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Abstract

In this paper we develop a generalization of the Kermack-McKendrick SIR model where

the time of infectiousness follows the Weibull distribution. We compute the equivalent classical

results available for the classical SIR model, particularly a general expression for the basic

reproduction number. We comment about the implications of this generalization in epidemic

and metapopulation dynamics and illustrate our findings with some numerical simulations.

Key words: SIR, Kermack-McKendrick, Weibull waiting time, mathematical epidemiology

MSC2020: Primary: 92-XX, Secondary: 92Bxx.

1 Introduction

The Kermack-Mckendrick or SIR mathematical model has been a standard for the theoretical in-

vestigation of the dynamics of directly transmitted diseases, particularly the characteristics and

conditions that lead to and describe epidemic outbreaks e.g., [3, 6, 7, 12, 16]. The standard SIR
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model, given in Eq (1)

S ′(t) = −βS(t)I(t) (1.1)

I ′(t) = βS(t)I(t)− γI(t) (1.2)

R′(t) = γI(t), (1.3)

incorporates three compartments (S susceptible, I infected and R recovered individuals, respec-

tively) and incorporates only two parameters: the effective contact rate β and the recovery rate

γ. It is a simplification of a more general age of infection model [12] that takes into account two

different time scales: the one corresponding to the chronological age of the human population and

the other corresponding to the duration of infectiousness, each with their particular waiting time

distributions. The simplified SIR model is framed in ordinary differential equations that, implic-

itly, assume that both chronological time and age of infection time have exponentially distributed

waiting times. To account for the observed distribution of age of infection, the SIR framework is

enlarged with one or more compartments that approximate the distribution of infectiousness in the

population. There are recent results [1] that directly tackle the age of infection distribution and

allow a generalization of the results of classical compartmental models.

Another important area where this kind of models has been applied is ecology. The SIR family of

models (SIR, SIS, SER, SEIRS, etc.,) have a characteristic structure that makes them amenable to

the study of metapopulation dynamics [8, 10]. In this context, the compartments represent patches

of different classes with S being the empty patches, I the colonized and propagule producing

patches, R the damaged or perturbed patches, and so forth. In metapopulation dynamics an im-

portant problem are the conditions and consequences of extinction events on the abundance of the

species that constitutes the metapopulation.

In what follows we will use the epidemiological framework to introduce our results.

2 Preliminaries

The infectivity distribution is the distribution of residence times in the infected compartment. There

are several ways to incorporate infectivity distributions into epidemiological models (e.g., [11, 6]).

Here we follow the description presented in [14]. To motivate the construction let x(τ) be a cohort

2

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304502doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304502
http://creativecommons.org/licenses/by/4.0/


of individuals all infected at time τ . Individuals leave the infectious state at a rate γ thus

x′(τ) = −γx(τ)

which results in

x(τ)/x(0) = e−γτ ;

therefore, the fraction of recovered individuals at τ is

F (τ) = 1− e−γτ .

The average residence time in the infectious compartment is then∫ ∞

0

γτe−γτdτ = 1/γ.

This elementary result comes from the assumption that residence times are exponentially dis-

tributed. We can provide alternative options. For example, as in [14], let X be an absolutely

continuous random variable on [0,∞), of residence times with distribution F (t) = P [X ≤ t]; this

leads to the survival function G(t) = 1 − F (t) = P [X > t]. Thus for τ > 0, G(t − τ) is the

infected fraction at time τ > 0 that is still sick (infectious) at time t (t > τ ). Armed with these

observations, we can define the incidence as βI(τ)S(τ)G(t − τ) giving the new cases per unit

time. The prevalence then is as

I(t) = I0(t) +

∫ t

0

βI(τ)S(τ)G(t− τ)dτ

and the recovered individuals by

R(t) = R0(t) +

∫ t

0

βI(τ)S(τ)(1−G(t− τ))dτ.

These two equations substitute the corresponding ones given in Eq. (1).

The Weibull distribution has been used to approximate incidence in epidemiological models as a

good statistical descriptor of observed data [18], as a descriptor of the spreading behavior of epi-

demics [19] or because it provides a non-Markovian SIS model approximation on a network [15].

This last work gives results on the threshold parameter for persistence or extinction of the disease.

The work [4] approximates the classical SIR model using arbitrary distributions for the infectious

period, estimate the threshold parameter and fit COVID data to model simulations. All these are

examples from epidemiology but the Weibull distribution can render more general dynamics that

can explain processes in general ecological settings e.g., [11, 23].
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In this work we are interested in characterizing the basic parameters that describe a general growth

and extinction process using the Weibull distribution. We will compare them to the classical results

of the SIR and other metapopulation models, particularly in relation to the shape parameter α of

the Weibull distribution. We discuss the effect of this more realistic distribution on epidemic and

ecological extinction processes.

Let us consider an absolutely continuous random variable X concentrated on (0,∞). Let f and F

be its density and distribution functions, respectively. The hazard function associated to X will be

denoted by H , and it is defined as

H(t) :=
f(t)

G(t)
, t > 0. (2.4)

These kind of distributions can be useful in modelling random phenomena occurring in time.

Note that, in case that X is an exponential random variable with rate γ > 0, we have that

F (t) = 1− e−γt, t > 0.

Thus, in this case the hazard function is

H(t) ≡ γ, for all t > 0.

The exponential distribution is the unique continuous distribution with a constant hazard function,

because this is the only continuous distribution with the lack of memory property; in other words,

the events appear homogeneously in time.

Let X be a random variable with Weibull distribution, namely, with density function

f(t; γ, α) =

αγ(γt)α−1e−(γt)α t > 0,

0 t ≤ 0,

with parameters α > 0 (shape) and γ > 0 (scale). It turns out that X has distribution function

given by

F (t) =

1− e−(γt)α t > 0,

0 t ≤ 0.

Observe that, if the shape parameter α = 1, X reduces to an exponential random variable with

mean 1/γ. It is known that

E(X) =

∫ ∞

0

tf(t;α, γ) dt =
Γ(1 + 1/α)

γ
.
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In this case, the hazard function becomes

Hα
γ (t) = γα(γt)α−1, t > 0. (2.5)

Recall that H1
γ(t) ≡ γ, for all t > 0.

Remark 1 The Weibull distribution does not have the lack of memory property but it is interesting

to observe the following: depending on the value of the shape parameter α, the hazard function

goes to 0 (0 < α < 1) or grows to infinity (α > 1), as t → ∞. In other words, in the first

case, as time grows it is less likely to observe the occurrence of an event, whereas in the second

case it is more likely to observe the occurrence of events. Thus, the parameter α dictates the

intensity at which random events appears. As we noted above, the case α = 1 gives the exponential

distribution, in which case the intensity is constant in time.

Remark 2 In this work, an event in question is an individual ceasing to be infectious or, in a

metapopulation context, an species going extinct in a given patch. In the first case α < 1, most

individuals go extinct or abandon the infectious stage early in the process implying that most of the

infections or colonization events occur early with only relatively few cases occurring in later times;

in the second case α > 1, individuals abandon the stage later in time implying that the probability

of propagation occurs at later times implying late extinction or recovery events. See Figure 2b for

examples.

3 The Kermack–McKendrick model with Weibull recovering

times

3.1 A SIS model

In this section we consider the SIS (susceptible infectious susceptible) model. As usual, the pop-

ulation is homogeneous, S(t) denotes the susceptible individuals at time t, I(t) are the infected

individuals at time t and births, deaths or migrations are not considered, so N(t) = S(t) + I(t).

The corresponding system of differential equations is:

dS

dt
= −βSI +Hα

γ (t)I,

dI

dt
= βSI −Hα

γ (t)I,
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where Hα
γ (t) = αγαtα−1. When α = 1 this system corresponds exactly to the classical SIS model.

Setting N = 1 and substituting S(t) = 1− I(t) into the second equation we obtain

dI

dt
= βI

(
[1−Hα

γ (t)/β]− I
)
, (3.6)

which is a logistic-type equation. Observe that the function t 7→ 1−Hα
γ (t)/β is monotone increas-

ing or monotone decreasing depending of the value of α < 1 or α > 1, respectively. Moreover,

it has a unique root at t0 =
(

β
αγα

) 1
α−1

. The only equilibrium points of the equation (3.6) are the

points located at I = 0 in which case there are no infected individuals and at I = 1 − Hα
γ (t)/β.

From this, we know that there exists a unique t∗ > 0, with 0 < t∗ < t0, such that the other

equilibrium point is located at I = 1 − Hα
γ (t

∗)/β. The biological relevant case occurs when

1 − Hα
γ (t

∗)/β ≥ 0. The behaviour of I coincides with the classical case (α = 1), once the value

t∗ is fixed, i.e.,

• If 0 < I < 1 − Hα
γ (t

∗)/β, since dI/dt > 0, it follows that I(t) → 1 − Hα
γ (t

∗)/β when times

grows.

• If I > 1−Hα
γ (t

∗)/β, since dI/dt < 0, it follows that I(t) → 1−Hα
γ (t

∗)/β when times grows.

The susceptible population satisfies S(t) → Hα
γ (t

∗)/β when times grows so, for all time, there

will be infected and susceptible individuals rendering the disease endemic.

Proposition 1 The solution to equation (3.6) is given by

I(t) =
I(0)et[β−Hα

γ (t)/α]

1 + βI(0)
∫ t

0
es[β−Hα

γ (s)/α]ds
. (3.7)

Proof: In order to find an explicit expression for I(t) we proceed as follows. First, we write the

equation for the derivative of I in the form

dI

dt
= I

(
A(t)− βI

)
, (A(t) = β −H(t)).

We can rewrite the equation as
dI

dt
− A(t)I = −βI2

which has as general solution

I(t) =
I(0)e

∫ t
0 A(s)ds

1 + βI(0)
∫ t

0
e
∫ t
0 A(s)ds

. (3.8)
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Now, since A(t) = β −Hα
γ (t), by integration we obtain:∫ t

0

A(s)ds = βt−
∫ t

0

γααsα−1ds

= βt− γαα
tα

α

= t

[
β −

Hα
γ (t)

α

]
.

Putting this expression into the general solution (3.8) we obtain (3.7). □

Note that, when α = 1 we recover the classical SIS solution:

I(t) =
I(0)e(β−γ)t

1 + βI(0)
β−γ

[
e(β−γ)t − 1

] .
Observe that if 1−Hα

γ (t
∗)/β ≥ 0 then

R0 :=
β · (N0 = 1)

Hα
γ (t

∗)
≥ 1

gives the basic reproductive number.

3.2 A SIR model

In this section we will use the epidemiological analogy to presents our results; later, we will make

some remarks on their generalization to metapopulations. For now, let us consider a SIR model

such that

I(t) + S(t) + R(t) = 1. (3.9)

We assume that the recovering times are modeled by a Weibull random variable τ , i.e, with distri-

bution function F (t) = 1− e−(γt)α , with α, γ > 0. We suppose that

βI(t)S(t)G(t− s),

denotes the incidence, that the prevalence satisfies

I(t) = I0(t) +
∫ t

0

βS(s)I(s)G(t− s) ds (3.10)

and the recovered individuals are characterized by

R(t) = R0(t) +

∫ t

0

βS(s)I(s)F (t− s) ds. (3.11)

The model must satisfy the following biological restrictions:
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• For all t ≥ 0, 0 ≤ I(t) ≤ 1, similarly S(t) and R(t);

• I∞ + S∞ + R∞ = 1, S0I0 > 0 and S0 + I0 = 1, since R(0) = 0.

Then, from (3.9)-(3.11), is follows that the susceptible individuals satisfy

S(t) = [1− I0(t)− R0(t)]−
∫ t

0

βI(r)S(r)dr ≡ S(0)−
∫ t

0

βI(r)S(r) dr. (3.12)

From (3.12) we have that, t 7→ S(t) is a non increasing function. In particular, S(t) ≤ S(0) for all

t > 0. Set S(∞) ≡ limt→∞ S(t).

Note that, taking limits in (3.12) and reordering terms, we get that

∞ > S0 − S∞ =

∫ ∞

0

βI(r)S(r)dr ≥
∫ t

0

βI(r)S(r)dr,

for all t > 0. Thus, S(t) > 0, for all t > 0.

Taking derivatives in (3.12) we get that

S′(t)

S(t)
= −βI(t),

equivalently,

ln

(
S(t)
S(0)

)
= −β

∫ t

0

I(s) ds,

in other words,

S(t) = S(0)e−β
∫ t
0 I(s) ds. (3.13)

Theorem 1 (Total infected population or total metapopulation size) Let X be the recovering time

with distribution function F and finite mean E(X) < ∞. Then, it holds that∫ ∞

0

I(t) dt =
(
I0 +

∫ ∞

0

βS(s)I(s) ds
)
E(X). (3.14)

Proof: Note that the first term in the right-hand side of (3.10) is given by I0(t) = I0e−(γt)α . Then,

integrating from 0 to ∞ we have∫ ∞

0

I(t) dt = I0
∫ ∞

0

e−(γt)α dt+

∫ ∞

0

∫ t

0

βS(s)I(s)G(t− s) ds dt

= I0
∫ ∞

0

e−(γt)α dt+

∫ ∞

0

∫ ∞

s

βS(s)I(s)G(t− s) dt ds, (3.15)
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to get that last expression we have changed the order of integration. Now, observe that∫ ∞

0

∫ ∞

s

βS(s)I(s)G(t− s) dt ds =

∫ ∞

0

βS(s)I(s)
(∫ ∞

s

G(t− s) dt

)
ds

=

∫ ∞

0

βS(s)I(s)
(∫ ∞

0

G(r) dr

)
ds.

It is know that, if X is a random variable on (0,∞) with distribution function F then

E(X) =

∫ ∞

0

G(r) dr,

where the expectation is finite whenever the integral is finite. Hence, plugging this last expression

into (3.15) we obtain (3.14). 2

Corollary 1 Assume the conditions of Theorem 1. Then,∫ ∞

0

I(t) dt = (1− S∞)E(X). (3.16)

Proof: Taking limits equation (3.12) we can see that S0 − S∞ =
∫∞
0

βS(s)I(s) ds. Then, using

(3.14) we get that ∫ ∞

0

I(t) dt = (1− S∞)E(X), (3.17)

where we have the condition I0 + S0 = 1. In particular, from (3.17) we get that I is integrable on

[0,∞), in whose case I∞ = 0.

2

Remark 3 It is worth to mention that Theorem 1 and Corollary 1 are valid not only for Weibull

distribution but for any random variable X with finite mean.

We recall that, in the case that X has a Weibull distribution with hazard function (2.5), it holds that

E(X) = 1
γ
Γ(1 + 1/α). Therefore, plugin this into (3.17), we get that∫ ∞

0

I(t) dt = (1− S∞)
1

γ
Γ(1 + 1/α).

In order to compute S∞ we note that, making t ↑ ∞ in (3.13) and using (3.17), we have that S∞

satisfies

lnS0 − ln S∞ = βE(X)(1− S∞),

which is equivalent to

βE(X) =
ln(S0/S∞)

1− S∞
. (3.18)
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Remark 4 Note that, if X has an exponential distribution with rate γ, then E(X) = 1/γ. There-

fore, from (3.18) we have that S∞ satisfies

β

γ
=

ln(S0/S∞)

1− S∞
=

ln(S0/S∞)

I0 + S0 − S∞
,

where we have used the relation 1 = I0 + S0, which coincides with the classical case.

4 R0 for a general waiting time distribution

In this section we compute the basic reproduction number which, in a general framework, repre-

sents the propagule and colonization potential during the time that a colonized patch has not gone

extinct. By (21) from [11]

RW
0 =

∫ ∞

0

bG(t)dt,

where G(t) = e−(γt)α denotes the probability that a newly infected individual (newly colonized

patch) remains infected (occupied) by time t and b ≡ βS(0) is the average of new infected indi-

viduals (new colonized patches) infected (colonized) by an infected (colonized) one. Therefore,

RW
0 =

∫ ∞

0

βS(0)e−(γt)α dt

=
βS(0)

αγ

∫ ∞

0

s
1
α
−1e−s ds (making the change of variables s = (γt)α)

=
βS(0)

αγ
Γ(1/α)

∫ ∞

0

1

Γ(1/α)
s

1
α
−1e−s ds.

Finally, we conclude that

RW
0 =

βS(0)

αγ
Γ(1/α) =

βS(0)

γ
Γ(1 + 1/α) (4.19)

Note that, for α = 1, we recover that

R0 =
βS(0)

γ
.

Remark 5 Note that R0 = RW
0 when α = 1 and that R0 > RW

0 for α > 1 and R0 < RW
0 when

α < 1. So we have two interesting possibilities. If R0 < 1 then RW
0 > 1 for α < 1 implying the

existence of epidemic outbreaks (patch colonization) in the Weibull case when the classical SIR

model predicts no outbreak (no successful colonization of patches). The other case occurs when

10
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R0 > 1 but it is relatively low. In this case it can be that minα R
W
0 < 1 implying no epidemic

outbreak (unsuccessful colonization) in the Weibull case. In summary for R0 > 1 but low, there

exists an interval I , αa < minαR
W
0 < αb, such that if α ∈ I then RW

0 < 1.

Remark 6 Observe that the computations that leads to (4.19) can be done for a general random

variable X with distribution function F . To be more precise, if we denote by RF
0 the reproduction

number with distribution function F , we obtain that

RF
0 = βS(0)E(X). (4.20)

Thus, if X has an exponential distribution with mean 1/γ we get that R0 = RF
0 .

We conclude this section pointing out the biological significance of expression (4.20) for it gives a

very general, and relatively simple, formula for the reproductive number. Figure 4a shows RW
0 as a

function of the parameter α. As it can be seen, RW
0 < 1 in the region between the green curve and

the horizontal blue line, but RW
0 > 1 the rest of the interval. In the Figure, α < 1, RW

0 > R0 = 1.1

and for α > 4.2, 1 < RW
0 < R0 = 1.1. Figure 4b shows a different behavior. Here R0 = 2 (in

the SIR classical model) and then RW
0 > 1 always. In fact, the minimum value of R0 that renders

RW
0 ≥ 1 for all α > 1 is R0 ≈ 1.13. Therefore, in this case RW

0 > R0 for α < 1 and for α > 1, it

is always greater but less than R0 = 2.

We have then that, if in an epidemic (colonization) event the large majority of cases is concentrated

during the first days of the process, the associated reproductive number can be significatively larger

than the one predicted by the classical R0 of the SIR model; however, if the transmission (propa-

gation) events occur mostly at later times in the process, the associated reproductive number will

be smaller than the R0 of the classical SIR model. So, the higher the SIR R0 reproductive number,

the less difference with RW
0 for large α.

5 Conclusions

As a manner of conclusion on the approach that we have taken in this work, we now look at

a simple and straightforward incorporation of non-exponentially distributed waiting times to the

SIR model. We want to keep the nature of the model system, ordinary differential equations, but

introduce a distribution of waiting times, that is of infectivity times, different from the exponential.
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(a) Plot of expression (4.20) using the Weibull

distribution (green line) as a function of α

(horizontal axis); R0 = 1.1 for the SIR

classical model (orange line), and R0 = 1

(blue line). The pink line indicates the

value α = 1 for which RW
0 = R0 = 1.1

(b) Plot of expression (4.20) using the Weibull

distribution (green line) as a function of

α (horizontal axis); R0 = 2 for the SIR

classical model (orange line), and R0 = 1

(blue line). The pink line indicates the

value α = 1 for which RW
0 = R0 = 2.

Figure 1: Plots of the basic reproduction number RW
0

To this end let β and γ be the effective contact and cure rates, respectively, of the classic SIR

model. As we have seen in the previous sections, 1/γ is the expected value of the (constant)

exponential waiting time of individuals in the infectious compartment, in other words, 1/γ is the

mean infectivity period. This period is constant because we are assuming exponentially distributed

waiting times. We change this assumption in the follwing model

S ′(t) = −βS(t)I(t),

I ′(t) = βS(t)I(t)−Hα
γ (t)I(t), (5.21)

R′(t) = Hα
γ (t)I(t).

Thus, we can think of this system as the Kermack–McKendrick model with infectivity times mod-

eled by a Weibull distribution with hazard rate given by Hα
γ (t). When α = 1, we recover the

classical SIR model. The system (5.21) is a non-autonomous differential equation that, as the

classical model, still has as equilibria the points E(S, I) = (S∗, 0) for S∗ ∈ [0, 1] and thus can

be easily comparable. The reproductive number can be computed by substituting the expected

(constant) waiting time 1/γ from the exponential distribution , by the expected waiting time of the

Weibull distribution, rendering

RW
0 = R0Γ[1 +

1

α
],

where R0 = βS(0)/γ.
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(a) Solutions of the SIR Weibull model Eq

(5.21) considering α = 0.5 (red line), α = 1

(blue line), and α = 1.5 (orange line).

(b) Weibull distributions corresponding to the

SIR Weibull model Eq (5.21) for α = 0.5

(red dashed line), α = 1 (blue dashed

line), and α = 1.5 (orange dashed line).

Figure 2: General characteristics of solutions of the SIR model with Weibull hazard rate for R0 =

2.0 (α = 1). The corresponding values of the reproductive number for α = 0.5 and α = 1.5 are,

respectively, RW
0 ≈ 3.5, and RW

0 ≈ 1.8

Figure 2 shows the behavior of three different epidemics for different values of α with R0 = 2

(corresponding to the case α = 1). It can be seen that RW
0 changes slowly if α is increased slightly

(from 1 to 1.5 in this example) but a reduction in the same amount can have a dramatic impact on

the value of RW
0 and, therefore, in the size of the epidemic. As it can be seen from the figure, the

time to the maximum peak size does not vary much for α = 1 and α = 0.5 but the relative size of

the outbreak does change a lot ( from 16% to 58% prevalence).

If we look a little closer at Figure 2 for the case α > 1 (see Figure 3), we can appreciate that

the initial increase in prevalence is slower and nearly linear compared to the decline in prevalence

after the peak which occurs in an exponential way. Slow, almost linear growth was observed

during the COVID-19 pandemic [22]. An explanation, presented in the previos cited work is that

this growth pattern can be understood as a consequence of the structure of low-degree contact

networks resulting from the extended use of non-pharmaceutical interventions (NPI). The Weibull

approach presented here qualitatively agrees with this explanation if we assume that the net effect

of NPIs is to delay the bulk of infectious processes later in time, forcing the parameter α to be

larger than one, i.e., essentially changing the exponential distribution of waiting times to a Weibull

distribution.

Moreover, the COVID-19 pandemic illustrated the role of superspreading events on the develop-
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Figure 3: Numerical solution of the SIR with Weibull hazard function for α = 5

ment and fate of the epidemic [2, 5, 13, 17, 20] which together with the action of non-pharmaceutical

interventions and other mitigation measures affected the speed of contagion along the evolution of

the epidemic. This changes in speed can be described statistically [21, 9, 19]. Looking at these

changes in transmission speed as extreme transmission events, then their theoretical distribution

can be described by either of the standard distributions that are used to model extreme events (e.g.,

[9]). In this paper we present some results on the properties of a SIR equations system that uses

the Weibull distribution to model the waiting times of an individual in the infectious stage. Our

main results provide a general formula for the reproductive number that can be generalized to other

distributions of waiting times.
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