabled natural language generation tasks to produce practical responses to a wide variety of natural language 
inputs(7,8). A significant advancement in this development is the ability to address tasks that previously necessitated 
the creation of task-specific training data and the development of predictive models that are now achievable with 
few, or even zero, shots(9-11). Furthermore, the multimodal nature of these models has expanded their applicability 
beyond natural language tasks(12). Although several studies have attempted to input ECGs into LLMs via natural 
language or unique encoders, no attempt has been made to validate the direct input of images into a multimodal 
LLM(13,14). 
Visual question answering (VQA) entails providing a relevant answer based on an image and natural language query, 
necessitating image interpretation and intricate reasoning(15). VQA is open-ended in both question and answer 
formats and, by asking visual questions, it is possible to target a wide range of tasks, including details and knowledge-
based meanings of features in images, making its application much broader than limited classification problems. In 
clinical tasks as well as with the same medical images, queries from healthcare professionals may vary depending on 
the situation. If VQA could accommodate such variations, it would eliminate the need to build independent models 
for each query, thereby making it possible to construct models that cover a broader range of scenarios in the medical 
field. This would be considered advantageous. 
Zero-shot learning has garnered attention for its ability to achieve performance comparable to task-specific learning 
through pretraining with extensive data, thus circumventing the need for task-specific training data. Zero-shot VQA 
has emerged as a burgeoning area of research, spurred by advancements in LLMs and multimodal capabilities of 
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models(16). Although zero-shot VQA, which is capable of handling both modalities (images and natural language), 
holds promise for diverse applications in the medical domain, its practical implementation remains distant. 
LLMs are recognized for their tendency to produce false information and fabricate nonexistent facts, a phenomenon 
referred to as hallucination(17,18). This presents a significant challenge, particularly in the context of applying LLMs in 
the medical field, and has prompted extensive research on strategies for controlling this phenomenon(19,20). There is 
a paucity of reports regarding the patterns of hallucinations in multimodal LLMs, and it remains unclear how LLMs 
behave when zero-shot VQA is applied, particularly when interpreting 12-lead ECGs. Reading a 12-lead ECG requires 
the interpretation of the electrical excitation of multiple inductions based on medical knowledge, appropriate 
detection of abnormal findings, and drawing conclusions consistent with medical knowledge. To ascertain whether 
hallucinations occur in such a specialized task, it is imperative to deliberate the framework used for its evaluation. 
Therefore, it is essential to understand how LLMs perform these unique tasks. In this study, we conducted zero-shot 
VQA using the latest multimodal LLMs for 12-lead ECG imaging. Our aim was to assess the potential for future 
applications and identify any challenges relevant to its implementation. 
 
Methods 
This study utilized a publicly available dataset comprising 928 12-lead ECG images in JPEG format, each categorized 
as normal (n = 284), abnormal heartbeat (n = 233), myocardial infarction (n = 240), or previous myocardial infarction 
(n = 172)(21). The images in the dataset were used as input without any preprocessing, such as changing the image 
resolution. The image dataset was used in accordance with CC BY 4.0. license 
(https://creativecommons.org/licenses/by/4.0/). Three models capable of processing images were employed for 
validation purposes: a Vision-and-Language Transformer (ViLT)(22), Gemini Pro Vision(23), and ChatGPT Plus(24). 

ViLT is a model that demonstrates its performance advantage by using a transformer structure instead of 
convolutional neural networks or object detection methods, which are conventional approaches for image feature 
extraction in the image encoder(22). They demonstrated that the fusion of image and text processing within the 
transformer framework enhanced the processing speed and performance in subsequent tasks. In this study, ViLT 
utilized a fine-tuned model from the COCO dataset(25). The ViLT model used in this study was published in Hugging 
Face (https://huggingface.co/dandelin/vilt-b32-finetuned-coco). In the ViLT validation, we quantified the fit of each 
option as a caption to the images entered into the model and the option with the highest value was used as the 
model response. Google's LLM models of Gemini include Ultra, Pro, and Nano; the Pro model is an intermediate-
scale model used for verification(23). Gemini Pro Vision utilizes an API to input the prompt and images, with the 
output results serving as validation. The version used was gemini-1.0-pro-vision. The default temperature setting of 
0.4 was used. ChatGPT Plus(24) is a chat service manually fed with prompts and images, and the resultant outputs are 
employed for validation. In using ChatGPT plus, the GPT-4 model was used. When using ChatGPT Plus, the 
temperature setting was not explicitly stated in the prompt. Validation with ChatGPT Plus was conducted between 
February 22, 2024, and February 28, 2024. In the performance evaluation, the accuracy and F1 score were calculated 
for multiple-choice questions, and a confusion matrix was displayed. Confidence intervals for accuracy and F1 scores 
were calculated using 2500 bootstrap replicates. 

To further validate the outputs generated by ChatGPT Plus, consistency between the input images and output text 
was verified by a board-certified cardiologist. To validate the output generated by the ChatGPT Plus, a board-certified 
cardiologist assessed the consistency between the input and output images. This evaluation encompassed three 
criteria: accuracy of medical assumptions, coherence between the textual description and actual findings in the 
images, and logical consistency in selecting options based on the provided information. Specifically, the assessment 
delved deeper into the alignment between the written description and the observed findings in the images. 
Abnormalities existing in the images were categorized manually as either "not described," "described as a different 
abnormality," or "correctly identified as abnormal.". Similarly, for normal findings, the evaluation distinguished 
between those "incorrectly labeled as abnormal" and those "correctly identified as normal.". These were tabulated 
and displayed as bar graphs. Texts lacking descriptions of the imaging findings were excluded from the tabulation of 
the imaging findings and logical reasoning. To formulate prompts, we utilized engaging and motivating descriptions, 
drawing upon established techniques known to enhance accuracy. The prompts were structured to guide the 
thought process systematically and to elucidate the rationale behind the option selection. If the output did not 
explicitly provide the answer choice, the image and prompt inputs were re-evaluated and the text output was 
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regenerated. Subsequently, only the outputs that explicitly contained the answer choices were considered for 
validation. 

 
Figure 1.  The prompt put in with images in this study. 
 
Results 
The prediction results and confusion matrix for the classification of 12-lead ECG images are shown (Figure 2). The 
percentage of correct answers was approximately 30% for all models. Analysis of the confusion matrix indicated that 
the selection of all three models was biased toward determining that no abnormal findings were present. However, 
the results indicated that this tendency was somewhat mitigated in ChatGPT Plus. Accuracy was similar for all three 
models, but the F1 score of ChatGPT Plus exceeded that of the other two models. 
 
 

 
Figure 2. Prediction results and confusion matrix for classification of 12-lead ECG images. Performance indices for 
each model are displayed at the top of the figure, and the confusion matrix is displayed at the bottom of the figure. 
Red squares in the confusion matrix indicate correct cases. 
 
 
To investigate the background of this performance, a more detailed analysis of the script output by ChatGPT Plus 
was conducted. The actual input images and script outputs from ChatGPT Plus are shown (Figure 3). In the examples 
shown, both samples were labeled as acute myocardial infarction, whereas any sentence in sample A was valid for 
the content of the image; the sentence in red in the output for sample B was not accurate relative to the image. The 
outcomes of the ChatGPT Plus outputs, which were meticulously verified and documented for each sample to assess 
their accuracy, are shown (Figure 4). Remarkably, errors were infrequent, particularly concerning the description of 
assumptions rooted in medical knowledge and logical process of selecting options based on the information 
provided. The predominant error observed in abnormal findings within the images was the omission of an 
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abnormality and its corresponding description. For normal findings, several errors were noted and abnormal findings 
were incorrectly identified. For normal findings, a significant number of errors occurred while identifying non-
existent abnormal findings. 

 
Figure 3. Examples of actual input images and text output by ChatGPT Plus. Both A and B are samples labeled as 
myocardial infarction. Yellow text indicates accurate content regarding the image, while red text indicates errors. In 
logical reasoning, the case of inconsistency with verbalized information was judged as abnormal, and if there was 
no inconsistency, there was no inconsistency in logical reasoning. 
 

 
Figure 4. Verification results of all text outputs using ChatGPT Plus. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 22, 2024. ; https://doi.org/10.1101/2024.03.19.24304442doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.19.24304442
http://creativecommons.org/licenses/by/4.0/


 

 
Figure 5. Display the validation results for each label for sentence output using ChatGPT Plus. 
 

 
Figure 6. Validation results for the sentences output by ChatGPT Plus are displayed according to whether the correct 
answer choice was selected. 
 
Figure 5 illustrates the validation outcomes of the sentences generated by ChatGPT, which are depicted individually 
for each label. A higher incidence of missed abnormal findings was observed in the subset of labels containing 
abnormalities. 
Figure 6 presents the validation outcomes for the sentences generated by ChatGPT Plus, categorized based on 
whether the correct answer choice was selected (Figure 6). Even when the correct choice was selected in the output 
text, a notable frequency of incorrect statements pertaining to the imaging findings remained. 
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Discussion and Conclusions 
In this study, 12-lead ECG imaging was treated as a zero-shot VQA task and a multimodal approach for ECG 
interpretation was employed. The performance of all three models tested was biased in the direction of judging as 
normal, which was not at a practical level; however, ChatGPT Plus was slightly lower than the other two models, 
with a slightly higher F1 score. Additionally, a detailed validation of the ChatGPT Plus outputs revealed a higher 
frequency of errors in accurately extracting and verbalizing image features compared to errors in prior knowledge 
and logical inconsistencies in answer selection. It is hypothesized that controlling the hallucinations of input images 
is important for future iterations of such models. Additionally, validation of the text output by ChatGPT Plus revealed 
a significant number of instances in which incorrect descriptions of image features persisted despite correct answers. 
This underscores the importance of evaluating the ability to correctly answer visual question-answering tasks when 
evaluating model performance for implementation. 
Hallucinations caused by LLM can be divided into factuality and faithfulness(17,18). Factuality hallucinations were 
further divided into verifiable factual inconsistencies and fabrication. Generally, the frequency of factual 
inconsistency is considered the highest, and this study, in which factual inconsistency for imaging findings was the 
highest, is consistent with such findings. This indicates that the control of hallucinations by retrieval-augmented 
generation and associated methods(20) may be expected in VQA of 12-lead ECGs. 
One limitation of this study was that only a single dataset type was used as the input, and the number of images was 
limited. 12-lead ECGs are plotted in two dimensions; particularly, the sequence of leads may vary depending on the 
device used. Therefore, it is necessary to verify the 12-lead ECG images using different lead sequences. Additionally, 
ECG abnormalities are considered to be extracted for classification purposes and do not reflect the actual 
distribution of abnormalities. The abnormal findings in the dataset used in this study were limited, which is a 
limitation. 
Our validation clarified the current behavior of multimodal LLMs output hallucinations in 12-lead ECG images. 
Currently, the accuracy of zero-shot VQA for 12-lead ECG images is still far from practical; however, it is at a stage 
where it is desirable to construct an appropriate evaluation method for future development. 
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