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Abstract

Background: During cardiopulmonary bypass (CPB), maintaining adequate oxygen
consumption (VO2i) can only be achieved indirectly either by modifying oxygen delivery

(DO2i) through its component parts or by modulating metabolic demand through altering

body temperature. The body reacts to these actions by changing OER and

consequently VO2i. Understanding the body’s adaptive OER dynamics can elucidate its

oxygen consumption goals during CPB and help improve our ability to safely manage

the patient’s journey.

Methods: An autoregressive, integrated time-series model was trained on granular
perfusion data from 879 paediatric patients (age: newborn to 18 years old) undergoing

963 CPB operations, with the outcome variable being the minute-by-minute changes in

the logit transformation of OER. Variables were cardiac index, haemoglobin

concentration, oxygen saturation of arterial haemoglobin and temperature. An explicit

‘disequilibrium term group’ was also included, proportional to the difference between the

logarithm of VO2i and logarithm of a ‘latent’ (i.e. unobserved) oxygen demand - or

‘target’ VO2 (tVO2i) - term, with the logarithm of tVO2i assumed to be a linear function of

body temperature (the Van’t Hoff model). The trained time-series models were studied

using permutation-based variable importance, deterministic and stochastic simulations,

and subgroup analysis by acute kidney injury (AKI) grade and by temperature.

Results: Model coefficients are consistent with an adaptive OER response to keep VO2i

in line with tVO2i, according to body temperature. This adaptation consists of a primary

rapid response for 5-10 minutes, and a secondary slow response that is estimated to

last up to several hours. The model reproduces the hyperbolic shape of DO2i-VO2i

curves - first published in 1982 - as an artefact of insufficient wait times between

equilibrium-state transitions. Asymptotically, however, the model converges to a

piecewise linear relationship between DO2i and VO2i, with supply-independence of

oxygen consumption occurring above a threshold DO2i. Subgroup analysis by

temperature suggests that the dependence of tVO2i on temperature (expressed as Q10)

may be significantly stronger at low temperatures (< 28C) than at high temperatures (>

28C).
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Conclusions: This study proposes a physiologically plausible model of OER changes

during CPB that is consistent with past experimental data. While during CPB,

under-oxygenation is the dominant risk in the long term, slow adaptation of OER during

CPB creates short-term opportunities for over-oxygenation following significant changes

in variables such as cardiac index. The model provides well-defined values for tVO2i at

a given temperature, paving the way for further research into the effects of over- and

under-oxygenation during CPB on postoperative outcomes such as AKI, and hence

improvements in goal-directed perfusion protocols.
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Nonstandard Abbreviations and Acronyms

● AKI: acute kidney injury

● GARIX: global autoregressive Integrated (time-series model) with exogenous

variables

● GARIX+: GARIX model, plus a disequilibrium term group (in addition to

autoregressive and exogenous term groups)

● ATG: autoregressive term group

● BSA: body surface area (m2)

● CI: cardiac index (blood flow indexed BSA) (L/min/m2)

● CPB: cardiopulmonary bypass

● CV: cross-validation

● DHCA: deep hypothermic circulatory arrest

● DO2: oxygen delivery (mL/min)

● DO2i: oxygen delivery, indexed to BSA (mL/min/m2)

● DTG: disequilibrium term group

● EHR: electronic health record

● ETG: exogenous term group

● GDP: goal-directed perfusion

● Hb: haemoglobin content of blood (g/dL)

● HLM: heart-lung machine

● i.i.d.: Independent and identically distributed

● ML: machine learning

● OER: oxygen extraction ratio

● OG: oxygenation gGap

● OOS: out-of-sample

● PaO2: partial pressure of oxygen (kPa)

● PVI: permutation-based variable importance

● Q10: multiplicative increase in the resting metabolic rate for every 10℃ increase

in body temperature

● RBCs: red blood cells

● RMR: resting metabolic rate
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● RTO: return-to-equilibrium (an estimated parameter in the GARIX+ model)

● SaO2: oxygen saturation of arterial blood (scale: 0-100)

● SvO2: Oxygen saturation of mixed venous blood (scale: 0-100)

● TG: term group

● tVO2i: target (indexed) oxygen consumption, aka (indexed) oxygen demand

(mL/min/m2)

● tDO2i: threshold (indexed) oxygen delivery (mL/min/m2)

● VI: variable importance

● VO2: oxygen consumption (mL/min)

● VO2i: oxygen consumption, indexed to BSA (mL/min/m2)

Clinical Perspective

What Is New?

● This study is the first to present a data-driven, analytical framework for predicting

OER changes in response to clinical interventions during CPB.

● Changes in the components of oxygen delivery cause an adaptive OER

response to keep oxygen consumption in line with oxygen demand, according to

body temperature.

● The dependence of oxygen demand on temperature decreases as temperature

increases towards normothermia, inconsistent with the accepted Van’t Hoff

equation.

● Children developing AKI exhibit a dampened response to changes in

haemoglobin during CPB, with this dampening of response intensifying with AKI

severity.

What Are the Clinical Implications?

● This proposed, dynamic model of OER provides a novel framework for

goal-directed perfusion by identifying periods of over- and under-oxygenation.
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● The observed, dampened response to haemoglobin changes in patients that
develop AKI can be the foundation of an intraoperative tool for early diagnosis of
at-risk patients.

Introduction

During cardiopulmonary bypass (CPB), the heart-lung machine (HLM) takes over the

twin functions of perfusion: oxygenation and carbon dioxide removal, and circulation of

the blood. Given the central role of perfusion during surgery, much attention has been

given to reducing postoperative end-organ dysfunctions via improvements in perfusion

strategies, which has led to the advent of the term goal-directed perfusion (GDP). An

important prerequisite for GDP is identifying an appropriate, and specific, set of ‘goals’

for perfusion. Much research has focused on the determination of a threshold for

oxygen delivery - indexed to body surface area (BSA) - (DO2i) for aerobic metabolism,

below which the risk of acute kidney injury (AKI) increases (Ranucci et al, 2018; Hendrix

et al, 2019; Dreher et al, 2023; Do-Nguyen et al, 2023; Hayward et al, 2023). Focusing

on under-oxygenation risk is motivated by the concept of ‘supply-independence of

oxygen consumption’, which posits that, as long as sufficient oxygen is delivered to the

body, it is otherwise capable of extracting what it needs, without the risk of

over-oxygenation. This concept is reflected in the piecewise linear (or elbow) model of

oxygen consumption vs. oxygen delivery (Figure 1). We refer to the supply-independent

oxygen consumption as oxygen demand, or target VO2i (tVO2i).

Focusing on a single threshold-DO2i (tDO2i) during an entire CPB session, while easy to

communicate and implement by practitioners, has a few shortcomings. First, it does not

take into account the temperature-dependence of oxygen demand. During CPB,

especially one involving Deep Hypothermic Circulatory Arrest (DHCA), the patient’s

body temperature can change by 20℃ or more. Assuming a Q10 of 2.5, a 20-degree

temperature change translates into a more than six-fold variation in oxygen demand

during CPB. Using a single tDO2i for this entire range would be either impractical

(satisfying a high tDO2i would clash with need to reduce flow at times for better visibility

during surgery) or unsafe (allowing for a low tDO2i would endanger the patient during

normal temperatures), or both. Secondly, empirical evidence does not support a simple

elbow model with a clear-cut tDO2i. For instance, Fox et al, (1982) show that a
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hyperbolic model (Figure 1) - which is a smooth version of the elbow model - better fits

the data from human and animal experiments (Paneth et al, 1957; Cheng et al, 1959;

Starr, 1959)1. Besides the hyperbolic function, other smooth, saturating functions such

as the exponential curve have also been proposed (Lubarsky et al, 1995). Despite

better fit, such smooth functions do not provide a well-defined tDO2i. Ad-hoc substitutes,

such as finding the intersection of the 70% confidence bands with the tVO2i line (Kirklin

and Blackstone, 2012), are somewhat arbitrary. One potential advantage of these

experiments supporting the textbook model is that the experimental setup presumably

allowed for the system to reach steady state before each measurement. However, this

advantage is also the reason why such experiments are unlikely to be replicated,

especially in humans. On the other hand, technological advances have allowed us to

collect temporally granular perfusion data during routine CPB. In these observational

settings, variables such as blood flow, haemoglobin concentration, arterial oxygen

partial pressure and body temperature are all subject to constant fluctuations, driven by

surgical requirements. In other words, we can never assume the system is in a steady

state or equilibrium. Yet, after mathematically accounting for system dynamics, one

could extract important insights from such granular data about the body and its oxygen

uptake mechanisms during CPB, including the dependence of oxygen consumption on

oxygen delivery, as well as the dependence of oxygen demand on body temperature.

The primary aim of this study is to understand the innate adjustments to OER that occur

during CPB to maintain oxygen consumption in line with oxygen demand, as dictated by

the resting metabolic rate (RMR). In particular, we create a time-series model to predict

the minute-by-minute changes in oxygen extraction rate (OER), as a function of the past

and intended (i.e. future) changes in blood flow rate, haemoglobin level, and

temperature (exogenous variables), past changes in OER (endogenous variable), and

present state of the system. The secondary aim of the study was to understand how

coefficients and model performance changed in patients that developed AKI compared

to those that did not. Finally, we aimed to examine the relationship between oxygen

demand and temperature to determine if it follows the simple parametric form of Van’t

1 Note that the hyperbolic function is mathematically equivalent to the Michaelis-Menten formulation, a
terminology used for describing enzymatic reactions.
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Hoff, which has been the prevailing model in the literature. This was undertaken by

conducting a subgroup analysis of the data by temperature band over the entire range

of temperatures recorded in our granular CPB data.

Methods

Study Design and Participants

This was a retrospective analysis of patients aged younger than 18 years (maximum

age treated at the institution), who underwent cardiac surgery with CPB at Great

Ormond Street Hospital for Children, London. The cohort was selected using a National

Institute for Cardiovascular Outcomes Research (NICOR) validated data set for patients

operated on between April 2019 and April 2021. All clinical data from 879 paediatric

patients undergoing 963 CPB operations were collated in a research platform within the

hospital’s governance structure and de-identified before analysis. Institutional approval

was given for the undertaking of this project (audit number 3045). Individual consent

was not required because only routinely collected de-identified hospital data were

evaluated within the secure digital research environment as part of an existing research

database approval (17/LO/0008).

Data Collection

Routine clinical information was extracted from the institution’s Electronic Health Record

(EHR) system using a custom structured query language script. These data included

demographic information, laboratory results, intraoperative, CPB, and medication

administration data, and intensive care requirements. Comorbidities (including risk

scores), and outcomes were defined using Association for European Paediatric and

Congenital Cardiology coding as part of the institution’s NICOR routine data

submissions. Intraoperative data from the heart-lung and anaesthetic machines were

captured every minute throughout surgery. Preoperative risk estimation was based on

cardiac and non-cardiac preoperative risk factors using the Partial Risk Adjustment in

Surgery (PRAiS2) model (Rogers et al, 2017). Baseline serum creatinine levels were

taken within the 24 hours preceding surgery. Intraoperative blood biochemistry
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(including haemoglobin, arterial oxygen partial pressure and saturation, and

mixed-venous oxygen saturation) was measured continuously using an optical

fluorescence and reflectance system (CDI550, Terumo, Leuven, Belgium), calibrated

every 20 minutes using a cassette-based blood gas analyzer (ABL90 Flex Plus,

Radiometer, Copenhagen, Denmark). HLM variables were automatically recorded in

one minute intervals via a bidirectional connection into the Institutional EHR system

(Axon, Philips Capsule, Paris, France). Postoperative Acute Kidney Injury (AKI) was

calculated according to the Kidney Disease Improving Global Outcomes (KDIGO)

criteria (Khwaja, 2012), based on the patients’ serum creatinine change and urine levels

within the first 48 hours following surgery. Patients were assigned the highest AKI

grouping on the basis of these two criteria. The final KDIGO score for each patient is an

integer between 0 (no AKI) and 3 (severe AKI).

Anaesthesia

Anesthesia was induced by inhalation of sevoflurane in oxygen and, after induction,

fentanyl 5 mg/kg and pancuronium100 mg/kg were given; maintenance was with

isoflurane 1.0% in oxygen and air. After tracheal intubation, arterial and central venous

lines were inserted. Further incremental doses of fentanyl, up to 25 mg/kg, were given

during the procedure.

CPB

The CPB circuit consisted of FX oxygenators with integrated arterial line filter and

hard-shell venous reservoir (Terumo Corp). The Stӧcket S5 (Stӧcket, LivaNova)

heart-lung machine with pole-mounted roller pumps was used with a 3T heater/chiller

(Stӧcket, LivaNova). The total base prime volume was 330 - 1000 mL depending on

circuit size. When the predicted initial CPB hematocrit was <27% the prime consisted of

packed red blood cells of the patient’s blood group (120-200 mL), a synthetic colloid

(Gelofusine; B Braun Melsungen AG), heparin 1000 U/mL, 1.5 mL (Heparin Sodium;

Wockhardt). Blood primed circuits were then washed with 1000 mL of balanced

crystalloid solution (Plasmalyte 7.4; Baxter) by performing prebypass ultrafiltration,

carried out as previously described, to ensure an initial on-CPB hematocrit of 30% (Naik
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and Elliott, 1993). Biochemical compatibility was then attained using sodium

bicarbonate as a buffering agent. Patients requiring a clear prime received crystalloid

and colloid volumes in a 40:60 mix, with 10 mL sodium bicarbonate and 2 to 5 mL

heparin. All patients were systemically cooled to nasopharyngeal temperatures between

28 and 35°C unless undergoing deep hypothermic circulatory arrest, in which case the

patient was cooled to 18°C. Myocardial protection was achieved with 30 mL/kg of cold

blood cardioplegia (4:1 blood:cardioplegia to a final concentration of 20 mmol) of St

Thomas’s Solution (IVEX Pharmaceuticals). During the rewarming phase of CPB, a

gradient no greater than 10°C between the patient’s nasopharyngeal temperature probe

and the heater/chiller (maximum arterial blood temperature 37.5°C) was maintained

until a maximum oesophageal temperature of 36°C was achieved.

Data Preparation

All data preparation and analysis for this research has been conducted using the R

programming language and its various packages (R Core Team, 2021).

Data Cleaning

Each operation was split into one or more ‘sessions’ of contiguous timestamps (every

minute). After calculating the necessary derived fields (see below), a boolean ‘validity’

flag was calculated for each intraoperative recording, enforcing the following conditions:

, , , , , where is cardiac0 <  𝐻𝑐𝑡 <  0. 6 0 ≤  𝑆𝑣𝑂
2

≤ 100 𝑆𝑣𝑂
2

< 𝑆𝑎𝑂
2

𝑇 >  0 𝐶𝐼 > 0 𝐶𝐼

index (blood flow indexed to BSA) in L/min/m2, is blood haemoglobin level in g/dL,𝐻𝑏

and is the haemoglobin oxygen saturation of arterial blood, expressed as a𝑆𝑎𝑂
2

percentage. (The last condition removes periods of DHCA, i.e., , from further𝐶𝐼 = 0

analysis.) Also, we flag any recordings with missingness as invalid, thus limiting our

time-series analysis to valid ‘segments’ created within each session.

In calculating the change terms used for constructing the design matrix of the GARIX+

model (Equation 9), we impose a minimum segment length of 10 minutes for the

GARIX+(7) model, and 25 minutes for the GARIX+(20) model. When comparing
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GARIX+ models of different , we used a single value for the minimum segment length𝑁

to prepare a common dataset.

Derived Fields

Body surface area (BSA) is defined according to the Monsteller formula:

, (1)𝐵𝑆𝐴 =  𝐻𝑒𝑖𝑔ℎ𝑡 ×𝑊𝑒𝑖𝑔ℎ𝑡
3600

where height is in cm, and weight is in kg.

Oxygen delivery (indexed to BSA) is given by:

, (2)𝐷𝑂
2
𝑖 = 𝐶𝐼 × 𝐻𝑏 × 1. 36 × (𝑆𝑎𝑂

2
/100) × 10

In the above equation, the contribution to oxygen content of blood from dissolved

oxygen is ignored, thus focusing exclusively on the haemoglobin-bound oxygen. (In our

data, dissolved oxygen constitutes only 1.6% of total oxygen content in arterial blood,

thus supporting the plausibility of ignoring the dissolved-oxygen component in our

analysis.)

Similarly, for oxygen consumption:

, (3)𝑉𝑂
2
𝑖 = 𝐶𝐼 × 𝐻𝑏 × 1. 36 × ((𝑆𝑎𝑂

2
− 𝑆𝑣𝑂

2
)/100) × 10

where, again, the contribution from change in the dissolved oxygen content of the blood

is ignored. This allows us to write OER as:

, (4)𝑂𝐸𝑅 =
𝑉𝑂

2
𝑖

𝐷𝑂
2
𝑖 =

𝑆𝑎𝑂
2
−𝑆𝑣𝑂

2

𝑆𝑎𝑂
2

Therefore, VO2i can be rewritten as:

. (5)𝑉𝑂
2
𝑖 =  𝐶𝐼 × 𝐻𝑏 × 1. 36 ×  (𝑆𝑎𝑂

2
 / 100) ×  10 × 𝑂𝐸𝑅

Kirklin Equation

The following equation (page 119 of Kirklin and Blackstone, 2012) represents a

hyperbolic functional form for dependence of on (and ultimately on ), along𝑉𝑂
2
𝑖 𝐶𝐼 𝐷𝑂

2
𝑖

with a Van’t Hoff dependence of on temperature ( ):𝑡𝑉𝑂
2
𝑖 𝑇

. (6)1 / 𝑉𝑂
2
𝑖 =  0. 168 × 10−0.0387×𝑇 + 0. 0378 × 10−0.0253×𝑇/𝐶𝐼
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Comparing the above to the equation of Figure 1, we see that, according to Equation 6,

we must have , implying a Q10 of .𝑡𝑉𝑂
2
𝑖 = (1/0. 168) × 100.0387𝑇 1010×0.0387 = 2. 44

The GARIX+ Time-Series Model

The main assumption of the model is that changes (from one minute to the next) in the

‘logit’ of OER follow a homoscedastic (fixed-variance) normal distribution, and the

distribution mean is a linear function of three ‘term groups’ (TGs): the disequilibrium TG

(DTG), the autoregressive TG (ATG), and the exogenous TG (ETG). As a reminder, the

logit transformation is given by:

. (7)𝑙𝑜𝑔𝑖𝑡(𝑥) = log( 𝑥
1−𝑥 )

It is useful for mapping a variable with a range between 0 and 1 (such as OER) to an

unbounded range of to , making it a more natural fit for linear models. The− ∞ + ∞

model, therefore, reads:

, (8)𝑙𝑜𝑔𝑖𝑡(𝑂𝐸𝑅)
𝑡+1

− 𝑙𝑜𝑔𝑖𝑡(𝑂𝐸𝑅)
𝑡

∼ 𝑁(µ
𝑡
, σ2)

where the subscripts indicate measurement times (in minutes), is the univariate𝑁

normal (or Gaussian) distribution, is the time-dependent mean of the normalµ
𝑡

distribution, and is the time-independent variance of the distribution. The distributionσ2

mean at time , , is given by:𝑡 µ
𝑡
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The convention GARIX+(N) is used to refer to a GARIX+ model with a history length of

according to Equation 9. Also note that we have used the log transformation for state𝑁

variables, , and in order to reduce their skewness.𝐶𝐼 𝐻𝑏 𝑆𝑎𝑂2

Below we discuss each of the three TGs in the GARIX+ model. A conceptual summary

of the model is provided in Figure 2.

Disequilibrium Term Group (DTG)

The DTG represents a force to move OER in such a direction as to make VO2i equal to

tVO2i. For this interpretation to be sensible, the parameter ‘k’ - which we refer to as the

‘disequilibrium coefficient’ - is expected to be positive: For instance, when VO2i is larger

than tVO2i (over-oxygenation), then would be positive, andlog(𝑉𝑂
2
𝑖

𝑡
) − log(𝑡𝑉𝑂

2
𝑖

𝑡
)

hence would be negative (assuming ). This− 𝑘(log(𝑉𝑂
2
𝑖

𝑡
) − log(𝑡𝑉𝑂

2
𝑖

𝑡
)) 𝑘 >  0

induces a negative change in logit(OER), i.e., a decrease in OER, which would result in

reduced VO2i, thus bringing it closer to tVO2i. The reverse would happen if VO2i is

smaller than tVO2i (under-oxygenation).

Assuming that oxygen demand (tVO2i) follows the Van’t Hoff parametric form, we have:

(10)log(𝑡𝑉𝑂2𝑖) = α
0

+ α
1
𝑇

From the above, Q10 can be readily calculated:

. (11)𝑄
10

=
𝑡𝑉𝑂

2
𝑖(𝑇+10)

𝑡𝑉𝑂
2
𝑖(𝑇) =

exp(α
0
+α

1
(𝑇+10))

exp(α
0
+α

1
𝑇) = exp(10 α

1
)

Combining Equations 9 and 10, the following expression for DTG is obtained:

(12)𝐷𝑇𝐺 =  − 𝑘 (log(𝑉𝑂
2
𝑖) −  α

0
− α

1
𝑇)

Since the above specification isn’t suitable for linear regression, we switch to the

conventional specification:

, (13)𝐷𝑇𝐺 =  η
0

+ η
1

log(𝑉𝑂
2
𝑖) + η

2
𝑇

which can be converted back to Equation 12 using:

. (14)𝑘 =− η
1
,  α

0
=− η

0
/η

1
,  α

1
=− η

2
/η

1

Note that the above transformations are nonlinear, which means for estimating

confidence intervals for we use Monte Carlo simulations, where samples are𝑘, α
0
, α

1
,

13
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drawn from the joint normal distribution on , returned by linear regression(η
0
, η

1
, η

2
)

software in R, and within each sample are computed according to Equations 14.𝑘, α
0
, α

1

Exogenous Term Group (ETG)

The ETG represents the effect of intended changes (the terms in Equation 9) and𝑛 = 0

past changes (the terms in Equation 9) in the exogenous state variables ( ,𝑛 > 0 log(𝐶𝐼)

, , ) on change in . Larger ’s correspond to more distantlog(𝐻𝑏) log(𝑆𝑎𝑂
2
) 𝑇 𝑙𝑜𝑔𝑖𝑡(𝑂𝐸𝑅) 𝑛

pasts. See Limitations for a discussion of endogeneity vs. exogeneity of state variables.

Autoregressive Term Group (ATG)

The ATG represents the force that previous changes in OER exert on its future

trajectory. Each term in this TG, , corresponds toβ
𝑛
(𝑙𝑜𝑔𝑖𝑡(𝑂𝐸𝑅)

𝑡−(𝑛−1)
− 𝑙𝑜𝑔𝑖𝑡(𝑂𝐸𝑅)

𝑡−𝑛
)

the change in logit(OER) from time to time , i.e., minutes ago (since𝑡 − 𝑛 𝑡 − (𝑛 − 1) 𝑛

represents ‘present’ time). If the coefficient, , is negative, this term would produce a𝑡 β
𝑛

‘self-correcting’ force, i.e., reversing stochastic changes in OER. For instance, if ,β
1

< 0

then an increase in OER during would produce a force that seeks to reduce𝑡 −> 𝑡 + 1

OER from to .𝑡 + 1 𝑡 + 2

When equilibrium is changed, for example due to cardiac index changing without any

concomitant change in temperature, the force produced by the DTG is partially negated

by the ATG contribution (Figure 3E). Note that ATG does not include an ‘intended’ term,

i.e., , since this change corresponds to the outcome (endogenous) variable, which𝑛 = 0

is not known at the time of making the prediction; rather, the change in logit(OER) from 𝑡

to is exactly what is being predicted.𝑡 + 1

Static Model

As a reference point for the dynamic model, a naive, static model for learning the

dependence of tVO2i on temperature is considered. In this static model, an assumption

is made that VO2i is simply equal to tVO2i at all times; in other words, both supply

constraints and system dynamics are ignored. The relationship between tVO2i and

14
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temperature is again assumed to follow the Van’t Hoff specification, as in the dynamic

model. This leads to the following regression model:

(15)log(𝑉𝑂
2
𝑖

𝑡
) ∼ 𝑁(β

0
+ β

1
𝑇

𝑡
, σ2)

which can be readily estimated from the perfusion data.

Variable Importance Analysis

For Variable Importance (VI) analysis, a permutation-based method is used (Altmann et

al, 2010), embedded in a repeated cross-validation (CV) scheme. In our context, the

goal in conducting VI analysis is to quantify the relative importance of different

variables, rather than variable selection. Permutation-based VI (PVI) is a

model-agnostic VI method that measures degradation in predictive accuracy caused by

random shuffling of the column (or columns) of the design matrix corresponding to the

variables(s) in consideration. PVI is embedded in repeated cross-validation, in order to

base the performance change on out-of-sample - rather than in-sample - predictive

accuracy. Note that random shuffling applies not to the original time-series data but to

the transformed version of the data that is used in estimating the linear regression

coefficients. Relatedly, when applying PVI to TGs, the same random reordering of rows

is applied to all individual terms in a TG (with each term corresponding to a column in

the design matrix).

System Simulations

Simulations are conducted to illustrate system response to exogenous changes. They

can be done in two modes: deterministic and stochastic. In deterministic mode, the

change in from time to time is taken to be the predicted mean, . In𝑙𝑜𝑔𝑖𝑡(𝑂𝐸𝑅) 𝑡 𝑡 + 1 µ
𝑡

stochastic mode, the predicted mean is added to a random deviate drawn from a normal

distribution with variance equal to , which is estimated during model training.σ2

Unless mentioned explicitly otherwise, initial conditions for simulations were based on

median values of exogenous variables ( , , and ) in the training data, and𝑐𝑖 𝐻𝑏 𝑆𝑎𝑂2 𝑇

was calculated, using the GARIX+ model, such that the system would be in𝑂𝐸𝑅

equilibrium (DTG = 0), where DTG is given by Equation 12.
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Results

Patients and Outcomes

Table 1 shows a summary of patients used in the study and their outcomes. Note that, aside
from gender and ethnicity, all other variables are per-operation. For instance, if a patient has
had multiple operations, their age at the beginning of each operation is entered into the
calculations. With regards to mortality, we see the observed 30-day mortality rate in our dataset
is slightly below the expected mortality rate - for the same operations - calculated according to
the PRAiS2 protocol.

GARIX+ Model Fit

Figure 3 shows the results of fitting the above-described GARIX+ model to the granular

perfusion data. The magnitude of coefficients for autoregressive and exogenous terms

declines with lag increase and reaches statistically insignificant levels after 10 minutes

or so, consistent with a finite memory in the system (Panel A). (See Supp Mat E for the

complete list of coefficients for the GARIX+(20) model.) Coefficient signs are consistent

with an adaptive OER change to: 1) maintain oxygen consumption at a fixed

temperature (negative coefficients for change terms involving and ); 2)log(𝐶𝐼) log(𝐻𝑏)

increase/decrease oxygen consumption when temperature is increased/decreased,

respectively (positive coefficients for change terms involving ); and 3) stabilise random𝑇

fluctuations in oxygen consumption (negative coefficients for change terms).𝑙𝑜𝑔𝑖𝑡(𝑂𝐸𝑅)

is a special case since it is also part of the OER definition: ,𝑆𝑎𝑂
2

𝑂𝐸𝑅 = 1 − 𝑆𝑣𝑂
2
/𝑆𝑎𝑂

2

and it therefore influences VO2i both directly, and also via OER:

.𝑉𝑂
2
𝑖 =  𝐶𝐼 × 𝐻𝑏 × 1. 36 ×  (𝑆𝑎𝑂

2
 / 100) ×  10 × 𝑂𝐸𝑅

As shown in Methods, the DTG coefficients can be used to calculate Q10 and construct

the Van’t Hoff curve (Panel B). The estimated Q10 is 2.2, which is close to the 2.4 figure

given in Kirklin & Blackstone (2012), and significantly below the 3.7 value estimated

from the data using a naive, i.e. static, model (see Static Model). Also, ‘k’, the

disequilibrium coefficient, is estimated to be 0.024, with a 95% confidence interval of

0.021-0.026 that is significantly positive. Positivity of the disequilibrium coefficient is

consistent with an adaptive force to bring VO2i in line with target VO2i.
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By construction, the static fit assumes that the data is balanced between episodes of

under- and over-oxygenation. (Note, however, that the static regression is performed on

the logarithm of VO2i, which means residuals may not be balanced on the original scale,

especially if the model is misspecified.) Yet, within each subject, and especially at the

granular, minute-by-minute level, there are significant deviations from the regression

line, as can be seen in Figure 3B. On the other hand, the GARIX+(7) fit implies more

cases of over-oxygenation, especially at higher temperatures. While the ‘Kirklin -

asymptote’ line has a Q10 close to GARIX+, the absolute levels are significantly higher.

The discrepancy becomes smaller when we use the ‘clinical’ values given in Figure 2-11

of Kirklin and Blackstone (2012). Either way, the Kirklin lines imply under-oxygenation to

be a more prominent risk, compared to the fit obtained from our GARIX+ model.

Panel C confirms that only 5-10 minutes of history are useful for improving the

out-of-sample predictive accuracy of the model. This observation is the basis for using

GARIX+(7) in most of the remaining analyses in this paper. It is possible, however, that

larger training data would justify using a longer history.

Panel D shows PVI by TGs (DTG, ATG, and ETG). Note that DTG - which allows the

estimation of tVO2i and its dependence on temperature - has the smallest, but

statistically significant, contribution of the three TGs. This limits the ability to conduct

subgroup analyses, and to include many patient attributes and interaction terms in the

DTG of the model.

Panel E shows the timeline of contributions from different TGs to change in ,𝑙𝑜𝑔𝑖𝑡(𝑂𝐸𝑅)

driven by a hypothetical step-function change in CI at t = 0. The initial, fast adaptation is

dominated by the ETG, while the secondary, slow adaptation is dominated by the

counteracting effects of the DTG and the ATG. The ATG contribution (red) is partially

offsetting the DTG (green), resulting in a slower overall adaptation rate (purple). Panel F

illustrates the resulting OER trajectory consisting of the initial fast stage, followed by the

secondary, slow stage.
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Subgroup Analysis by KDIGO Score

Next, we trained the GARIX+(7) model on subsets of patients that all share a single

KDIGO score. Comparing these models allows us to identify interesting correlates of

AKI severity.

In Panel A of Figure 4, the model fit, measured by the out-of-sample (OOS) R-squared,

degrades with increased AKI severity (i.e., increasing KDIGO score; red line labelled

‘Genuine’), and this decline cannot be explained by changes in the sample size (blue

line, labelled ‘Random’). This is directionally consistent with the model reflecting, at

least to some degree, normal body mechanisms (which would presumably be stronger

in AKI-free patients), rather than a purely pathological set of interactions triggered by

the extreme conditions that patients undergo during CPB.

Panel B shows that the immediate adaptive reaction to changes in haemoglobin is an

important factor in explaining the change in model performance with AKI: Those with

severe AKI show a much less pronounced immediate adaptation to a change in blood

haemoglobin levels. Also, as panel C shows, the disequilibrium force becomes steadily

weaker (smaller disequilibrium coefficient or ‘k’) in patients with more severe AKI, which

is, in turn, reflected in a slower adaptation time (Panel D). Finally, smaller Q10 values in

higher-KDIGO patients (corresponding to the parameter in Panel C) suggests aα
1

weaker dependence of metabolic needs - genuine or pathological - on body

temperature in severe-AKI cases.

Comparison to the Kirklin Model

The elbow, or piecewise linear, model - where VO2i becomes completely

supply-independent after DO2i exceeds a threshold - is appealing due to its simplicity,

and also because it provides exact estimates not only for tVO2i, but also for tDO2i.

However, empirical evidence (Kirklin & Blackstone, 2012) suggests that a hyperbolic

model of oxygen consumption is more accurate in explaining the - albeit limited and

dated - human and animal data.

The GARIX+ dynamic model offers an alternative explanation of empirical data. Figure 5

shows the results of simulating the human experiments reported by Fox et al (1982).
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With a wait time of 10 minutes between state transitions, GARIX+(7) model produces a

DO2i-VO2i curve that is similar to the hyperbolic fit of Kirklin. As wait time is increased,

the GARIX+(7) model produces sharper curves, and at infinity it converges to the

piecewise linear shape. As shown earlier (Figure 3B), the predicted tVO2i is higher in

Kirklin than GARIX+(7) at all temperatures. As shown in Table 2, the distributions of

R-squared, ‘a’ and ‘b’ parameters (using Fox et al convention, see Supp Mat B)

according to GARIX+(7) - and using a wait time of 10 minutes between state transitions

- all have 95% confidence intervals that cover the results reported in Fox et al.

While a static view of the piecewise linear model would only allow for the possibility of

under-oxygenation, the shift to a dynamic perspective opens up both possibilities. This

is illustrated in Figure 6, which shows a 3D surface plot of oxygenation gap (OG) (y

axis) vs. the relative step change in DO2i at t = 0 (x axis), and at different times since the

introduction of step change (z axis). OG is defined as the % difference between oxygen

consumption at time ( ), and target oxygen consumption ( ):𝑡 𝑉𝑂
2
𝑖

𝑡
𝑡𝑉𝑂

2
𝑖

. (Note that tVO2i does not change with time since𝑂𝐺
𝑡

= 100 × (𝑉𝑂
2
𝑖

𝑡
− 𝑡𝑉𝑂

2
𝑖) / 𝑡𝑉𝑂

2
𝑖

temperature is fixed.) It can be demonstrated that, for small ’s, the response is nearly𝑡

linear, corresponding to relatively little adaptation in OER. This means that, e.g., when

cardiac index is increased and before OER adaptively decreases to bring VO2i down to

its pre-perturbation level, there will be a nearly proportional oxygen consumption

surplus, or over-oxygenation. However, as time progresses, such oxygen surplus

dissipates as OER adaptively decreases. While oxygen surplus eventually vanishes,

oxygen deficit cannot completely disappear if the ratio implies an OER𝑡𝑉𝑂2𝑖/𝐷𝑂2𝑖

greater than 1. As a result, the piecewise linear shape emerges for very large ’s.𝑡

Q10 by Temperature Band

One of the limitations of the Kirklin model (Equation 6) is that the dependence of tVO2i

on temperature was assumed to follow the strict parametric form of Van’t Hoff (where

the logarithm of oxygen demand is a linear function of temperature), and yet the

evidence for this strong parametric assumption is scant. In fact, Equation 6 is based

only on two data points: a set of human experiments conducted in 1982 at 20℃ (Fox et
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al, 1982), and three sets of animal experiments conducted in the 1950s, at 37℃ (Cheng

et al, 1959; Paneth et al, 1957; Starr, 1959). While the Van’t Hoff specification has been

followed in Equation 9 due to its widespread adoption, it may be informative to perform

a subgroup analysis by temperature in order to see if the GARIX+(7) model arrives at

the same, or close values of Q10 within different temperature bands.

As Figure 7A shows, most of the temperature recordings are clustered in the 30-37℃

range. This, combined with a low relative VI for the DTG means that models trained

within fine temperature subgroups may not yield statistically significant results for the

parameters of DTG. Therefore, we opted to create two temperature bands, separated at

28℃ (Panel B). We observe that, GARIX+(7) models that are fit within each subgroup

yield significantly different oxygen demand curves. While the low-temp regime has a

Q10 of 2.6, the high-temp regime produces a Q10 that is barely above 1, suggesting a

much less pronounced dependence of oxygen demand on temperature in this range.

Discussion

This study is the first to present a data-driven, analytical framework for predicting OER

changes in response to clinical interventions during CPB. The analysis was made

possible through a combination of granular perfusion data, combined with two important

methodological enhancements to an otherwise standard framework for time-series

analysis.

Our model suggests that changes in the components of oxygen delivery cause an

adaptive OER response to keep oxygen consumption in line with oxygen demand,

according to body temperature. The dependence of oxygen demand on temperature

decreases as temperature increases towards normothermia, calling into question the

accepted Van’t Hoff equation. Children developing AKI exhibit a dampened response to

changes in haemoglobin during CPB, with this dampening of response intensifying with

AKI severity. This association can be the foundation of an intraoperative tool for early

diagnosis of at-risk patients. Furthermore, our model provides a novel framework for

GDP by identifying periods of over- and under-oxygenation through comparing the VO2i

against tVO2i, and by predicting the impact of perfusionist actions on OER and oxygen

consumption.
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GARIX+ as a Grey-Box Model

In creating GARIX+, a standard autoregressive, integrated time-series model with

exogenous variables (ARIX) - a black-box model - has been enhanced in two important

ways. First, a DTG has been added (hence the ‘+’ sign) that reflects our expectation that

the body seeks to keep oxygen consumption in line with its metabolic needs, as dictated

by body temperature. Secondly, the data points are combined across all patients,

resulting in a ‘global’ time-series model. This gave the model sufficient statistical power

to estimate the DTG parameters, despite their relatively-small VI compared to the ATG

and ETG. Within the DTG, the dependence of oxygen demand (tVO2i) on temperature is

assumed to follow the Van’t Hoff model, which is the standard specification in the

literature. As such, GARIX+ can be characterised as a ‘grey-box’ model; that is, a

black-box model enhanced with domain knowledge.

In a GARIX model (no ‘+’), any combination of state variables (CI, Hb, SaO2, OER and

temp) would be acceptable as a solution, as long as they all remain constant with time.

While a GARIX model could explain much of the OER variations in the data (as

evidenced in low relative VI of the disequilibrium TG in Figure 3D), from a physiological

perspective it would be an incomplete model since it does not reflect the expectation

that the system would seek to adapt oxygen consumption to match the metabolic needs

of the body. At the same time, the linear specification of GARIX+, which was our primary

reason for not using machine learning models, allowed us to examine and interpret the

model coefficients and gain confidence in the physiological plausibility of the results, a

topic that is further discussed next.

Physiological Interpretation of Findings

The GARIX+ Model

Oxygen, whilst vital, can also be toxic, with both oxidative stress and cellular hyperoxia

identified as major contributors to multiple pathological states (Evans, 2016).

Historically, under-oxygenation was (and still remains) the key concern in patients

undergoing cardiac surgery, although recent studies are starting to highlight the

pathological dangers of over-oxygenation during CPB, with an ongoing debate around
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the level of damage (Jakutis et al, 2017; Young 2012; Abou-Arab et al, 2020). Equally,

being able to define what these terms (over- and under-oxygenation) mean is complex.

For example, within the kidney’s microcirculation, the renal medulla is normally exposed

to lower partial pressures of oxygen compared to the renal cortex, therefore under- and

over-oxygenation will be very different conditions, even in the same organ (Evans et al,

2008). Hyperoxia, however, is a phenomenon not encountered in the natural world, and

therefore one could speculate that there has been little evolutionary need to develop

countermeasures to it (although atmospheric oxygen levels have historically been much

higher than they are today; Lane 2003). At the cellular level, oxygen is involved in the

final step (Electron Transport Chain, ETC) of aerobic metabolism, in the mitochondria.

Whilst the citric acid (Kreb’s) cycle will only occur in the presence of oxygen, it will

continue even to a mitochondrial PO2 level as low as 3mmHg (0.4 kPa), with a KM of 22

mmHg (1.6 kPa; Wilson et al, 2012).

Therefore, an explanation for the piecewise linear model is that once sufficient oxygen

molecules are available (oxygen consumption) to support the ETC, further increases in

partial pressure will not increase the rate of metabolism. Moreover, as oxygen

concentrations reach excessive levels, animal and cell culture models have

demonstrated diminished ETC function and altered mitochondrial morphology

(Resseguie et al, 2015). Paradoxically, hypoxia is also associated with an increased

release of Reactive Oxygen Species (ROS) and mitochondria themselves appear to be

O2 sensing although our understanding of the mechanisms behind this is still incomplete

(Guzy and Schumacker, 2006). Hence, there are clear indications that a balance in

oxygen consumption and extraction is playing out at the cellular level, and supports our

notion for a Disequilibrium Term Group at the systemic level; i.e., the body is attempting

to maintain VO2 in line with tVO2. Given that individual tissues and organs are known to

operate at varying PaO2 levels or with different metabolic requirements, and even

require particular OER levels to maintain proper concentration gradient of oxygen, it

follows that, at a systemic level, alterations to exogenous variables (represented in the

Exogenous Term Group in the model) will have shorter or longer effects in those tissues

(Wolff, 2013). This lag or memory of previous events may be also partially a result of

perfusionist interventions coming in relatively rapid succession and independently of
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normal physiological mechanisms. Such deviations from the normal autoregulatory

patterns are frequently seen during CPB, and indeed, a recent review indicated that

cardiac surgery is associated with changes in cerebral autoregulation which significantly

relate to clinical outcomes (Caldas et al, 2018).

Dependence of Q10 on Temperature Regime

Oxygen can regulate glycolysis via the Pasteur effect. The availability of oxygen will

suppress glycolysis, and decreased availability leads to an acceleration of glycolysis, at

least initially. This appears to be regulated by several factors including the allosteric

regulators of glycolysis (enzymes such as hexokinase; Lenzen 2014).

Allosteric enzymes do not follow the Van’t Hoff dependence on temperature, instead

often displaying a sigmoid shape for dependence of reaction velocity on temperature, at

a fixed substrate concentration.

Whilst Q10 has been traditionally used to describe the dependence of rate of chemical

reactions on temperature, enzymatic reactions have ranges over which the proteins can

operate before conformational changes or denaturing occurs. Furthermore, bypass

physiology is very different from normal human physiology, in that exogenous variables

(such as haemoglobin concentration, cardiac index etc.) are manipulated separately by

the perfusionist, rather than in coordination, as would be under normal biology. For

instance, normal physiological mechanisms to combat hypothermia (such as shivering)

are prevented through general anaesthesia, and PaO2 is managed at levels higher than

observed naturally, in order to allow a margin of safety. In the analysis described in this

study, a lower Q10 value was measured in patients that were treated with mild

hypothermia (>28℃), compared to those with moderate and deep hypothermia (<28℃).

One might postulate that under mild hypothermic conditions sufficient substrate and

oxygen is being provided, and enzymatic functions are maintained such that they lead

to a degree of decoupling between metabolic rate and temperature. On cooling further

into moderate and deep hypothermia, this independence is lost and we thus return to

the more traditional Q10 of 2-3. However, further, independent data are required to

validate these observations and experimentation is needed to determine the cellular

mechanisms operating in different temperature regimes.
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Altered Model Performance in Patients Developing AKI

The aetiology of AKI is complex and incompletely understood. Some studies have

pointed to renal haemodynamics and oxygenation as AKI triggers (Evans et al., 2018),

whilst a meta-analysis suggested hypertension, alterations of serum creatinine, CPB

and aortic clamping times (among others), as strong predictors for the development of

postoperative AKI (Yi et al 2016). Renal oxygenation is directly dependent on renal

blood flow and its regulation, and its oxygen consumption levels are primarily driven by

tubular demand, which itself is dependent on the glomerular filtration rate (Smith et al

1940). There exist, within the kidney, regional variations in oxygen delivery and

consumption; areas with normally lower physiological pO2 are at greater risk of hypoxic

damage through alterations in the delivery - consumption balance (Edwards and

Kurtcuoglu, 2022).

The reduced performance of the GARIX+ model in severe AKI patients, as well as their

slower adaptation seems physiologically plausible, as it suggests a disruption of

feedback pathways in severe-AKI patients. The causality mechanism is not clear,

however. For instance, slower adaptation may be causing AKI by creating prolonged

periods of imbalance between oxygen consumption and demand, or there may be a

common cause for slower OER adaptation during CPB, and postoperative AKI. One of

the limitations of this (and indeed nearly every other) study examining AKI after CPB, is

a lack of direct measurement of blood flow and oxygenation occurring in the kidney.

Therefore it is impossible to provide a definitive explanation for the slowing of the

adaptive response in high-severity AKI patients (Figure 4D). However, this is consistent

with an exaggerated supply-dependence of consumption in critically-ill patients,

including those with sepsis (Friedman et al, 1998).

An intriguing observation from the GARIX+ model, is the decline in adaptive response to

haemoglobin changes in severe-AKI patients. Furthermore, although not detailed in this

manuscript, a progressively weaker haemoglobin response was observed in younger

patients. During CPB, other than through haemofiltration, the only way to increase Hb

concentration is through the addition of stored RBCs. Due to the large volume of the

CPB circuit relative to the child’s circulating volume, RBC transfusions are more

common in paediatric than adult surgery. A recent study examined the effect of RBC
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transfusion on renal oxygenation in kidneys supported via an ex vivo normothermic

kidney perfusion rig (Bumbill et al 2023). It demonstrated that there was slower O2

unloading from stored RBC with concomitant reduction in O2 extraction in perfused

kidneys, indicating diffusion-limited O2 release at capillaries. It is also possible that SaO2

dependence on PaO2 - i.e. the oxygen dissociation curve - shifts differently with

transfused RBC’s due to the metabolic and morphological changes that can occur due

to storage (Bennett-Guerrero, 2007 & Yoshida, 2019). Further examination is required to

ascertain the underlying mechanism for this response, but it presents a potential

mechanism for early - i.e., intraoperative - diagnosis of patients at risk of post-surgical

AKI.

Implications for Goal-Directed Perfusion

Whilst the majority of research has focused on preventing under-oxygenation of the

tissues during CPB, little has been done to date to assess over-oxygenation.

Furthermore, DO2i provides limited information and assumes an optimised dissociation

curve occurring across all tissues. Using predicted tVO2i as a reference (see Table 3)

will allow the more specific definition of over-and under-oxygenation, increasing the

predictive power towards AKI and other adverse events.

Limitations

Contribution from dissolved oxygen

The contribution from dissolved oxygen was not considered due to a lack of access to

PvO2 (partial pressure of mixed venous oxygen). However, as stated before, this

contribution is on average only around 1.5% of the total oxygen content. Therefore, the

analysis and results can be considered directionally correct. Future work will incorporate

the dissolved-oxygen component and improve the accuracy of the models.

Endogeneity vs. Exogeneity of State Variables

Exogeneity of CI, Hb, SaO2 is an idealised assumption. In reality, values of these state

variables at time “t+1” cannot be set with full certainty at time “t”; rather, these variables
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are controlled indirectly. In other words, the boundary between exogeneity and

endogeneity is blurred. In particular, SaO2 is controlled via PaO2 (changing the arterial

oxygen pressure). A basic dynamic model confirmed that PaO2 (plus temperature) can

predict changes in SaO2 with good accuracy (results not shown here). In future work,

more realistic models will be needed to better reflect the true controllability of the

‘exogenous’ variables.

Constraints on OER

Other than using a logit transformation to implicitly constrain OER to fall between 0 and

1, there were no other constraints on OER. The nonlinearity of the logit transformation

also provides a natural slowing down of OER change as it approaches extreme values,

which lends further physiological plausibility to the system simulations. It is possible

that, during normal conditions, the body deploys other adaptive mechanisms, which

may or may not be disrupted during CPB, to ensure that OER remains within a tighter

range. During CPB, on the other hand, perfusionists generally go to great lengths to

ensure that OER does not stray too far from an acceptable range. For instance, in our

data, 90% of time OER remains below 31%. As such, during system simulations, care

must be taken while interpreting results where simulated OER approaches or exceeds

the observed range in our data.

Paediatric patients

This dataset contains a broad paediatric age range and yet no adults. Mixing neonates

and teenagers, who may have very different physiology and different responses in terms

of their adaptation to CPB stresses, is not ideal. However, due to the relatively low VI for

the DTG (OER variations are dominated by exogenous and autoregressive forces

during CPB), we decided to combine all patients to build a single, global model in order

to maximise the study power with regards to the steady-state analysis (dependence of

tDO2i on temperature). More data and analyses are needed to differentiate between age

groups.

26

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304520doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304520
http://creativecommons.org/licenses/by-nc-nd/4.0/


Conclusion

This study proposes a physiologically plausible model of OER changes during CPB that

is consistent with past experimental data. While in the long-term under-oxygenation is

the dominant risk, slow adaptation of OER during CPB creates short-term opportunities

for over-oxygenation after significant changes in the exogenous variables, such as a

sudden increase in cardiac index. The model provides well-defined values for tVO2i at a

given temperature (Table 3), paving the way for further research into the effects of over-

and under-oxygenation on postoperative outcomes such as AKI, and hence

improvements in GDP protocols. Furthermore, the identification of an altered response

to haemoglobin changes in patients that proceed to severe post-surgical AKI suggests a

potential intraoperative diagnostic tool for early identification of at-risk patients.

References

1. O. Abou-Arab, P. Huette, M. Guilbart, H. Dupont and P.-G. Guinot Hyperoxia

during cardiopulmonary bypass does not increase respiratory or neurological

complications: a post hoc analysis of the CARDIOX study. British Journal of

Anaesthesia 2020 Vol. 125 Issue 5 Pages e400-e401.

2. Altmann, André, et al. "Permutation importance: a corrected feature importance

measure." Bioinformatics 26.10 (2010): 1340-1347.

3. Bennett-Guerrero, E. et al. Evolution of adverse changes in stored RBCs. Proc

Natl

Acad Sci U S A 104, 17063-17068 (2007).

4. Caldas, J.R., Haunton, V.J., Panerai, R.B., Hajjar, L.A., and Robinson, T.G.

Cerebral autoregulation in cardiopulmonary bypass surgery: a systematic review,

Interactive CardioVascular and Thoracic Surgery, 2018 26(3) 494–503.

5. Cheng, Huan-Chen, et al. "A study of oxygen consumption during extracorporeal

circulation." ASAIO Journal 5.1 (1959): 273-278.

6. Do-Nguyen, Chi Chi, et al. "Oxygen Delivery Thresholds During Cardiopulmonary

Bypass and Risk for Acute Kidney Injury." The Annals of Thoracic Surgery

(2023).

27

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304520doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304520
http://creativecommons.org/licenses/by-nc-nd/4.0/


7. Dreher, Molly, et al. "Indexed oxygen delivery during pediatric cardiopulmonary

bypass is a modifiable risk factor for postoperative acute kidney injury." The

Journal of ExtraCorporeal Technology 55.3 (2023): 112-120.

8. Richard Dumbill, Julija Rabcuka, John Fallon, Simon Knight, James Hunter,

Daniel Voyce, Jacob Thomas Barrett, Matt Ellen, Annemarie Weissenbacher,

Tetuko Kurniawan, Slawomir Blonski, Piotr M Korczyk, Rutger Jan Ploeg,

Constantin Coussios, Peter Friend, Pawel Swietach; Impaired O2 unloading from

stored blood results in diffusion-limited O2 release at tissues: evidence from

human kidneys. Blood 2023; blood.2023022385. doi:

https://doi.org/10.1182/blood.2023022385

9. Edwards A, Kurtcuoglu V. Renal blood flow and oxygenation. Pflugers Arch. 2022

Aug;474(8):759-770.

10.Evans RG, Gardiner BS, Smith DW, O’Connor PM. Intrarenal oxy-genation:

unique challenges and the biophysical basis of homeostasis. Am J Physiol Renal

Physiol (2008) 295: F1259–F1270.

11. Evans, R.G. Oxygen regulation in biological systems. Am J Physiol Regul Integr

Comp Physiol (2016) 310: R673 - R678.

12.Evans RG, Lankadeva YR, Cochrane AD, Marino B, Iguchi N, Zhu MZL, Hood

SG, Smith JA, Bellomo R, Gardiner BS, Lee CJ, Smith DW, May CN, Evans RG,

et al. Renal haemodynamics and oxygenation during and after cardiac surgery

and cardiopulmonary bypass. Acta Physiol (Oxf). 2018;222(3). Epub 2017 Nov

30. PMID: 29127739. https://doi.org/10.1111/apha.12995.

13.Fox, Lawrence S., et al. "Relationship of whole body oxygen consumption to

perfusion flow rate during hypothermic cardiopulmonary bypass." The Journal of

Thoracic and Cardiovascular Surgery 83.2 (1982): 239-248.

14.Friedman, Gilberto, et al. "Oxygen supply dependency can characterize septic

shock." Intensive care medicine 24 (1998): 118-123.

15.Guzy, R.D. and Schumacker, P.T. Oxygen sensing by mitochondria at complex

III: the paradox of increased reactive oxygen species during hypoxia.

Experimental Physiology (2006) 91: 807-819.

28

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304520doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304520
http://creativecommons.org/licenses/by-nc-nd/4.0/


16.Hayward, A., et al. “Oxygen Delivery in Pediatric Cardiac Surgery and its
Prediction of Acute Kidney Injury using Machine Learning.” Journal of Thoracic

and Cardiovascular Surgery. (2023);165(4):1505-1516.

17.Hendrix, Rik HJ, Yuri M. Ganushchak, and Patrick W. Weerwind. "Oxygen

delivery, oxygen consumption and decreased kidney function after

cardiopulmonary bypass." PLoS One 14.11 (2019): e0225541.

18.Jakutis G, Norkienė I, Ringaitienė D, Jovaiša T. Severity of hyperoxia as a risk

factor in patients undergoing on-pump cardiac surgery. Acta Med Litu.

2017;24(3):153-158.

19.Kirklin, James K., and Eugene H. Blackstone. Kirklin/Barratt-Boyes Cardiac

Surgery: Expert Consult-Online and Print (2-Volume Set). Vol. 1. Elsevier Health

Sciences, 2012.

20.Khwaja, Arif. "KDIGO clinical practice guidelines for acute kidney injury." Nephron

Clinical Practice 120.4 (2012): c179-c184.

21.Lane N.Oxygen: The Molecule that Made the World. Oxford: Oxford University,

2003.

22.Lenzen S. A fresh view of glycolysis and glucokinase regulation: history and

current status. J Biol Chem. 2014 May 02;289(18):12189-94

23.Lubarsky, David A., et al. "Defining the relationship of oxygen delivery and

consumption: use of biologic system models." Journal of Surgical Research 58.5

(1995): 503-508.

24.Mahani, Alireza S., and Mansour T. A. Sharabiani (2017).

“Multivariate-From-Univariate MCMC Sampler: The R Package MfUSampler.”

Journal of Statistical Software, Code Snippets, 78(1), 1-22.

doi:10.18637/jss.v078.c01.

25.Naik SK, Elliott MJ. Ultrafiltration and paediatric cardiopulmonary bypass.

Perfusion. 1993;8:101-12.

26.Paneth, Matthias, et al. "Physiologic studies upon prolonged cardiopulmonary

by-pass with the pump-oxygenator with particular reference to (1) acid-base

balance,(2) siphon caval drainage." Journal of Thoracic Surgery 34.5 (1957):

570-579.

29

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304520doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304520
http://creativecommons.org/licenses/by-nc-nd/4.0/


27.R Core Team (2021). “R: A language and environment for statistical computing.”

R Foundation for Statistical Computing, Vienna, Austria. URL

https://www.R-project.org/.

28.Ranucci, Marco, et al. "Goal-directed perfusion to reduce acute kidney injury: a

randomized trial." The Journal of thoracic and cardiovascular surgery 156.5

(2018): 1918-1927.

29.Resseguie, E.A., Staversky, R.J., Brookes, P.S., and O’Reilly, M.A. Hyperoxia

activates ATM independent from mitochondrial ROS and dysfunction. Redox

Biology, 2015 (5): 176-185.

30.L. Rogers, K. L. Brown, R. C. Franklin, G. Ambler, D. Anderson, D. J. Barron, et

al. Improving Risk Adjustment for Mortality After Pediatric Cardiac Surgery: The

UK PRAiS2 Model. The Annals of Thoracic Surgery 2017 Vol. 104 Issue 1 Pages

211-219.

31.Smith HW, Chasis H, Goldring W, Ranges HA. Glomerular dynamics in the

normal human kidney. J Clin Invest. 1940;19:751–764. doi: 10.1172/JCI101180.

32.Starr, Albert. "Oxygen consumption during cardiopulmonary bypass." The Journal

of Thoracic and Cardiovascular Surgery 38.1 (1959): 46-56.

33.Wilson, D.F., Harrison, D.K., and Vinogradov, S.A. Oxygen, pH, and

mitochondrial oxidative phosphorylation J Appl Physiol (2012) 113: 1838–1845.

34.Wolff, Christopher. Oxygen Delivery: The Principal Role of the Circulation.

Advances in experimental medicine and biology. (2013). 789. 37-42.

35.Yi Q, Li K, Jian Z, et al. Risk factors for acute kidney injury after cardiovascular

surgery: evidence from 2157 cases and 49 777 controls: a meta-analysis.

Cardiorenal Med. 2016;6:237–50.

36.Yoshida, T., Prudent, M. & D'Alessandro, A. Red blood cell storage lesion:

causes

and potential clinical consequences. Blood Transfus 17, 27-52 (2019).

37.Young RW. Hyperoxia: a review of the risks and benefits in adult cardiac surgery.

J Extra Corpor Technol. 2012 Dec;44(4):241-9.

30

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304520doi: medRxiv preprint 

https://www.r-project.org/
https://doi.org/10.1101/2024.03.18.24304520
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tables

Table 1

Variable Value

Number of operations/patients 754/691

Age at operation (months)
Range

7.6 [3.0-46.7]
0.12-218.8

Age group (at operation)
Neonates (0-30 days)
Infants (1-12 months)
Children (1-18 years)

321 (43)
319 (42)
114 (15)

Sex
Male
Female

384 (56)
307 (44)

Ethnicity
White
BAME
<Not Available>

344 (50)
257 (37)
90 (13)

Antenatal diagnosis
Yes
No
<Not Available>

285 (38)
428 (57)
41 (5)

30-day mortality
Expected (using PRAiS)
Observed

12 (1.6)
4 (0.5)

KIDGO score
0
1
2
3

293 (39)
256 (34)
122 (16)
83 (11)

Table 1: Summary of patients and their outcomes. Numbers in brackets represent interquartile
ranges for numeric variables, while numbers in parentheses represent percentages for discrete
variables. Note that for sex and ethnicity, the counts and percentages are reported at the patient
level, while for other variables (including age), the figures are reported at the operation level.
BAME: Black, Asian and Minority Ethnic.
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Table 2

GARIX+(7) Kirklin

Parameter estimate 95% CI estimate

R-squared 75.5% 58.8% - 92.1% 65%

a 39.5 24.9 - 60.0 35

b 0.94 0.26 - 1.78 0.42

Table 2: Comparison of R-squared and fit parameters from GARIX+(7) simulations

mimicking Kirklin experiments, against the Kirklin fit, reported in Fox et al (1982). See

Supp Mat B for definitions of ‘a’ and ‘b’.

Table 3

tDO2i (mL/min/m2)

Temperature
(C)

tVO2i
(mL/min/m2)

OERmax = 50% OERmax = 20%

15 16 32 78

20 23 46 115

25 34 78 171

30 51 102 252

37 87 174 436

Table 2: Target (indexed) oxygen consumption ( ) and threshold (indexed) oxygen delivery (𝑡𝑉𝑂
2
𝑖

) - assuming a maximum OER of 50% and 20% - at different temperatures, as predicted𝑡𝐷𝑂
2
𝑖

by the GARIX+(7) model of Equation 9, fitted to our granular perfusion data.
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Figures

Figure 1

Figure 1: Schematic of a piecewise-linear (blue) model, and its corresponding

hyperbolic (red) model of indexed oxygen consumption (VO2i) vs. indexed oxygen

delivery (DO2i). The two equations describe models that both go through origin (DO2i =

0, VO2i = 0), have the same slope at origin (i.e., tVO2i/tDO2i), and the same maximum

value for VO2i (i.e., tVO2i). As such, this hyperbolic equation can be considered the

‘smooth’ counterpart to the piecewise-linear equation.
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Figure 2

Figure 2: Conceptual summary of the GARIX+ model, proposed in this paper.
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Figure 3

Figure 3: Results for fitting GARIX+ models of Equation 9 to the CPB perfusion data. A:
Coefficients for each state variable are divided by their value at lag = 1 minute.

Coefficients of (the endogenous variable) stop at lag = 1 (change from one𝑙𝑜𝑔𝑖𝑡(𝑂𝐸𝑅)

minute ago to now), while exogenous variables continue to lag = 0 (change from now to

one minute from now). B: Comparison of models for Oxygen demand ( ) vs. body𝑡𝑉𝑂2𝑖

temperature (note the logarithmic scale of the y axis). The ‘Kirklin - asymptote’ line
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(green) is from Kirklin and Blackstone (2012), Equation 2A-3, with CI set to infinity, i.e.,

asymptotic value of the hyperbolic curve (see Kirklin Equation). The ‘Kirklin - clinical’

line (blue) is taken from Figure 2-11 of the same textbook, using the small X’s in the

figure, which are referred to as oxygen consumption levels corresponding to clinical flow

rates used at temperatures 20oC (27 mL/min/m2), 25oC (42 mL/min/m2), 30oC (65

mL/min/m2) and 37oC (120 mL/min/m2). Mustard-colour points are 100 random samples

of the training data. Purple line represents the Static Model, and the red line

corresponds to the asymptotic value (tVO2i) of the GARIX+(7) model. Printed numbers

indicate the Q10 values derived using various methods, with brackets showing 95%

confidence interval for each Q10 value (no confidence interval available for Kirklin). C:
Out-of-sample R-squared (using average of 10-times repeated, 5-fold cross-validated

model predictions) vs. length of history (parameter ) used in the GARIX+(N) model. D:𝑁

PVI by TG, using 5-fold cross-validation, and 10 random shufflings of target TGs within

each prediction fold. Error bars are based on standard deviations of the decline in

out-of-sample R-squared across the random shufflings. E: Decomposition of predicted

changes in in response to a 25% decrease in cardiac index at t = 0 (𝑙𝑜𝑔𝑖𝑡(𝑂𝐸𝑅) log(𝐶𝐼),

becoming 0.714). The system is assumed to be in equilibrium at t = 0, with state

variables being , , , .log(𝐶𝐼) = 1. 00 log(𝐻𝑏) = 2. 31 log(𝑆𝑎𝑂
2
) = 4. 60 𝑇 = 33. 1𝐶

Simulations were run in deterministic mode. F: OER vs time since change in CI,

corresponding to the same experiment as in Panel E. The y values are inverse-logit

transformed from the cumulative sum of the ‘total’ time series in Panel E.
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Figure 4

Figure 4: Subgroup analysis of the GARIX+(7) model by AKI severity. A: Out-of-sample
R-squared (using average of 10-times repeated, 5-fold cross-validated predictions) vs.

KDIGO stage of patients selected for training the models (red line), labelled as

‘Genuine’. The blue line, labelled as ‘Random’, corresponds to out-of-sample R-squared

(using identical CV settings) over 10 random splits of the entire data into datasets of the

same size as those corresponding to each KDIGO stage. B: Coefficient of exogenous
terms involving ‘Hb’ (haemoglobin), as a function of lag (in minutes), split by KIDIGO

stage of patients used in the training data. C: Parameters of the DTG - each normalised
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by its value at KDIGO = 0 - as a function of the KDIGO stage of patients included in

training the data. and correspond to the Van’t Hoff model that predicts theα
0

α
1

logarithm of tVO2i as a function of body temperature. D: OER - normalised by its value

at t = 0 (the time at which cardiac index is decreased by 25%) using deterministic

simulation by models trained exclusively on patients with different levels of KDIGO

stage; initial (equilibrium) conditions by KIDIGO stage (0/1/2/3): log(ci) =

1.02/0.993/0.977/1.02, log(Hb) = 2.30/2.30/2.31/2.33, log(SaO2) = 4.6 (all groups),

temp = 33.4/33.1/32.9/33.2, logit(OER) = -1.48/-1.50/-1.77/-1.48.
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Figure 5

Figure 5: Comparison of VO2i vs. CI curves, produced by the GARIX+(7) model

(simulation-based) and Kirklin’s hyperbolic model (human experiments; Fox et al, 1982).

Red o’s show results of a sample simulation using GARIX+(7), with settings that closely

match the Fox et al experiments (see Supp Mat B), including a 10-minute wait after

each change to the CI. Red curve of the same colour is the hyperbolic fit to that data.

Blue x’s are GARIX+(7) simulations with the same settings, except wait times are

increased from 10 minutes to 100 minutes. The blue curve, again, shows the hyperbolic

fit to that data. The black, piecewise linear line shows the results for infinite wait time

and averaging over an infinite pool of (simulation) subjects. Dotted red curve is the

hyperbolic model of Kirklin, based on experiments of Fox et al (1982).
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Figure 6

Figure 6: Oxygenation gap (OG) as a function of % change in DO2i (via a change in

CI), at different wait times, using deterministic simulation with a GARIX+(7) model. State

variables are log(ci) = 0.217, log(Hb) = 1.96, log(SaO2) = 4.6, temp = 20, logit(OER) =

-1.42. Positive OGs indicate over-oxygenation and negative OGs reflect

under-oxygenation. See text for exact definitions.
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Figure 7

Figure 7: Subgroup analysis of Q10 by temperature range, using the GARIX+(7) model.
A: Histogram of temperature readings in perfusion data, reflecting high concentration of

data in the >30C range, with a smaller peak near 25C. B: Predicted tVO2i as a function
of temperature, in low-temp range (15-28 C) (red) and high-temp range (28-38 C)

(blue); dotted lines are based on 10 random samples from the estimated joint

distribution of parameters, and solid lines are based on median values.
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Supplementary Material

A: Approximate Equivalence of Van’t Hoff and Arrhenius Specifications

The Arrhenius and Van’t Hoff formulations are the best known parametric forms used to

describe the relationship between temperature and oxygen consumption. It can be

demonstrated that, as long as temperature changes are small compared to their

absolute values, when expressed in Kelvins, the two specifications are approximately

equivalent. In this manuscript, the Van’t Hoff specification has been adopted, which is

consistent with the widely recognised concept of Q10, the multiplicative increase in

RMR for every 10 degrees C increase in body temperature.

The Arrhenius equation, after mapping the concept of chemical reaction rate to

metabolism and hence oxygen consumption, would require the logarithm of oxygen

consumption to be a linear function of the inverse of temperature, expressed in Kelvins (

):𝑇
𝑘

(A.1)𝑙𝑜𝑔(𝑉𝑂
2
𝑖) = 𝑎 + 𝑏/𝑇

𝑘

Let’s express in terms of its deviations ( ) from a baseline value, :𝑇
𝐾

∆𝑇 𝑇
0

. (A.2)𝑇
𝐾

= 𝑇
0

+ ∆𝑇

Equation (A.1) can be rewritten as:

(A.3)𝑙𝑜𝑔(𝑉𝑂
2
𝑖) = 𝑎 + 𝑏/(𝑇

0
+ ∆𝑇)

If , i.e., if changes in temperature are small compared to its baseline value, in∆𝑇 << 𝑇
0

Kelvins, then a first-order, Taylor-series expansion is used to rewrite Equation (A.3):

𝑙𝑜𝑔(𝑉𝑂
2
𝑖) = 𝑎 + 𝑏/(𝑇

0
(1 + ∆𝑇/𝑇

0
)) ≈ 𝑎 + (𝑏/𝑇

0
)(1 − ∆𝑇/𝑇

0
) = (𝑎 + 𝑏/𝑇

0
) + (− 𝑏/𝑇

0
2) ∆𝑇

Note that the last expression on the right is a linear function of temperature change, .∆𝑇

This is simply the Van’t Hoff specification, i.e., logarithm of VO2i being a linear function

of temperature. (Keep in mind that one Kelvin change equals one Celsius change in

temperature, i.e., would be identical whether expressed in Kelvins or Celsius.)∆𝑇

42

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304520doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304520
http://creativecommons.org/licenses/by-nc-nd/4.0/


B: Experimental Setup and Model Specification of Fox et al (1982)

Table 1 in Fox et al (1982) was consulted for constructing the random sequence of CI

values for each simulated subject who received 4 step-function changes to their CI

during the simulations. (The initial value of CI was 2.2 L/min/m2 for all subjects.) This

means that, for each step-function change in CI, one of the four possible CI bands listed

in Table 1 is first randomly selected and then a random number is drawn from the

normal distribution associated with that CI band, according to the mean and standard

deviation values listed therein. Fox et al., fitted a hyperbolic model to their experimental

data, which assumes 1/VO2i to be a linear function of 1/CI: ,𝑉𝑂
2
𝑖 = 𝑎 × 𝐶𝐼 / (𝑏 +  𝐶𝐼)

with , . Note that this equation is equivalent to Equation 6 for .𝑎 = 35 𝑏 = 0. 42 𝑇 = 20𝐶

C: GARIX+ Model Diagnostics

Panel A of Figure C-1 shows the combined autocorrelation function (ACF) plot of

GARIX+(7) model residuals across all segments. For comparison, Panel B shows the

same plot, where model residuals are replaced with white noise. The overall similarity of

plots - with the average (red) line being close to the y = 0 line - indicates that model

residuals are well-behaved. Panel C shows the ACF plot for the absolute of model

residuals, and Panel D shows the ACF of the absolute of white noise. The discrepancy

between these two panels is a sign that there is information in the magnitude of residual

noise, i.e., heteroscedasticity. Incorporating heteroscedasticity into the GARIX+ model is

a topic of future research.
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Figure C-1: Combined autocorrelation plots (across all data segments) for GARIX+(7)

model residuals (Panel A), i.i.d. Gaussian noise (Panel B), absolute of model residuals

(Panel C), and absolute of i.i.d. Gaussian noise (Panel D). Red lines in each panel show

average correlation at each lag across all contributing segments. A minimum segment

length of 50 minutes was imposed on the data.

D: Statistical Significance of GARIX+ Coefficients

The supplementary file, GARIX_20_model_coefficients_supp_mat.csv, shows the list of

coefficients and their statistical significance for the GARIX+(20) model. The majority of

terms have statistical significance for up to 5-10 minutes of lag, and the terms

corresponding to recent history have particularly high significance. An exception is

SaO2, which is only highly significant at lag = 0 (corresponding to change from t to t+1).
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