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Abstract 10 

Wastewater-based epidemiology (WBE) can help mitigate the spread of respiratory infections 11 

through the early detection of viruses, pathogens, and other biomarkers in human waste. The need for 12 

sample collection, shipping, and testing facilities drives up the cost of WBE and hinders its use for rapid 13 

detection and isolation in environments with small populations and in low-resource settings. Given the 14 

ubiquitousness and regular outbreaks of respiratory syncytial virus, SARS-CoV-2 and various influenza 15 

strains, there is a rising need for a low-cost and easy-to-use biosensing platform to detect these viruses 16 

locally before outbreaks can occur and monitor their progression. To this end, we have developed an 17 

easy-to-use, cost-effective, multiplexed platform able to detect viral loads in wastewater with several 18 
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orders of magnitude lower limit of detection than mass spectrometry. This is enabled by wafer scale 19 

production and aptamers pre-attached with linker molecules, producing forty-four chips at once. Each 20 

chip can simultaneously detect four target analytes using twenty transistors segregated into four sets of 21 

five for each analyte to allow for immediate statistical analysis. We show our platform’s ability to rapidly 22 

detect three virus proteins (SARS-CoV-2, RSV, and Influenza A) and a population normalization molecule 23 

(caffeine) in wastewater. Going forward, turning these devices into hand-held systems would enable 24 

waste-water epidemiology in low-resource settings and be instrumental for rapid, local outbreak 25 

prevention.  26 
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1. Introduction 30 

According to the World Health Organization, lower respiratory infections are the fourth leading 31 

cause of death worldwide and second in low-income countries (World Health Organization 2014). The 32 

top three causes for these infections are SARS-CoV-2, Influenza, and Respiratory Syncytial Virus (RSV) 33 

(Madhi et al. 2020; Rouzé et al. 2021; Lafond et al. 2021). There is a growing emphasis on wastewater-34 

based epidemiology (WBE) to track outbreaks. However, WBE is predominantly performed in high-35 

income countries and densely populated areas (Ahmed et al. 2020; Hart and Halden 2020; Medema et 36 

al. 2020). Furthermore, if detection can occur on site, WBE would be instrumental to mitigating and 37 

tracking outbreaks from these viruses via early detection of viruses and other pathogens shed by 38 

asymptomatic carriers without requiring invasive and frequent individual tests (Champredon and 39 

Vanrolleghem 2023). For example, SARS-Cov-2 RNA can be detectable in wastewater 5 – 8 days before 40 
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symptom onset and 2 – 4 days before positive clinical PCR tests (Peccia et al. 2020; Nemudryi et al. 41 

2020).  42 

Indeed, several college campuses exploited existing testing infrastructure to employ highly 43 

localized wastewater testing to prevent outbreaks during the Covid-19 pandemic. An instructive 44 

example is the University of California San Diego (UCSD), where sampling from 239 buildings across their 45 

campus allowed early hot spot detection and individual testing on a per-building basis (Karthikeyan et al. 46 

2021, 2022). UCSD diagnosed nearly 85% of all SARS-CoV-2 infections on campus early and implemented 47 

preventative measures to mitigate the spread of the virus (Karthikeyan et al. 2021). This localized 48 

approach to WBE could also benefit low- and middle-income countries, where sewage is typically 49 

collected in individual or partially shared reservoirs (Street et al. 2020) that are not connected to 50 

community sewage systems (Adelodun et al. 2020).  This is particularly relevant to RSV, a leading cause 51 

of respiratory-related deaths in those 0 – 5 years old (CDC 2023), where data from low- and middle-52 

income countries is lacking or missing altogether due to inadequate systems and infrastructure needed 53 

to track disease transmission (Pawar 2023).  Even in high-resource settings, the typical collection at a 54 

central waste-water facility limits sensitivity of pathogen detection in wastewater due to short half-lives 55 

of analytes of interest (Hart and Halden 2020) and natural dilution (Lowry, Wolfe, and Boehm 2023) of 56 

target biomarkers.  57 

Several factors have hindered the widespread adoption of WBE and led to the general reliance 58 

on sample collection at centralized treatment facilities. Specifically, WBE testing is performed almost 59 

entirely utilizing advanced techniques in analytical chemistry and molecular biology, including liquid 60 

chromatography-mass spectrometry (LC-MS), high-pressure liquid chromatography-mass spectrometry 61 

(HPLC-MS), digital polymerase chain reaction, or real-time quantitative polymerase chain reaction (RT-62 

qPCR) that requires dedicated lab space, personnel, equipment, and chemicals (Lorenzo and Picó 2019). 63 

Limited testing facilities and the need for sample collection and transport can also delay results and 64 
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response times, limiting WBE for effective outbreak prevention (Leung 2021). Indeed, the WBE company 65 

BioBot in Cambridge, MA, says their average testing time is 11 – 15 days due to the need to test from 66 

multiple districts in weekly batches, creating a sample testing backlog (Biobot 2023b). Due to dilution of 67 

fecal waste in municipal wastewater, LC-MS and RT-qPCR rely on filtering and concentrating the 68 

collected sample (Adams 2020; Li, Wnkui; Zhang, Ji; Tse 2013), with HPLC-MS also subjecting it to several 69 

high-pressure steps to separate constituent elements (Else et al. 2010; Metabolite et al. 2023). Thus, a 70 

low-cost, easy-to-use, multiplexed device is urgently needed to enable point-of-need WBE.  71 

Particularly challenging is the need of a sensing platform to withstand the harsh wastewater 72 

medium while accurately and reliably distinguishing between the various components. Wastewater can 73 

contain viruses shed in human waste and other particles ranging from naturally occurring biomass, 74 

bacteria strains, and drug metabolites to pharmaceuticals (Massano et al. 2023).  Similarly challenging is 75 

the need to multiplex assays or testing strategies to monitor multiple targets to reduce cost, time, and 76 

effort while addressing seasonal and population variations via normalization. For point-of-need WBE 77 

sensing, population normalization is crucial due to increased variability in dilution factors, such as per 78 

capita water use, stormwater inputs, etc., and viral shedding rates (Sweetapple et al. 2023; Rainey et al. 79 

2023; C. Li et al. 2022a). This variability exacerbates the already challenging task of calculating the 80 

number of people infected based solely on the virus concentration in the wastewater sample. For 81 

example, depending on the level of infection, a person suffering from SARS-CoV-2 can excrete anywhere 82 

from 600,000 (N. Zhang et al. 2020) to 30,000,000 virions/L (Wölfel et al. 2020) of fecal matter.  83 

To enable WBE at the local level, especially in low-resource and rural communities, it is helpful 84 

to look towards efforts in personalized health care. Substantial efforts have been made regarding 85 

sensing respiratory infections using lateral flow immunoassay (LFIA), low-cost PCR, and electronic 86 

sensors. Electronic sensors are potentially the most promising as they can simultaneously offer 87 

multiplexed, low-cost, high sensitivity detection with minimal human effort. Here, there is growing 88 
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interest in graphene field effect transistors (GFET), which have shown the capability to detect everything 89 

from lead ions (Velusamy et al. 2022; Dong et al. 2023) to bacteria and oral disease biomarkers (Ping et 90 

al. 2016b; Gao et al. 2016; Kumar, Gray, et al. 2020), though few have shown multiplexing capabilities 91 

(Lu et al. 2022; Kumar et al. 2022; Kumar, Gray, et al. 2020). Nonetheless, only two groups, including 92 

ours, have demonstrated GFET’s use for detection of analytes in wastewater. For instance, a GFET 93 

recently detected cadmium ions in wastewater with a limit of detection (LOD) of 0.125 pM (H. Wang et 94 

al. 2023). Still, virus protein detection in wastewater with GFETs, let alone by a scalable fabrication 95 

method, has not been shown. 96 

This work focused on developing wafer-scale fabrication of GFET devices for rapid, easy-to-use, 97 

low-cost, multiplexed, and population-normalized detection of respiratory viruses in wastewater at low 98 

levels of detection (LOD). To do so, we implemented a new probe strategy where aptamers, single-99 

stranded oligonucleotides, are pre-attached to the linker molecule, removing the need for harsh 100 

solvents. This enhanced the device's reproducibility, lowering filtration levels and producing better LOD. 101 

In addition, we have optimized the fabrication process to make 44 chips simultaneously on a four-inch 102 

wafer. The devices are tested using freshly collected waste-water samples to detect SARS-CoV-2 spike 103 

protein, Influenza A hemagglutinin, RSV glycoprotein, and caffeine for comparison with lab-based WBE 104 

methods.  105 

2. Materials and Methods 106 

2.1 Graphene Platform Development 107 

2.1.1 Graphene as a transducer 108 

Graphene is particularly useful yet challenging as a transducer due to its extreme sensitivity to 109 

surface charges (Castro Neto et al. 2009; Ping et al. 2016a; Hwang et al. 2016). Nonetheless, graphene is 110 

biocompatible and can be prepared at wafer scale. Due to its zero-band gap, it has a well-defined Dirac 111 
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point (charge neutrality point) where its valence and conduction bands meet. This produces a peak in 112 

resistance when the chemical potential reaches the Dirac point (Fig. 1). When biomolecules attach to 113 

the surface of the graphene, it is generally assumed charge is transferred to graphene either directly or 114 

from conformal changes in the probe (J. Li et al. 2021; Seo et al. 2020a).  This enables quantification of 115 

the target concentration via a shift in voltage at which the Dirac point appears.  116 

Another advantage of graphene is the ease of functionalization with the biomolecules used as 117 

probes (Pinto, Gonçalves, and Magalhães 2013). These probes can be bonded to aromatic rings (e.g., 118 

Pyrene), which attach to the graphene through π-π stacking. This allows for tremendous 119 

biocompatibility between graphene and a host of biomolecules without unintentional disorder from 120 

chemical bonding. However, typically, graphene is functionalized via a two-step process, where the 121 

linker molecule is attached using dimethylformamide (DMF), and then the probe is later bound to the 122 

linker molecule (Seo et al. 2020b; Kwong Hong Tsang et al. 2019; https et al. 2022; Nekrasov et al. 2022). 123 

Unfortunately, the DMF tends to react with the device, causing instability, higher LOD, and lower 124 

reproducibility, and can attack polymers and passivation layers, degrading the device (Khan and Song 125 

2021). As described later, we have avoided this issue and improved the LOD and reproducibility needed 126 

for point-of-need WBE using probes pre-attached to the linker molecule and incubated in PBS.  127 

 Likewise crucial for detection in complex wastewater matrices, graphene is insensitive to the 128 

sample medium's pH levels (Fu et al. 2011).  We demonstrated this in our recent work on opioid 129 

metabolite detection in wastewater (Kumar et al. 2022), in which we showed the simultaneous 130 

detection of Noroxycodone, Norfentanyl, and EDDP (2-ethylidene-1, 5-dimethyl-3, 3-131 

diphenylpyrrolidine) with an LOD below that of HPLC-MS (Kumar et al. 2022). This work also exhibited 132 

our platform’s robustness and selectivity of the target molecules in wastewater. Unlike traditional field-133 

effect transistor (FET) sensors that require large gate voltages (>60V) (Ping et al. 2016a), we have 134 
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demonstrated our ionic liquid-gated GFETs are compatible with simple electronics requiring less than 2V 135 

(Kumar, Gray, et al. 2020; Kumar, Wang, et al. 2020).  136 

2.1.2 GFET Fabrication, Characterization, and Functionalization 137 

To bring our GFET-based Graphene Electronic Multiplexed Sensor (GEMS) towards point-of-need 138 

WBE, we modified our fabrication method and device design to enable production on a four-inch silicon 139 

wafer (Fig. 2a – Top) before dicing into individual chips. This has drastically reduced our costs per chip 140 

primarily due to a drastic decrease in fabrication time. Prior to wafer-scale fabrication, we were able to 141 

produce 6 – 8 chips in four days. We can now produce 44 GEMS in the same amount of time. Each GEMS 142 

has 20 GFETs arranged in groups of five for rapid statistical analysis of variability between GFET devices. 143 

To enable multiplexed detection, the groups are segregated with PDMS wells with individual coplanar 144 

side gates (Fig. 2b). This enables individual functionalization of each well with a different probe without 145 

cross-functionalization. 146 

Fig. 1  – Dirac voltage shifting with aptamer and target attachment: The plot on the left shows the positive shift in the Dirac 

point (peak of the curves) from the intrinsic position of the bare graphene (black) of approximately 0.6V. After a 2:1 mixture 

of the aptamer probe to PEG is added the Dirac point shifts positively to about 0.8V (pink). A large shift in the Dirac point to 

1.2V is then seen (green) in the presence of 1ng/ml of the target protein for SARS-CoV-2. On the right is a schematic of the 

bare graphene, aptamer attachment, and target attachment. 
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We first pattern bottom contacts on a four-inch Si/SiO2 wafer using bi-layer photoresist 147 

(LOR1A/S1805) and photolithography followed by e-beam deposition of 5 nm of titanium wetting layer 148 

and 20 nm of platinum. Platinum is chosen to minimize contact resistance to graphene because it is 149 

robust and has low surface potential (Fujii, Kasuya, and Kurihara 2017). After metal liftoff, the contacts 150 

were annealed under vacuum for 10 hours at 400°C to remove any remaining photoresist and increase 151 

the electrodes' smoothness, allowing for better graphene attachment. CVD graphene was transferred on 152 

top of the entire wafer by General Graphene Corp. in Knoxville, TN. The wafer was then annealed under 153 

vacuum in the e-beam chamber for nine hours at 300°C to remove any remaining residues and water 154 

from the transfer process. Before removing from the e-beam chamber, 3 nm of aluminum oxide (AlOx) 155 

was deposited to protect the graphene from further chemicals and atmosphere during later fabrication 156 

steps. Once removed, the wafer was baked on a hotplate in our glovebox at 175°C for five minutes to 157 

ensure aluminum oxide adhesion. The same bi-layer resist process and photolithography system were 158 

then used to pattern the graphene for etching via oxygen plasma. The MF-321 developer (from Kayaku) 159 

used to develop the pattern after lithography has the added benefit of also removing the 3 nm of AlOx 160 

from atop the graphene we wish to etch. This was followed by argon plasma to remove any oxide layer 161 

formed on the platinum by the oxygen plasma on the coplanar side gate. Failing to remove this layer has 162 

led to higher initial Dirac points and, in turn, lower sensitivity in our devices. 163 

Next, the devices were cleaned with Remover PG and rinsed with IPA and DI water. The chips 164 

were then baked under a vacuum at 200°C for one hour to remove any water and clean any residue 165 

from the wafer. After this, a 50 nm passivation layer of aluminum oxide was deposited to encapsulate 166 

the devices while the wafer was still hot. Oxygen was flowed to achieve a pressure of ~105 Torr during 167 

AlOx deposition to replenish oxygen stripped from the AlOx crystals during e-beam deposition. A final 168 

single layer (S1805) photolithography step was then performed to expose the graphene sensing 169 

windows (10um x 40um) and the contact pads for wire bonding. Exposed AlOx was then etched with 170 
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65:35 diluted TRANSETCH-N (from Transene) for 14 minutes at 80°C, then rinsed with DI water. The 171 

remaining photoresist was then removed with Remover PG and rinsed with IPA and DI water. The wafer 172 

was then diced using a Pelco Wafer Dicing system, eliminating the need for a wafer dicing saw and its 173 

associated chemicals. The chips were then mounted to chip carriers and wire-bonded. Following this, 174 

PDMS wells made in-house with custom 3D-printed molds were placed on the chips to hold the 175 

functionalization liquids and target mixtures during incubation as per our sensing protocols. 176 

2.2 Pre-Linked Aptamers 177 

We employ aptamer probes due to their high affinity, stability, and small size (Cai et al. 2018; 178 

Urmann et al. 2017). Aptamer-based protein biosensing depends on aptamer-target binding (Y. Wu et al. 179 

2014), which several factors can complicate. Structurally complex protein targets have more binding 180 

sites and interaction types than small molecules (S. Jones et al. 2001; Kohlberger and Gadermaier 2022). 181 

Fig. 2 – (a) Top: Wafer as fully 

fabricated. Second from top: 

Overview of the 1.2cm x 1.2cm GFET 

sensing platform. Third from top: 

20x microscope image of a single 

sensing well. Two graphene devices 

and the coplanar gate electrode are 

shown. Bottom: Diagram of a single, 

functionalized graphene device 

during the sensing process. (b) 

Schematic of individual chip with 

PDMS well and labeled with 

functionalization for specific 

analytes. 

(a) (b) 
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This increase in complexity can result in aptamers with decreased target specificity if the experimental 182 

design of SELEX is flawed (Qian et al. 2022). Generation of aptamers for proteins via SELEX is more 183 

manageable for small molecules (Y. Wu et al. 2014), but the conformation of the protein (purified or 184 

native) can alter or hinder aptamer binding (Zhou and Rossi 2017; Z. Zhang et al. 2021). Careful 185 

consideration is necessary to ensure binding conditions mirror real-world binding conditions. With this 186 

in mind, we chose the Universal Aptamer (UA) (Bhardwaj et al. 2019; Shiratori et al. 2014; C.-H. Wang, 187 

Chang, and Lee 2016) for Influenza A hemagglutinin, H8 (Percze et al. 2017) for RSV, and 1C (Y. Zhang, 188 

Juhas, and Kwok 2022) for SARS-CoV-2 spike proteins based on their binding affinities to their targets. 189 

See the Supplemental for further information regarding the aptamers. 190 

Generally, to attach the aptamer to graphene, the device is first incubated with 10 mM 1-191 

pyrenebutyric acid N-hydroxysuccinimide ester (PBASE) linker molecule dissolved in DMF for one hour. 192 

After performing a Dirac point measurement to see the shift due to DMF and PBASE, a 2:1 mixture of 193 

aptamer to polyethylene glycol (PEG) is incubated for one hour. Adding PEG to the probe mixture has 194 

been widely employed (Szunerits et al. 2023; Rodrigues et al. 2022) to prevent unwanted attachment of 195 

molecules to any unlinked PBASE molecules and provide space between aptamers, limiting their 196 

interactions. The PEG also stabilizes the devices by minimizing drift and standard deviation between 197 

different devices. 198 

To further reduce cost, analysis, and fabrication time and boost reproducibility, we altered this 199 

typical process by pre-attaching the aptamers and PEG to the PBASE molecules (See supplementary 200 

information for more details regarding pre-linking.). Indeed, DMF is known to dope graphene (G. Wu et 201 

al. 2017) and thus would be expected to result in a higher limit of detection.  With this in mind, we 202 

performed identical experiments with GEMS using the standard DMF attachment procedure and our 203 

pre-linked PEG (PL-PEG) and probes (PL-aptamers). As seen in Fig. 3 and Table 1, more significant Dirac 204 

point shifts occurring at much lower LODs are seen in devices with pre-linked (PL) probes. Lastly, to 205 
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ensure graphene cleanliness and device reproducibility, much of the fabrication was carried out in a 206 

pure argon environment inside our cleanroom-in-a-glovebox (Gray et al. 2020).   207 

2.3 Optimization in PBS 208 

2.3.1 Viral aptamers 209 

 Selectivity and concentration analysis was first conducted in 1x PBS to determine the aptamer 210 

viability without the background signal from wastewater. Specifically, the numerous constituent 211 

components in wastewater (Henze, Mogens; van Loosdrecht, Mark; Ekama, George; Brdjanovic 2008; M. 212 

H. Huang, Li, and Gu 2010; Novo et al. 2013), many of which are charged ions, can produce false 213 

positives. For each target, we first determined the initial Dirac point of the graphene in 0.01x PBS (see 214 

Supplemental). Diluted PBS minimizes the Debye screening effect (Stern 2007). Typically, we observe a 215 

Dirac point around 0.6 V (�0.1V) due to the work function of the platinum side gate electrode (Fujii, 216 

Kasuya, and Kurihara 2017). This baseline Dirac point ensures the graphene quality without unwanted 217 

doping. This is further confirmed by the nearly symmetric slopes to the left (hole regime) and to the 218 

right (electron regime) of the Dirac point, which results from the charge carrier mobilities (Gosling et al. 219 

2021).  Passivation issues are typically indicated by double peaks in the curves. Good passivation is also 220 

confirmed by ensuring the Dirac point does not drift with repeated gate voltage sweeps. The highest 221 

quality devices have an initial Dirac point in the range of 0.58 – 0.7 V with an average starting resistance 222 

around 2000 Ω and a stable Dirac point after three measurements. Data on initial Dirac point and 223 

starting resistances were collected for 545 different GFETs fabricated over two years in our lab, showing 224 

that most of our devices fall within these parameters (see Supplemental).  225 

After initial testing, we incubated the graphene devices for one hour with a 2:1 mixture of 10uM 226 

PL-aptamer to 10uM PL-PEG, which was optimized in our previous work with opioids in wastewater and 227 

oral disease biomarkers in saliva (Kumar, Wang, et al. 2020; Kumar, Gray, et al. 2020; Kumar et al. 2022). 228 
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Dirac point measurements are again conducted in 0.01x PBS to confirm attachment to the graphene 229 

surface. Upon attachment, the charged phosphate backbone of the aptamer induces positive charge 230 

carriers into the graphene, producing a positive 150-200mV shift in the Dirac point (see Supplemental). 231 

Atomic force microscopy and Raman measurements have also been performed to confirm the 232 

attachment (see Supplemental). 233 

We first assessed all aptamer selectivity against a negative control. For example, the Influenza A 234 

hemagglutinin (HA) with a concentration of 10 – 100 ng/ml that is far beyond that found in wastewater 235 

(tens of pg/ml), is incubated on the devices for one hour in the well containing the SARS-COV-2 SPIKE 236 

PROTEIN aptamer (1C). No shift in the Dirac point was seen, showing the HA protein does not bind to 237 

the 1C aptamer (Fig. 3 – Covid). Similar negative control analyses were conducted in the wells 238 

functionalized with the Influenza and RSV aptamers. As shown in Fig. 3, these aptamers had a slightly 239 

higher non-specific interaction with the negative control proteins. Nonetheless, the Dirac point shifts in 240 

wells with the Influenza and RSV aptamers resulting from negative controls were relatively small 241 

(approximately 50 mV), setting the baseline for future measurements.  242 

 Next, we focused on assessing each aptamer's limit of detection and affinity. We followed a 243 

standard protocol of incubating the devices with a specific concentration of the target proteins. After 244 

incubation, the device is rinsed with 1x PBS and DI water before performing the Dirac point 245 

measurement in 0.01x PBS. For each concentration, the reported shift is the difference in the Dirac point 246 

value obtained from that of the negative control. After measuring the Dirac shift, we incubated with 247 

increasing target protein concentrations. To ensure the absence of systematic errors, we have also 248 

performed measurements with random concentrations to ensure they match the signal detected by a 249 

systematic increase in concentration. 250 
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Beginning with low concentration, each incubation is conducted for one hour. We found that 251 

concentrations below 1 fg/ml for the SARS-COV-2 spike protein did not change the Dirac point. 252 

However, the RSV and HA proteins produced shifts at much lower concentrations (approximately 10 253 

ag/ml). This shift discrepancy may be due to the newness of the SARS-COV-2 spike aptamer and future 254 

improvements can improve its binding affinity. The average shift from all devices in the well and their 255 

standard deviations are plotted in the same graph as the negative control’s shift. The concentrations are 256 

increased by one order of magnitude in each subsequent incubation, and the same rinsing and sensing 257 

Fig. 3 –Concentration dependance measurements of viral proteins in PBS. Error bars calculated from the five GFETs 

per sensing well. Data points with crosses and dashed curves indicate non-pre-linked aptamers were used. Top Left 

- Influenza A Hemagglutinin detection. High concentrations of RSV and COVID Spike proteins used as a negative 

control. (PL) denotes pre-linked aptamer experiment. Top Right and Bottom Left - Same as in HA plot but with 

SARS-CoV-2 Spike and RSV proteins, respectively. Non-target proteins used as negative control in each case. Bottom 

Right - Concentration dependence measurements of two caffeine aptamers. Caffeine measurements were only 

conducted with pre-linked aptamers. 
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protocol is conducted for each. The concentrations are increased until a saturation point is reached, 258 

determined by no further shift with two consecutive high concentrations.  259 

Upon collecting the concentration dependence, we found the binding characteristics of the 260 

aptamer by fitting the Dirac voltage shift versus target analyte concentration to Hill’s equation (Goutelle 261 

et al. 2008): 262 

 �� �
�
�

���
� �

�

�
�

�
� ��

 (1) 

Here, �� is the Dirac voltage shift measured in mV, �
�

��� is the maximum Dirac voltage shift at the 263 

saturation point, � is the concentration of the target analyte, � is the Hill Coefficient 264 

determined to be the maximum slope on a log plot of the response curve, and �� is the 265 

dissociation constant. The parameters were found using a least squares fit model in Matlab 266 

after providing estimates of the Hill Coefficient, maximum Dirac voltage, and dissociation 267 

constant. Due to the five devices in each well of the GFET, we can perform statistical analysis 268 

immediately. This allows us to calculate the LOD for each analyte by using the residuals of the 269 

standard deviation against the Hill fit using 3	 analysis (Belter, Sajnóg, and Barałkiewicz 2014): 270 

 ��� �  
3	



 (2) 

Here, 	 is the standard deviation from the fit and 
 is again the Hill slope. This was used to find the LODs 271 

in Table 1.  272 
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 273 

2.3.2 Caffeine aptamer 274 

WBE programs use several different biomarkers to determine the total contributing population. 275 

These include caffeine, paraxanthine (caffeine’s metabolite), creatine, 5-hydroxyindoleacetic acid (5-276 

HIAA, serotonin metabolite), and pepper mild mottle virus (PMMoV) given their ubiquitousness in 277 

human diets and survivability in wastewater (Hsu et al. 2022). Paraxanthine and PMMoV concentration, 278 

in particular, are excellent means for population normalization (C. Li et al. 2022b). Unfortunately, to the 279 

best of our knowledge, no aptamer has yet been developed for PMMoV or paraxanthine. Therefore, to 280 

test our platform’s capabilities as a means for population normalization in wastewater, two previously 281 

reported caffeine aptamers were selected based on their reported results that show micromolar 282 

sensitivity in human serum (P. J. J. Huang and Liu 2022), two of which (Caff203 and Caff209) were 283 

chosen for our tests in wastewater. Both the Caff203 and Caff209 aptamers were pre-attached to the 284 

PBASE linker molecules, and the same functionalization and sensing protocols were followed as the virus 285 

proteins. Both were evaluated first in PBS to determine their viability before exposure to wastewater. 286 

Caff203 was found to have an LOD of 35 fg/ml in PBS, while Caff209 showed 26 fg/ml in PBS (Fig. 3). Due 287 

to its lower LOD, Caff209 was selected for future experiments. 288 

Table 1 Comparison of LODs between pre-linked and unlinked aptamers for each target analyte in PBS. All 

pre-linked virus experiments were conducted on a single GFET chip and unlinked on another. Caffeine 

experiments were only performed with pre-linked aptamers and done on a single GFET chip. 

Target Unlinked Aptamer Pre-Linked Aptamer 

SARS-CoV-2 Spike Protein 91 pg/ml 55 ag/ml 

Hemagglutinin (Flu A) 79 fg/ml  

 

408 ag/ml 

Respiratory Syncytial Virus 
Protein 

43 fg/ml 453 ag/ml 

Caffeine N/A Caff203: 35 fg/ml 

Caff209: 26 fg/ml 
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3. Results 289 

3.1 Wastewater biosensing 290 

3.1.1 Wastewater dilution optimization 291 

 Next, we turned to testing GEMS with wastewater. In our earlier work on opioid metabolites, we 292 

found diluting the wastewater with 1x PBS to a 20:1 mixture necessary to minimize unwanted Dirac 293 

point shifts and false positives from the myriad components and non-neutral pH (6-9). Given the 294 

improved device performance with pre-attachment, we re-optimized this dilution to attempt a lower 295 

LOD. We began by incubating the 1C PL-aptamer and PL-PEG, as previously discussed. The wastewater 296 

was then passed through a 0.3-micron filter to remove large particulates. Next, various dilutions (2:1, 297 

5:1, 10:1, and 20:1) were incubated directly on the devices for one hour, and the resulting Dirac point 298 

shift is shown in Fig. 4. We found the 10x dilution caused an approximate 60 mV Dirac point shift, the 299 

same as the 20x dilution. Since PBS does not induce a shift, the background signal from wastewater will 300 

increase the LOD by setting a floor below which we cannot uniquely detect the target, as indicated by 301 

the horizontal dashed lines in Fig. 5. Next, four samples were diluted with the 2:1, 5:1, 10:1, and 20:1 302 

Fig. 4 – Histogram of the average Dirac point shift at various wastewater 

dilutions. The blue areas show the average Dirac point shift for five GFET 

devices after incubation of diluted wastewater for one hour. The tan areas 

show the further Dirac point shift after incubating the GFETs for one hour 

with 1ng/ml of target protein in their respective wastewater dilutions. 
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PBS to wastewater samples to create 1 ng/ml solutions of SARS-COV-2 spike protein and incubated on 303 

the devices for one hour. This was done to determine if wastewater dilution affected the ability of the 304 

aptamers to find the target proteins. The 1 ng/ml concentration was used since this is the point at which 305 

the SARS-COV-2 SPIKE PROTEIN aptamer saturated when tested in 1x PBS. Interestingly, there was a 306 

statistically insignificant difference in the shift between the 10:1 and 20:1 wells. Both measured a shift 307 

of around 130 mV after incubating with the spike protein mixture. Thus, we focused 10:1 PBS to 308 

wastewater dilution to achieve the smallest possible LOD in wastewater. 309 

3.1.2 Detection of Analytes in Wastewater 310 

Having optimized the wastewater dilution, we performed a similar series of concentration-dependent 311 

measurements with the same protocol done first in PBS. The experiments were conducted in two 312 

rounds for each analyte. Experiments were first performed on a single GFET chip. Four wells were 313 

functionalized with a different pre-attached aptamer: 1C for SARS-CoV-2, UA for hemagglutinin, H8 for 314 

RSV, and Caff209 for caffeine. A fresh wastewater sample was obtained (collected one day prior and 315 

stored a 4°C overnight), filtered, and diluted in a 10:1 ratio with PBS and spiked with virus proteins and 316 

caffeine to make concentrations ranging from 1 fg/ml to 1 ng/ml with an increase of one order of 317 

magnitude between each concentration. The second round of experiments was conducted one month 318 

later using a newly fabricated GFET chip, fresh pre-attached aptamers, and a new wastewater sample. In 319 

both instances, the negative controls were tested first at 1 ng/ml to check selectivity, followed by 320 

increasing the concentrations of the target analyte. In both rounds, the negative controls showed little 321 

to no shift beyond the background 60mV shift from the wastewater (dashed lines in Fig. 5). 322 

The resulting concentration curves are shown in Fig. 5, and LODs for each round are shown in 323 

Table 2. As expected, LOD values increased over the PBS results due to the intrinsic 60mV signal from 324 

the wastewater. Nonetheless, the larger LODs are all well within the range for the concentrations of 325 
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each analyte in wastewater. SARS-CoV-2 has been shown to contain 24±9 spike proteins per virion (Ke et 326 

al. 2020), theoretically suggesting the LOD for our GEMS platform to be on the order of 27 – 59 327 

virions/ml (27,000 – 59,000 virions/L) in wastewater assuming fully lysed virions. Influenza A has been 328 

found to contain 300 – 400 HA proteins per virion (Einav, Gentles, and Bloom 2020), giving a theoretical 329 

LOD of fully lysed virions in the 1.5 – 7 virions/ml (1,500 – 7000 virions/L). To the best of our knowledge, 330 

the average number of proteins for RSV has not yet been determined. Assuming a similar number 331 

between the spike and the Influenza A proteins, the theoretical, fully lysed RSV virions could be 15 – 397 332 

virions/ml (15,000 – 397,000 virions/L). Like the experiments conducted in PBS, the RSV and SARS-COV-2 333 

spike aptamers show little to no shift with the high concentration of negative control. In contrast, the 334 

HA aptamer showed a small but significant shift of around 60 mV with negative control. This could be 335 

partly due to UA’s longer length compared to the others, allowing it to bind to more constituent 336 

elements in the wastewater. It could also be due to HA proteins already present in the wastewater 337 

sample, which was collected during the 2022 – 2023 Flu season. 338 

Due to its lower LOD found in PBS (Table 1), Caff209 was selected for analysis in wastewater. 339 

Interestingly, the LOD in wastewater was lower than in PBS, which was not seen with the virus proteins. 340 

This could be due in part to the salt content in wastewater facilitating binding (Lores and Pennock 1998) 341 

of the much smaller caffeine molecules, which are 0.194 kDa as compared to the larger proteins having 342 

sizes of 139.7 kDa, 59 kDa, and 37 kDa for spike, HA, and RSV respectively, lowering the variability 343 

between the devices. 344 
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To put these LODs in context, we compare them with other reported LODs. BioBot reports a 345 

limit of detection (LOD) for SARS-CoV-2 of 9000 copies/L using RT-qPCR (Biobot 2023a) (approximately 346 

10 whole virions/L), which is lower than concentrations typically found in wastewater. The reliance on 347 

lab testing results from these low virus loads in wastewater requires amplification and/or viral 348 

concentration steps to detect. These concentrations can range from, in the case of SARS-CoV-2, 150,000 349 

– 141.5 million viral genome copies (150 – 141,500 whole virions (Sender et al. 2020)) per liter of 350 

wastewater (Hart and Halden 2020). Influenza A concentrations are reported to be around 260,000 351 

copies per liter (Heijnen and Medema 2011) and RSV 1,071 – 70,700 copies per liter (Ahmed et al. 2023).  352 

Others have reported LODs from RT-qPCR as low as 2.9 – 4.6 copies per reaction after concentrating the 353 

Fig. 5 – Concentration dependence measurements of viral proteins and caffeine in wastewater. Error bars calculated from the 

five GFETs per sensing well. From left to right, HA, RSV, and COVID spike proteins and Caffeine. Horizontal dashed line shows 

intrinsic background shift from the wastewater itself.  
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sample from 50ml to 20ul (Ahmed et al. 2022). Several studies have found levels of shed virus can vary 354 

substantially depending on patient infection level and virus variants, ranging from 102 – 107 copies/ml 355 

(D. L. Jones et al. 2020; Pan et al. 2020; Zang et al. 2020; Han et al. 2020). These levels will significantly 356 

decrease upon reaching a wastewater treatment facility due to dilution and virus decay, highlighting the 357 

need for more localized collection and analysis. While our GEMS platform cannot achieve the low LODs 358 

seen with RT-qPCR, its LODs are 1 – 2 orders of magnitude lower than what has been reported with LC-359 

MS (Table 2). 360 

Table 2 

Limits of Detection (LOD) for each target analyte from two separate experimental rounds. Each round 

was conducted on a single GFET chip. Based on their average molecular weights, LODs were converted 

from fg/ml to proteins/ml. 

Target Round 1 LOD Round 2 LOD Reported LC-MS from 
Literature 

SARS-CoV-2 
Spike Protein 

136 fg/ml  

(890 proteins/ml) 

187 fg/ml  

(1224 proteins/ml) 

105 – 106 copies/ml (Griffin 

and Downard 2021; 

Dollman, Griffin, and 

Downard 2020; Nikolaev 

et al. 2020; Picó and 

Barceló 2021) 

(~3000 fg/ml) 

 

Hemagglutinin 
(Flu A) 

39.6 fg/ml  

(612 proteins/ml) 

181 fg/ml  

(2799 proteins/ml) 

7x106 copies/ml 

(Bojórquez-Velázquez et 

al. 2022) 

(~30,000 fg/ml) 

 

Respiratory 
Syncytial Virus 
glycoprotein 

176 fg/ml  

(5927 proteins/ml) 

175.4 fg/ml  

(5959 proteins/ml) 

3.6x107 copies/ml 

(Bojórquez-Velázquez et 

al. 2022) 

(~40,000 fg/ml) 

 

Caffeine 10 fg/ml  

(3.1x107 molecules/ml) 

2 fg/ml  

(6.2x106 molecules/ml) 

5000 fg/ml (Huerta-

Fontela, Galceran, and 

Ventura 2007) 

 361 
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In the case of LC-MS, LODs between 105 – 106 copies per nasopharynx sample (Dollman, Griffin, 362 

and Downard 2020; Nikolaev et al. 2020) have been reported. While LC-MS has been used to detect 363 

SARS-CoV-2 in wastewater (Peng et al. 2022; Lara-Jacobo et al. 2022), no detection limit has yet to be 364 

reported. So-called “rapid tests,” on the other hand, while having short analysis time, typically rely on 365 

LFIA, which to the best of our knowledge have not shown the ability to rapidly sense the low level of 366 

virus in unprocessed wastewater. An LFIA sensed human adenovirus in processed wastewater by first 367 

concentrating the wastewater sample through PEG precipitation overnight and then performing a 368 

recombinase polymerase amplification step and achieving an LOD of 50 copies/reaction starting from an 369 

initial sample size of 1L (Rames and Macdonald 2019). While this is a low LOD, the tradeoff is in the time 370 

and complexity of the analysis. 371 

3.2 Blind Testing 372 

 To ensure device integrity, a blind test in wastewater was performed. A single chip was 373 

functionalized with each virus aptamer in a different well. Four concentrations of each target protein 374 

were made by one author (O.R.P.) and were coded with a four-digit number (1738, 1993, 2930) with no 375 

indication of the contents. These were tested by another author (M.G.) using the same sensing protocol 376 

outlined above to determine which coded sample contained each protein. As shown in Fig. 6, for 377 

concentrations above 100 pg/mL (consistent with our earlier LOD) the target can easily be identified by 378 

only producing a Dirac shift in one well. Based on this, M.G. identified each target, which was confirmed 379 

Fig. 6 – Wastewater Blind Tests: Each plot represents the differing concentrations for a coded sample. The assorted colors 

indicate the aptamer used in each well; blue for the 1C (Covid), red for H8 (RSV), and green for UA (Flu). The horizontal dotted 

line is the intrinsic shift from the wastewater. M.G. found that 1738 was COVID spike proteins (left), 1993 was HA (middle), and 

2930 was RSV. Each was confirmed by O.R.P.’s written records. 
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correct by O.R.P.’s written records.  380 

4. Conclusions and Future Work 381 

To summarize, we showed the viability of our GEMS platform for selective, specific, 382 

simultaneous, and highly sensitive detection of four different analytes in wastewater, including caffeine 383 

for population normalization and three different viral proteins. We achieved limits of detection (see 384 

Table 1) one to two orders of magnitude better than HPLC-MS (Fig. 5) (Dollman, Griffin, and Downard 385 

2020; Nikolaev et al. 2020; Peng et al. 2022; Lara-Jacobo et al. 2022; Kasprzyk-Hordern et al. 2023; 386 

Mestankova et al. 2012) and below the levels needed for effective early interventions (Peng et al. 2022). 387 

Results are obtained using a 1 cm2 chip in just over one hour with minimal human intervention and 388 

without bulky, expensive lab equipment or costly reagents. Simple wastewater preparation can be easily 389 

performed with minimal training, while low voltage and resistance ranges can be operated with simple 390 

and cheap electronics. The cost is minimized by wafer-scale fabrication and pre-linked aptamers, further 391 

enhancing reproducibility and LOD. Combined with our previous results, the scalable GEMS platform 392 

enables rapid, easy, and cheap wastewater sensing of a wide range of analytes (opioid metabolites, 393 

viruses, etc.). This shows our platform to be a practical choice for wastewater-based epidemiology for 394 

viral testing and can lead to finding hotspots for future virus outbreaks. Our platform's low cost and 395 

power requirements could allow WBE to be performed on a building-by-building level in low-resource or 396 

rural settings, ushering in a new era of wastewater testing. Enabling this will require future efforts for 397 

on-chip electronics and microfluidics for sample preparation and a more comprehensive array of 398 

analytes to be tested on the same chip.  399 
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