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Abstract 
About 1 in 9 older adults over 65 has Alzheimer’s disease (AD), many of whom also have multiple other chronic 
conditions such as hypertension and diabetes, necessitating careful monitoring through laboratory tests.  
Understanding the patterns of laboratory tests in this population aids our understanding and management of these 
chronic conditions along with AD.  In this study, we used an unimodal cosinor model to assess the seasonality of lab 
tests using electronic health record (EHR) data from 34,303 AD patients from the OneFlorida+ Clinical Research 
Consortium.  We observed significant seasonal fluctuations—higher in winter in lab tests such as glucose, neutrophils 
per 100 white blood cells (WBC), and WBC. Notably, certain leukocyte types like eosinophils, lymphocytes, and 
monocytes are elevated during summer, likely reflecting seasonal respiratory diseases and allergens. Seasonality is 
more pronounced in older patients and varies by gender. Our findings suggest that recognizing these patterns and 
adjusting reference intervals for seasonality would allow healthcare providers to enhance diagnostic precision, tailor 
care, and potentially improve patient outcomes. 
 
Introduction 
 
In 2023, as many as 6.7 million Americans live with Alzheimer’s disease (AD) [1]. By 2060, this number is projected 
to double to 14 million, fueled by the aging baby boomers. In 2019, 121,499 deaths from AD were recorded, making 
AD the 6th leading cause of death among US adults and the 5th leading cause of death among Americans aged ≥ 65  
[1]. However, no treatments have been successful in curing or preventing AD. Moreover, many AD patients live with 
comorbidities such as hypertension (83.6%), respiratory diseases (75.8%), lipoid metabolism disorders (62.2%), joint 
disorders (53.6%), cataracts (48.8%), and osteoarthrosis and allied disorders (50.5%) [2], that worsen their cognitive 
decline and overall health.   

Managing chronic conditions is extremely important but challenging for patients living with AD. Lab tests are essential 
in monitoring these conditions, adjusting treatments, and managing symptoms effectively. For example, conditions 
like hypertension, heart disease, and dyslipidemia are common and can significantly impact Alzheimer's progression 
and patient quality of life. Lab tests monitoring lipid profiles, blood pressure, and cardiac markers are crtical for these 
conditions. Diabetes management is also crucial as it can worsen cognitive decline [3], and vice versa [4]. Lab tests 
such as HbA1c, fasting glucose levels, and insulin levels are used to manage diabetes. In addition, patients with AD 
often take many medications at the same time. It is therefore important to use lab tests to monitor the effectiveness 
and side effects of these medications to ensure that polypharmacy is not adversely affecting the patient’s health. 
However, even with easy access to lab test results through patient portals, many patients still face challenges with lab 
results interpretation, because the current practice of lab test reporting often only focuses on presenting a value with 
a universal reference range, without considering patients’ individualized characteristics.  

Seasonality refers to a recurring pattern characterized by regular fluctuations [5]. It is particularly prevalent in 
healthcare datasets due to seasonal shifts in environmental conditions and human behaviors.  For example, in Florida, 
days in summer typically have longer daylight hours, warmer temperatures, and increased humidity, fostering plant 
growth and higher pollen levels. High levels of pollen can trigger allergies, potentially influencing associated lab test 
values such as monocytes. Conversely, during winter, people often spend more time indoors and may alter their dietary 
habits, potentially influencing lab test values such as glucose. 
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The reference interval, which indicates the normal range of a specific lab test, is typically derived from tests conducted 
on healthy individuals following International Federation of Clinical Chemistry (IFCC) guidelines [6,7]. This type of 
reference interval often fails to consider patients with certain diseases or seasonal changes in lab tests. In clinical 
practice, the interpretation of lab tests often relies on physicians’ experience and interaction with patients, assisted by 
the guided reference interval. However, this approach is impractical for large-scale EHR-data-driven research and is 
infeasible for self-care monitoring tools (such as mobile health applications), which require prompt responses from 
users [8]. 

Assessing seasonality in lab tests across manifold cohorts is an essential step in informing personalized healthcare 
services. In current literature, Muse et al. [9] have conducted a comprehensive seasonality study on a general 
population of nearly 2 million hospital patients in Denmark and have identified seasonality in a wide array of lab tests. 
Meanwhile, most seasonality investigations have focused on specific disease areas or functional domains, with a 
limited number of lab tests being checked [10–12]. For example, Cheung et al. [13] have found significant seasonal 
components in 13 of 21 pre-selected clinical and laboratory markers among chronic hemodialysis patients. Miyake et 
al. [14] have studied seven liver function related lab tests and demonstrated notable seasonality in AST and ALT with 
outpatient data. Regarding patients with AD, current studies have investigated seasonality in cerebrospinal fluid 
biomarkers [15] and births [16]. To the best of our knowledge, a comprehensive seasonality study in multiple lab tests 
targeting a large AD patient cohort has yet to be conducted. In this study, we employed an unimodal cosinor model 
on the AD patient cohort data from the OneFlorida Data Trust to identify seasonal variations in 28 lab tests from 
34303 AD patients. The cosinor model is a simple and popular method for analyzing seasonal health data, with a 
parsimonious number of parameters and straightforward interpretation [9,17]. It typically assumes that seasonal 
variations in lab test results follow recurring patterns that have one rise-and-fall regularly over the course of a year. 
Additionally, we created and analyzed subgroups of patients based on demographics including gender and age. We 
utilized the K-Means [18] clustering 
algorithm to group lab tests with 
similar seasonal patterns. Manifold 
visualization tools were used to 
summarize and compare the analysis 
results of each group. Our study 
demonstrates significant seasonality in 
several lab tests among AD patients, 
and different demographics may have 
different extents of seasonality for the 
same lab tests.  

Methods 

Data source and cohort selection 

The current study used AD patient 
cohort data from the OneFlorida Data 
Trust, a centralized patient data 
repository from the OneFlorida+ 
Clinical Research Consortium.  Its 
core data contains longitudinal and 
linked patient records of ~19 million 
Floridians from various sources, 
including Medicaid/Medicare, cancer 
registry, vital statistics, and EHRs 
from its clinical partners [19]. The 
objective of the study is to discover the seasonality variation in hospital laboratory tests based on two different strata, 
namely age and gender, within the population of AD patients. To select the lab test with possible seasonal variation, 
we used the list from the study of Muse et al. [9]. All the identified lab test names were then mapped back to LOINC 
codes using the RELMA (Regenstrief LOINC Mapping Assistant) Database. RELMA 
(https://loinc.org/downloads/relma/) is a publicly available LOINC database that provides extensive details about lab 
tests, such as LOINC, test names, and descriptions. A total of 122,669 AD patients were identified with International 

Figure 1. Patient cohort selection process 
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Classification of Disease Ninth Revision Clinical Modification (ICD-9-CM) code 331.0 and ICD-10 CM codes of 
G30, G300, G30.0, G301, G308, G30.8, G309, G30.9. We further refined the study cohort as all the AD patients having 
lab test records within the four-year study period of 2016-2019. A total of 34,303 patients were identified based on 
these cohort selection criteria.  Further, a detailed patient cohort selection overview is shown in Figure 1. Note that to 
improve the robustness of the statistical model [9], we have selected lab tests if they have at least 100 patients in over 
26 weeks of a year (50% of the 52 weeks).  We further generated subgroups by gender (male and female) and age 
group (50-79, >=80), respectively. Finally, the cohort of AD patients and two subgroups based on gender and age 
respectively were used for fitting the statistical models for seasonality variation. 

Seasonality analysis 

Time-series data consists of a sequence of observations recorded over time, often characterized by two deterministic 
components, trend and seasonality, and an indeterministic noise component due to sampling variations. The trend 
reflects long-term developments, while seasonality represents regular fluctuations occurring within a year [20]. In this 
study, we standardized lab test results by their annual median to eliminate potential trend effects, and then utilized a 
cosinor model to examine the remaining seasonality component of recurring fluctuations regularly over the course of 
a year [5]. The cosinor model assumes that lab test fluctuations conform to smooth sinusoidal waves over time, 
utilizing a cosine function to capture the periodic rise and fall of seasonal variations. This function involves only a 
few parameters, providing clear control over the amplitude, offset, and cycle of a sinusoidal curve. This simplicity 
facilitates straightforward interpretation of the results, while still accommodating variations in cycle lengths and 
shapes with flexibility. The parsimonious parameterization of the model ensures computational efficiency and ease of 
implementation using standard statistical software packages.   

Cosinor model 

Let 𝑦!" be the median of a lab test measured on Week 𝑥!" of the 𝑖th year, where 𝑥!" ∈{1, 2, …, 52}. In our study, four 
years of data were employed. Thus, 𝑖=1, 2, …, 4 and 𝑗=1, 2, …, 𝐽, where 𝐽 ∈{27, …, 52} due to the 50% missingness 
exclusion criteria. The cosinor model is specified as follows:  

𝑦!" = 𝛽# + 𝛽$ cos -2𝜋
%!"&'

()
0 + noise 

where 𝛽# denotes the height parameter, indicating the baseline value of the given lab test. Typically, it will be close 
to zero if observations are normalized to the median before model fitting. The amplitude parameter 𝛽$ quantifies the 
magnitude of seasonality within the data. It is half of the difference from the highest to lowest point of the sinusoidal 
wave. This parameter indicates the maximum extent to which a lab test value can fluctuate around the baseline, 
encompassing both the increases and decreases in values symmetrically. The offset parameter 𝜃 indicates the week to 
shift the values’ seasonality. When the amplitude parameter is restricted to the positive region, the offset represents 
the week in which the variation reaches the yearly peak within a range between 0 and 52. By imposing these bounds, 
the model is identifiable and has clear and reliable interpretations.  

Additionally, one can adjust the cycle of the curve by multiplying a cycle parameter within the cosine term. Since the 
cycle parameter estimates typically approximate one in our dataset, we chose not to include this parameter to maintain 
model simplicity.  

Analysis procedure 

We conducted analyses on both the full cohort data and subgroups stratified by gender and age, respectively. Lab tests 
with binary or categorical values were not suitable for the cosinor model and were thus excluded from further analysis. 
To eliminate the trend over time and effectively assess relative seasonality across years, each observation was 
normalized to its respective year’s median. This involved subtracting and dividing each observation (𝑦!") by the 
median of the 𝑖th year. The division ensures comparability of amplitude fits across lab tests with varying ranges.  

For model fitting, we utilized the R package “nlstools” (version 2.0-1) with the “port” algorithm, which allows for the 
definition of parameter boundaries [21]. Additionally, each observation was weighted by the number of patients 
involved in the corresponding week. This weighting approach ensures that observations derived from more patients 
carry greater influence in the analysis, reducing bias from abnormal records during special events such as holidays 
[9]. The false discovery rate (FDR) was controlled using the Benjamini-Hochberg method [22]. The K-Means 
clustering algorithm was used to group lab tests showing similar seasonal patterns within each dataset. This clustering 
was based on scaled amplitude and offset fits. To account for the cyclic nature of time, offset fits were scaled by 
measuring their proximity to the 26th week, the summer of a year in Florida.  
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Results 

Basic characteristics 

The OneFlorida AD patient cohort with the number of lab test records is described in Table 1. The study used 34,303 
patients from the OneFlorida Alzheimer’s patient cohort; after applying various conditions, we carefully selected 
20,820 (60.69%) patients with AD as the overall cohort to model the seasonality variation. We then applied different 
strata-based conditions to generate sub-populations as described in Table 2, namely, gender as male (7,690; 22.72%) 
and female (13,130; 38.78%), and age as 50-79 (8,239; 24.34%) and >= 80 (12,412; 36.67%), respectively. A total of 
505 lab tests were selected and mapped with LOINC codes using RELMA to test for seasonality variation. All the lab 
test LOINC codes were then used to filter the lab tests from the OneFlorida Alzheimer patient cohort. 

Table 1. Characteristics of the AD patient cohort 
Characteristics Number of Patients Lab Test Records 

OneFlorida Alzheimer 34,303 15,278,707 

Selected Labs (505) 33,848 8,783,093 

Male 12,617 (37.28%) 3,509,285 

Female 21,231 (62.72%) 5,273,808 

 
Table 2. Characteristics of two subgroups by gender and age group 

Subgroup Characteristics  Number of Patients 
Overall cohort - 20,820 (60.69%) 

Subgroup by gender Male 7,690 (22.72%) 
Female 13,130 (38.78%) 

Subgroup by age group Age [50-79] 8,239 (24.34%) 
Age [>=80] 12,412 (36.67%) 

 
Table 3 shows the number of lab tests having at least 100 patients per week for different strata. Among these lab tests, 
only those lab tests present in all four years of the study period 2016-2019 were used for modeling. This approach 
gives us the ability to investigate the variation in lab tests across all four years spanning 52 weeks. 

Table 3. Number of lab tests having at least 100 patients per week for different strata for the study period 
 Characteristics 2016 2017 2018 2019 Number of Common 

Lab Tests 
Number of Lab Tests 

for Model Fitting 
Overall -- 32 32 28 28 28 17 

Subgroup by 
Gender 

Male 24 23 21 14 13 7 
Female 26 27 27 25 24 14 

Subgroup by 
Age Group 

Age [>=80] 24 24 24 23 23 14 
Age [50-79] 25 26 25 22 22 14 

 
Seasonality variation  

After filtering out lab tests with binary or categorical values, the dataset for the full cohort comprises 17 lab tests for 
model fitting. For subgroups, the male group includes seven lab tests, the female group includes 15 lab tests, and both 
age groups include 14 lab tests each (Refer to Table 3 for details). Table 4 presents the fitted results of available lab 
tests, respectively. After the normalization of observations, the fitted amplitude value (𝛽2$) indicates the seasonal 
fluctuation relative to the baseline value of the lab test. The fitted offset (𝜃3) signifies the week of the year when the 
lab test reaches its peak value. For example, in the case of AD patients older than 80 years old, Eosinophils level is 
expected to increase by 5.1% around the 29th week, typically during summer, compared to their normal level.  

In Table 4, several lab tests have shown significant relative seasonality, indicated in bold. Certain lab tests appeared 
more pronounced seasonal effects within specific demographic groups. During summer, Eosinophils and 
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Eosinophils/100 WBC increased by over 3% in the overall group, with particularly high fluctuations around 5% in 
AD patients over 80. Meanwhile, Lymphocytes, Lymphocytes/100 WBC, and Monocytes/100 WBC increased by 
over 1% across demographic groups, with Lymphocytes/100 WBC showing an increase of over 2%. During winter, 
seasonal effects were more notable on WBC for males, with an increase of 1.1%. Although these changes may seem 
small, a previous study found that even slight seasonal variations (1.8% in men and 2.5% in women) in serum total 
cholesterol concentration resulted in an increase of 22% for the estimated prevalence of hypercholesterolemia (>6.2 
mmol/L) [23].  

Table 4. Fitted relative seasonality (𝛽2$) and peaking week (𝜃3) of lab tests for each dataset. Significant relative 
seasonality fits are in bold. (p<0.05; FDR corrected) 

LOINC Lab Test 
Full Cohort 

Gender Age 
Male Female Age [50-79] Age [>=80] 

𝛽"! 𝜃$ 𝛽"! 𝜃$ 𝛽"! 𝜃$ 𝛽"! 𝜃$ 𝛽"! 𝜃$ 
6768-6 ALP [Catalytic activity/Vol] 0.005 42.4 0.003 35.5 0.006 45.4 0.002 46.4 0.004 40.6 
2160-0 Creatinine [Mass/Vol] 0.006 40.5 0.005 45.6 0.008 42.6 0.01 39.1 0.006 44.9 
711-2 Eosinophils Auto (Bld) [#/Vol] 0.033 27.8 - - 0.037 29.1 0.016 28.4 0.051 29.2 
713-8 Eosinophils/100 WBC Auto (Bld) 0.032 25.5 - - 0.043 27.5 0.013 24.1 0.05 26.9 
2345-7 Glucose [Mass/Vol] 0.005 0.1 0.006 4.6 0.005 49.4 0.003 8.4 0.007 50.9 
2341-6 Glucose Test strip manual (Bld) 

[Mass/Vol] 
0.008 21.1 - - - - - - - - 

718-7 Hemoglobin (Bld) [Mass/Vol] 0.003 17.3 0.001 20.5 0.003 16.5 0.001 17.3 0.003 15.9 
731-0 Lymphocytes Auto (Bld) [#/Vol] 0.012 27.1 - - 0.018 29.8 0.012 27.9 0.017 26.5 
736-9 Lymphocytes/100 WBC Auto 

(Bld) 
0.022 27.0 - - 0.024 28.8 - - - - 

742-7 Monocytes Auto (Bld) [#/Vol] 0.002 49.3 - - 0.005 7.5 0.009 12.5 0.007 46.2 
5905-5 Monocytes/100 WBC Auto (Bld) 0.007 24.6 - - 0.011 26.1 0.009 24.0 0.011 24.9 
751-8 Neutrophils Auto (Bld) [#/Vol] 0.003 8.6 - - 0.006 14.2 0.004 19.1 0.009 0.8 
770-8 Neutrophils/100 WBC Auto (Bld) 0.004 52.0 - - 0.008 2.2 0.007 4.8 0.006 49.2 
777-3 Platelets Auto (Bld) [#/Vol] 0.004 46.2 0.004 46.9 0.001 47.1 0.005 36.2 0.006 49.5 
789-8 RBC Auto (Bld) [#/Vol] 0.002 11.2 0.002 20.0 0.002 6.5 0.002 8.6 0.002 21.0 
3097-3 Urea nitrogen/Creatinine [Mass 

ratio] 
0.005 11.5 - - - - - - - - 

6690-2 WBC Auto (Bld) [#/Vol] 0.006 48.1 0.011 46.1 0.003 0.1 0.006 49.9 0.009 49.5 
 

(a) The full cohort data 

Figure 2 illustrates the fitted models for the full cohort data. Lab tests with significant seasonality are highlighted in 
red, while those without significance are marked in blue. It indicates that ALP, Monocytes, Neutrophils, Platelets, 
RBC, and Urea nitrogen/Creatinine had subtle relative seasonality. Among the 11 lab tests showing significant 
seasonality, Glucose, Neutrophils/100 WBC, and WBC peaked during winter, while others peaked around summer.  

Their significant seasonality findings are summarized in Figure 3(a) using a heatmap, with amplitude and offset fits 
scaled for clustering. Amplitude shade indicates the magnitude of the fit compared to the largest amplitude fit. For the 
offset shade, blue represents peak time in summer and red in winter, with intermediate shades indicating spring or fall 
peaks. Lab tests were grouped into four clusters. Notably, Eosinophils, Eosinophils/100 WBC, and Lymphocytes/100 
WBC showed the highest seasonality, with peak values occurring during the summer. Creatinine and Hemoglobin 
displayed relatively low seasonality, with peak values observed between summer and winter. Glucose test strip 
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manual, Monocytes/100 WBC, and Lymphocytes had moderate seasonality, peaking in summer. Glucose, 
Neutrophils/100 WBC, and WBC showed low seasonality while peaking during the winter.  

(b) Gender stratifications 

Acknowledging that males and females may exhibit distinct ranges for certain lab test [24], it is plausible that the 
seasonality patterns in these two groups could also differ. Thus, we conducted subgroup analysis by fitting models 

(a)                                                                                                  (b) 
Figure 3. Heatmap for lab tests with significant amplitude fits (p<0.05; FDR corrected) (a) for the full cohort 
data, and (b) for the female group data. Amplitude and offset fits are scaled for clustering.  
 

Figure 2. Plots of normalized lab test value versus week for the full cohort. The red lines represent the fitted 
cosinor models with significant amplitude fits (p<0.05; FDR corrected). The blue lines represent the fitted 
cosinor model with non-significant amplitude fits (p≥0.05; FDR corrected). 
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with gender-stratified data. For the male group, only one lab test, WBC, showed significant seasonality, peaking in 
winter. In contrast, ten lab tests demonstrated significant seasonality for the female group. We utilized a heatmap to 
summarize their seasonality patterns in Figure 3(b). Specifically, Neutrophils/100 WBC, Glucose, ALP and Creatinine 
displayed low seasonality, with peak times occurring around winter. Conversely, Lymphocytes/100 WBC, 
Lymphocytes, and Monocytes/100 WBC had moderate seasonality peaking during summer. Hemoglobin had the least 
seasonality among all significant lab tests, with peak time in-between. Consistent with the findings from the full cohort 
data, Eosinophils/100 WBC and Eosinophils displayed the highest seasonality, with peak values occurring during the 
summer for the female group.  

We compared parameter fits of seven lab tests observed in both gender groups. Figure 4(a) presents a comparison of 
their amplitude fits. Severe seasonal variations were evident in Creatinine, ALP, and Hemoglobin for women, and in 

(a)                                                                                       (b) 
Figure 4. Overview of parameter fits for gender subgroups. (a) Amplitude. The lab test is labeled in red if the 
amplitude fits’ difference between two gender groups exceeds 0.007. The color of each point indicates whether 
the amplitude fit is significant for either stratum, or neither, accordingly. (b) Offset. Point shapes represent 
genders, with colors indicating offset fit significance, and solidness reflecting amplitude fit significance.  
 

(a)                                                                                 (b) 
Figure 5. Heatmap for lab tests with significant amplitude fits (p<0.05; FDR corrected) (a) for the Age [50-79] 
group data, and (b) for the Age [>=80] group data. Amplitude and offset fits are scaled for clustering.  
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WBC and Platelets for men. The difference in their amplitude fits for WBC exceeded 0.007, while RBC showed the 
most consistent extent of seasonality between the male and female groups.  

Figure 4(b) compares the time of seasonal peaks for the male and female groups. It shows that lab tests experienced 
peak values during similar times for both men and women. Interestingly, RBC, the one with the most consistent extent 
of seasonality in both groups, had the largest difference in peak times. However, since seasonal fluctuations in RBC 
were negligible for both groups, the potential peak time might vary slightly more due to acceptable randomness in 

sampling.  

 
(c) Age stratifications 

Three lab tests exhibited significant seasonal 
variations for patients under 80 years old, whereas 
nine showed significant seasonality for patients 
older than 80. Figure 5 provides an overview of 
these seasonality patterns for the two age groups. In 
the group under 80-year-old, all three lab tests had 
a similar extent of seasonality, with Neutrophils/100 
WBC and Creatinine peaking around winter, while 
Monocytes/100 WBC peaked in summer. For the 
above 80-year-old group, Platelets, Neutrophils/100 
WBC, WBC, and Glucose had the lowest 
seasonality, with peak times occurring in winter. 
Lymphocytes, Monocytes/100 WBC, and 
Hemoglobin also showed low seasonality, but with 
peaks occurring in summer. Eosinophils, 
Eosinophils/100 WBC had the highest seasonality, 
with peaks in summer, consistent with the findings 
in the full cohort data and the female group.  

Figure 6 compares the amplitude fits between two 
age groups. Lab tests were labeled if the differences 
in amplitude fits exceeded 0.007. Eosinophils and 

Eosinophils/100 WBC showed pronounced seasonal variations for the older age group (above 80 years old) at a 
relative fluctuation of around 0.05, compared to 0.015 for the younger age group (below 80 years old).  

Figure 7 compares seasonal peaks for age groups under and above 80. It shows that during summer, patients 
experienced peak levels for Monocytes/100 WBC, Eosinophils/100 WBC, Lymphocytes, and Eosinophils, regardless 

Figure 6. Overview of the amplitude parameter fits for age 
stratification. Lab tests are labeled if the amplitude fits’ 
differences between two age groups exceed 0.007. The 
color of each point indicates whether the amplitude fit is 
significant for either stratum, or both strata, or neither, 
accordingly.  

Figure 7. Overview of the offset parameter fits for age stratification. Point shapes represent age groups, with 
colors indicating offset fit significance, and solidness reflecting amplitude fit significance. 
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of age stratifications. Additionally, for both age groups, Neutrophil/100 WBC, WBC, and Glucose peaked around 
winter, consistent with the findings observed in the full cohort data and the female group.  
 
Discussion and Conclusions 

Effective management of Alzheimer's disease requires a comprehensive approach that includes accurate interpretation 
of lab tests to monitor and treat co-occurring conditions and complications. This approach supports better disease 
management, can improve quality of life, and potentially slow the progression of Alzheimer's disease. 

Our study has demonstrated potential seasonal variations in certain lab tests among AD patients in Florida. Glucose, 
Neutrophil/100 WBC, and WBC levels tend to be higher in winter compared to summer,  likely attributed to more 
indoor activities, shorter daylight hours, and increased carbohydrate intake [25]. The fluctuation of WBC levels has a 
more pronounced impact on males than on females. Certain leukocyte types, including Eosinophils, Lymphocytes, 
and Monocytes, typically have elevated levels during summer, possibly due to seasonal respiratory disease and 
allergens like pollen [11]. The seasonality in Eosinophils appears to be more influential in older AD patients.  

Analyzing seasonal patterns in lab test data is essential for healthcare providers and researchers to identify trends, 
anticipate fluctuations in test values, and tailor patient care accordingly. By recognizing seasonal variations, lab test 
reference intervals can be adjusted to provide more precise interpretation and diagnosis for individual patients. 
Additionally, seasonality analysis in lab test data can inform health research strategies, facilitating better data synthesis 
and enhancing study power. Moreover, many health conditions and exposures have also been documented for their 
seasonality, including disease incidences, prevalence, and environmental factors [5,26]. Understanding seasonal 
variations in lab test results would allow researchers to establish connections between risk factors, such as 
environmental conditions or lifestyle changes, and specific disease incidences through lab tests. By identifying 
seasonality among risk factors, lab test results, and disease incidence rates, researchers can gain insights into the 
etiology of diseases. This information is crucial for developing targeted interventions and preventive strategies to 
mitigate the impact of seasonal risk factors on disease incidence and improve overall public health outcomes.  

A few limitations should be noted in this study.  Our study analyzed aggregated data, which may result in some 
information loss. While providing stability, the weekly median of lab test values may potentially counteract seasonal 
variations compared to individual-level data. Additionally, the number of patients in our study remains insufficient 
given the breadth of lab tests and the duration of the study period, resulting in many lab tests failing to meet the criteria 
of at least 100 patients per week and less than 50% missingness. Besides, the cosinor model we utilized assumes the 
seasonal pattern has a symmetric increase and decrease within one year, which may be too restrictive for seasonal lab 
tests that do not have a stationary fluctuations [5]. Moreover, it cannot be applied to lab tests with binary or categorical 
values. In the future, we can explore using the generalized linear model to analyze these types of lab tests.  
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