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Abstract

Impaired cardiac function is associated with cognitive impairment and brain imaging features of
aging. Cardiac arrhythmias, including atrial fibrillation, are implicated in clinical and subclinical brain
injuries. Even in the absence of a clinical diagnosis, subclinical or prodromal substrates of
arrhythmias, including an abnormally long or short P-wave duration (PWD), a measure associated
with atrial abnormalities, have been associated with stroke and cognitive decline. However, the
extent to which PWD has subclinical influences on overall aging patterns of the brain is not clearly
understood. Here, using neuroimaging and ECG data from the UK Biobank, we use a novel regional
“brain age” method to identify the brain aging networks associated with abnormal PWD. We find that
PWD is inversely associated with accelerated brain aging in the sensorimotor, frontoparietal, ventral
attention, and dorsal attention networks, even in the absence of overt cardiac diseases. These
findings suggest that detrimental aging outcomes may result from subclinically abnormal PWD.

Introduction

The brain accounts for only about 2% of the body’s mass, yet it is estimated to receive 12% of
cardiac output, and use 20% of the body’s oxygen (Williams and Leggett 1989, Raichle and Gusnard
2002). Given that this cardiac output provides the means by which cerebral blood flow is able to
perfuse brain tissue, inevitably the heart and brain are intricately linked. A growing body of literature
suggests that cardiovascular diseases (CVDs), including atrial fibrillation (AF), heart failure, and
coronary artery disease, are associated with cognitive decline and brain imaging-derived features of
aging (Tublin et al. 2019, Friedman et al. 2014).

P-wave indices on an electrocardiogram (ECG), specifically abnormalities in P-wave duration (PWD),
offer valuable information of the electrical activity within the heart's atria. The PWD represents the
current moving from the sinoatrial node to the atrioventricular node and characterizes atrial
depolarization (Lip et al. 2016). Anomalies in PWD, whether shorter or longer than the norm, are
believed to reflect structural or physiological alterations in the left or right atria. These subtle
variations thus provide markers of cardiac pathology and can serve as early indicators of various
cardiovascular diseases, including AF and other arrhythmias, cardiovascular risk factors and related
deaths (He et al. 2017, Nielsen et al. 2015, Magnani et al. 2009, Kosar et al. 2008, Uyarel et al. 2005,
Magnani et al. 2015), and more recently dementia (Gutierrez et al., 2019) and cerebrovascular-related
injuries (Reyes et al. 2023).

As ECG is more readily available and cheaper to obtain than MRI, charting a relationship between
ECG outputs and brain health may help identify objective clinical risk factors for individuals at risk for
faster brain aging even without a brain scan. Here, in a subset of UK Biobank participants who have
both ECG and brain MRI available (Miller et al. 2016), we aim to identify if and how abnormal PWD
may relate to accelerated brain aging, even in the absence of overt cardiac diseases. In particular,
we use an advanced deep learning method capable of estimating "regional brain age" to
characterize brain structural vulnerability related to atrial remodeling/dysfunction as measured by
abnormal PWD.
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Results

Demographic Characteristics
The 12,762 subjects selected for analysis were 52.6% female with a mean age and standard
deviation of 63±7.36 years. The subset without major cardiac conditions (N=11,771) were 54.2%
female with a mean age and standard deviation of 62.7±7.33. Demographic characteristics of all
subjects stratified by percentiles of PWD may be found in Table 1. In this dataset, the median
percentile (40-60th) corresponded to a PWD of 96-100ms. In general, subjects with low PWD were
more likely to be female, whereas those with high PWD were more likely to be male (Wilcoxon test,
W=16987621, p < 0.0001) (Figure 1). A higher incidence of AF, CAD, HF, and chronic kidney disease
was observed in the lowest (<5%) and highest (>95%) percentiles.

PWD and Regional Brain Aging
Regional BAI indices were negatively associated with PWD (i.e., shorter PWD associated with higher
BAI). Indices that survived multiple comparisons testing included the sensorimotor (full set: t = -3.06,
q = 0.007; CVD-control subset: t = -2.64, q = 0.025), fronto-parietal (full set: t = -3.53, q = 0.001;
CVD-control subset: t = -3.07, q = 0.010), dorsal attention (full set: t = -4.11, q < 0.001; CVD-control
subset: t = -3.67, q = 0.003), ventral attention (full set: t = -3.75, q = 0.001; CVD-control subset: t =
-3.03, q = 0.010), and the language networks (full set: t = -2.92 , q = 0.003; CVD-control subset not
significant) (Figures 2 & S3).

The factor that showed the highest BAI for all 12 networks in all subjects and the CVD-control subset
was diabetes. Hypertension and systolic blood pressure were also associated with a higher BAI for
most regions. Other factors associated with a higher BAI for most, if not all, regional BAI included
currently or previously smoking compared to never having smoked and frequent alcohol
consumption compared to infrequent consumption. Factors associated with a younger than actual
brain age included a higher bone mineral density T-score, having a college education, and lower
chronological age. Biological sex showed some regional variability where compared to females,
males tended to have a higher BAI in the salience, default mode, and dorsal attention networks.
Conversely, males tended to have lower BAI in the ventral attention and auditory networks compared
to females.

Models including a quadratic PWD did not show any significant associations. Models including PWD
interactions with sex and atrial fibrillation similarly did not reveal any significant interactions.

Regional Brain Aging and Cognition
The total number of subjects available for cognitive analysis from our initial set amounted to N=4,620
for average memory, N=4,447 for executive cognition, N=4,623 for processing speed, N=4,594 for
reasoning, and N=4,401 for total cognition. All cognitive measures were associated with all regional
BAI for executive function, processing speed, reasoning, and total cognition with the exception of
the ventral attention network for executive function and the dorsal attention network for reasoning
(Figure 3). Average memory showed less robust associations, but was still significantly associated
with whole brain, default mode, salience, and visual BAI.

PWD and Cognition
None of the composite cognitive measures were associated with PWD after correcting for age, sex,
and college education.
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Discussion

Our study aimed to characterize the brain aging patterns and cognitive outcomes associated with
PWD, an ECG-surrogate of underlying atrial function. We found the following:

1.) A negative association between PWD and distinct patterns of regional brain aging exists.
Several brain networks, including the sensorimotor, frontoparietal, ventral attention, dorsal
attention, and language networks, were particularly vulnerable to short PWD. These networks
were associated with global cognition and also specific cognitive measures including
executive function, processing speed, and reasoning.

2.) Our findings exist even when adjusting for cardiovascular risk factors, and when excluding
major cardiac conditions (with the exception of the language network), suggesting detrimental
aging outcomes may result from subclinically abnormal PWD.

3.) We did not find direct associations between PWD and cognition, but did find associations
between cognition and brain age measures. This suggests abnormal PWD may exert its
effects on the brain in advance of detectable cognitive decline, but longitudinal studies are
needed to confirm this hypothesis.

Abnormal PWD is thought to reflect underlying atrial abnormalities, which can include atrial dilation,
atrial muscular hypertrophy, elevated atrial pressure, impaired ventricular distensibility, or delayed
intra/inter atrial contraction (Hancock et al. 2009). Prolonged PWD, typically defined as greater than
120ms, is often a result of inter-atrial block (Power et al., 2022). Although less is known about the
correlates of abnormally short PWD, in certain instances, short PWD may be considered an earlier
and more subtle feature than prolonged PWD. It has been hypothesized that shortened atrial
repolarization and refractory periods could indicate changes in atrial electrical properties preceding
more overt abnormalities associated with prolonged PWD, which can eventually result in
arrhythmogenesis (Nielsen et al. 2015, Zhou et al. 2023). Recent research has started to underscore
that shorter PWD is also associated with adverse outcomes, including AF, heart failure, stroke, and
dementia (Ostrowska et al. 2022, Ostrowska et al. 2022, Chen et al. 2022, Zhou et al. 2023).

Disruptions in atrial function could theoretically impact cerebrovascular health through hemodynamic
dysregulation, cerebral hypoperfusion, systemic inflammation, and hypercoagulation (van der Velpen
et al. 2017), but research related to the specific contribution of PWD is scant. It is clear, however,
that gradual disruptions of cerebrovascular hemodynamics can be a major contributor to the
initiation of vascular dementia pathology. Subclinical decreases in cardiac function and increases in
arterial stiffness can lead to cerebral hypoperfusion, blood brain barrier damage, and detrimental
pulsatile blood flow. The resulting neurovascular dysfunction and inflammation can impair
glymphatic clearance and exacerbate existing AD pathology leading to synaptic dysfunction and
eventually brain atrophy (Moore and Jefferson 2021). A recent study by (Reyes et al. 2023) found an
association between prolonged PWD and various cerebrovascular related injuries, but not with gross
lobar volumes. We, on the other hand, found a significant association between short PWD and
accelerated brain aging. Our enhanced sensitivity may be explained by the fact that we used a
specific component of volume (i.e. thickness) as well as grey/white matter intensity ratio with a finer
parcellation of brain networks as opposed to volume measurement only in the whole brain and
cortical lobes. While our results also suggest that longer PWD is associated with lower brain age
given the lack of significance in the models we tested with a quadratic PWD term, this may be a
result of fewer participants in the UK Biobank having what is often defined as “prolonged PWD”.
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We did not a priori define abnormal PWD as dichotomous – prolonged or not – and instead
investigated these associations in an unbiased manner using the continuous measure, enabling the
analysis of bidirectional PWD abnormalities (short and prolonged) without a threshold. Some studies
prefer to use percentile cutoffs to circumvent assumptions, although admittedly these can vary
widely from population to population and by other factors including age, sex, and ethnicity (Soliman
et al. 2013, Nielsen et al. 2015). For example, Nielsen et al. (2015) assessed a large primary care
population from the Copenhagen ECG Study and established that the optimal PWD with respect to
the lowest risk of AF was 100-105 ms which fell between the 49th and 61th percentile in our study.
Abnormally short PWD in their study, or <5th percentile, was less than 90 ms compared to less than
65 ms in our study. Prolonged PWD in their study, or >95th percentile, was greater than 131 ms
compared to greater than 119 ms in our study. Given the differences in percentile cutoffs across
populations, we opted to use a continuous PWD. Nonetheless, Nielsen et al. found an elevated risk
of AF (and cardiovascular death and stroke although not as robust) in those with abnormally short
and long PWD. Using a “stopped” Cox model, they also showed that the association between
shorter PWD and AF risk was slightly stronger when evaluating short term effects compared to long
term. They hypothesized that short PWD, resulting in a more rapid condition time, may be a
substrate for the early development of AF. While it is possible that the participants with abnormally
short PWD in our study will go on to develop AF, a longitudinal study design is needed to evaluate
this.

Although we detected associations between brain structure and PWD & brain structure and
cognition, we did not observe a direct association between PWD and cognition. This parallels
previous longitudinal work from the ARIC-NCS study which showed that abnormal PWD increased
the risk of dementia, but did not reduce cognitive scores. The authors suggest that atrial
abnormalities may increase the risk of sudden, but major, events such as stroke, as opposed to a
more subtle and progressive decline (Gutierrez et al. 2019). While this may be true, this study did not
investigate the effects of abnormally short PWD, and instead only investigated prolonged PWD
associations with cognition. The brain areas that we found to be associated with PWD include the
frontoparietal network responsible for executive control, the sensorimotor network in charge of
processing bodily sensations and executing appropriate motor responses, and the attentional
networks (dorsal and ventral) responsible for top down and bottom up processing respectively
(Petersen and Posner 2012). These networks are all in communication with one another to facilitate
various aspects of cognitive function tested in our study. Our results may suggest that subtle brain
alterations due to short PWD may impose accelerated aging effects to structural networks that are
responsible for important cognition tasks, but that these occur in advance of detectable cognitive
decline.

We note, however, that our study is cross-sectional in nature and a longitudinal study design is
needed to investigate whether short PWD predicts future cognitive deficits. While we attempted to
account for all possible confounders by including them as covariates in our linear models, we note
that there may be other contributing variables that we could not account for due to our retrospective
study design. Another limitation we acknowledge is that our model only includes cortical features,
even though subcortical/deep gray matter and white matter features may be important predictors of
brain aging, particularly those vulnerable to vascular pathology (Wardlaw et al. 2013). Future work
will continue to investigate these associations. Lastly, it may also be the case that the relationship
between short PWD and cognitive decline is relatively weak in the preclinical population we are
studying, and that effects may be more pronounced in a clinical population of AD and related
dementia cases.
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Nonetheless, we find, even in the absence of major cardiac conditions and controlling for
cardiovascular risk factors, that PWD still remains a significant predictor of many regional BAI. This
suggests that early detection and treatment of poor cardiac function, prior to manifestation of
arrhythmias, may help curb accelerated brain aging. Moreover, these associations may be helpful in
understanding how the heart-brain axis impacts brain health and cognitive aging trajectories.
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Main Figures/Tables

Figure 1. P-wave duration plotted against age and stratified by sex. Colors denote P-wave duration percentiles listed on the left hand side.
Density plots across ages for each sex are depicted atop the scatters. Density plot on the right displays P-wave duration for males (dashed
line) and females (solid line). Note higher densities of both high and low P-wave duration at older ages and across both sexes. Males tended to
have longer P-wave duration whereas females favored shorter.
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Table 1. Demographic characteristics stratified by percentiles of P-wave duration with associated interval limits listed.

Characteristic

<5th
(40-64ms)
N = 5601

5-20th
(66-84ms)
N = 18921

20-40th
(86-94ms)
N = 23251

40-60th
(96-100ms)
N = 22561

60-80th
(102-108ms)
N = 27321

80-95th
(110-118ms)
N = 21121

>95th
(120-146ms)
N = 8851

Overall
N = 127621

Age 63.95 [7.56] 62.49 [7.46] 62.13 [7.54] 62.59 [7.24] 63.15 [7.28] 63.64 [7.20] 64.42 [7.06] 62.97 [7.36]
Female 308 (55%) 1,143 (60%) 1,402 (60%) 1,232 (55%) 1,415 (52%) 910 (43%) 304 (34%) 6,714 (53%)
Male 252 (45%) 749 (40%) 923 (40%) 1,024 (45%) 1,317 (48%) 1,202 (57%) 581 (66%) 6,048 (47%)
College 232 (41%) 783 (41%) 983 (42%) 1,009 (45%) 1,220 (45%) 983 (47%) 422 (48%) 5,632 (44%)
Coronary Artery Disease 38 (6.8%) 108 (5.7%) 113 (4.9%) 94 (4.2%) 139 (5.1%) 130 (6.2%) 97 (11%) 719 (5.6%)
Heart Failure 4 (0.7%) 8 (0.4%) 14 (0.6%) 12 (0.5%) 10 (0.4%) 15 (0.7%) 11 (1.2%) 74 (0.6%)
Chronic Kidney Disease 7 (1.3%) 14 (0.7%) 11 (0.5%) 12 (0.5%) 19 (0.7%) 16 (0.8%) 14 (1.6%) 93 (0.7%)
Atrial Fibrillation 17 (3.0%) 45 (2.4%) 45 (1.9%) 30 (1.3%) 43 (1.6%) 51 (2.4%) 34 (3.8%) 265 (2.1%)
Hypertension 156 (28%) 441 (23%) 522 (22%) 506 (22%) 756 (28%) 622 (29%) 314 (35%) 3,317 (26%)
Hypercholesterolemia 84 (15%) 280 (15%) 337 (14%) 335 (15%) 428 (16%) 386 (18%) 208 (24%) 2,058 (16%)
Diabetes 33 (5.9%) 95 (5.0%) 108 (4.6%) 99 (4.4%) 156 (5.7%) 119 (5.6%) 64 (7.2%) 674 (5.3%)
Sleep Apnea 5 (0.9%) 19 (1.0%) 25 (1.1%) 13 (0.6%) 24 (0.9%) 24 (1.1%) 12 (1.4%) 122 (1.0%)
On Hypertension Medication 135 (24%) 379 (20%) 439 (19%) 406 (18%) 633 (23%) 549 (26%) 277 (31%) 2,818 (22%)
On Cholesterol Medication 131 (23%) 380 (20%) 444 (19%) 428 (19%) 575 (21%) 513 (24%) 269 (30%) 2,740 (21%)
Systolic Blood Pressure 136.12 [17.67] 134.82 [17.2] 135.62 [18.00] 136.17 [17.46] 137.59 [17.89] 138.76 [17.72] 139.11 [17.70] 136.80 [17.74]
Diastolic Blood Pressure 78.04 [9.45] 77.79 [9.69] 78.43 [9.95] 78.35 [9.78] 79.13 [10.22] 79.41 [9.57] 79.62 [10.27] 78.70 [9.90]
Bone Mineral Density T-score -0.23 [1.25] -0.22 [1.20] -0.33 [1.12] -0.27 [1.13] -0.24 [1.18] -0.19 [1.19] -0.04 [1.27] -0.24 [1.18]
Body Mass Index 26.89 [4.73] 26.54 [4.62] 26.26 [4.30] 26.18 [4.21] 26.59 [4.29] 26.90 [4.27] 27.50 [4.34] 26.58 [4.36]
Smoking Status
Never 347 (62%) 1,212 (64%) 1,495 (64%) 1,460 (65%) 1,692 (62%) 1,304 (62%) 529 (60%) 8,039 (63%)
Previous 192 (34%) 601 (32%) 711 (31%) 715 (32%) 916 (34%) 732 (35%) 314 (35%) 4,181 (33%)
Current 21 (3.8%) 79 (4.2%) 119 (5.1%) 81 (3.6%) 124 (4.5%) 76 (3.6%) 42 (4.7%) 542 (4.2%)

Alcohol Status
Infrequent 153 (27%) 546 (29%) 671 (29%) 613 (27%) 720 (26%) 530 (25%) 194 (22%) 3,427 (27%)
Occasional 321 (57%) 1,037 (55%) 1,283 (55%) 1,258 (56%) 1,512 (55%) 1,167 (55%) 518 (59%) 7,096 (56%)
Frequent 86 (15%) 309 (16%) 371 (16%) 385 (17%) 500 (18%) 415 (20%) 173 (20%) 2,239 (18%)

ApoE4 copies
0 418 (75%) 1,372 (73%) 1,673 (72%) 1,640 (73%) 1,975 (72%) 1,516 (72%) 652 (74%) 9,246 (72%)
1 130 (23%) 477 (25%) 601 (26%) 563 (25%) 690 (25%) 545 (26%) 220 (25%) 3,226 (25%)
2 12 (2.1%) 43 (2.3%) 51 (2.2%) 53 (2.3%) 67 (2.5%) 51 (2.4%) 13 (1.5%) 290 (2.3%)

1Mean [SD]; n (%)
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Figure 2. A. T-statistics of regional BAI (overlapping) associated with PWD. B. Standardized coefficients of PWD and all other regression
coefficients (with the exception of the four MRI PCA components) from all 12 models (whole brain BAI, AD signature region BAI, and 10
regional BAI). Shorter P-wave duration was associated with a higher brain age. Regional BAI that survived multiple comparisons included the
fronto-parietal, dorsal attention, and ventral attention (middle panel), as well as the sensorimotor and language networks (right panel).
Covariates associated with a higher BAI include hypertension, diabetes, smoking status, and frequent alcohol consumption. Covariates
associated with a lower BAI include a higher bone mineral density T-score, having a college education, and younger age.
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Figure 3. Regional BAI associations with composite cognitive measures – average memory, executive function, processing speed, reasoning,
and total cognition. Values displayed are standardized regression coefficients. All models included age, sex, and college attendance as
covariates. Higher cognitive scores were generally associated with a lower brain age.
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Online Methods

Study Population
The UK Biobank is a large population-based study that has collected deep phenotypic and genetic
data from approximately 500,000 community dwelling adults in the UK (Bycroft et al. 2018). Its dense
phenotyping has resulted in extensive information on health status and lifestyle, in addition to the
collection of biological, physical, and cognitive assessments. Here, data from 40,678 participants
with imaging and ECG were initially considered for this study. 6,778 ECG diagnoses related to poor
readings were excluded, resulting in a total N=33,900. Subjects with neurological disorders, putative
sex chromosome aneuploidy, excess relatives, and missing covariates were also excluded
(N=29,364). A total of 12,819 of these subjects had our outcome variable, regional brain age,
available. Lastly, to assess subclinical effects of PWD on brain aging, subjects with ECG readings
indicating an acute myocardial infarction or bifascicular block were excluded. This resulted in a total
of 12,762 subjects for analysis. To assess if abnormal PWD affects regional brain structure even in
the absence of overt cardiac-related diseases, we performed the same analysis in a CVD-control
subset for which we excluded subjects with AF, CAD, HF, and chronic kidney disease – resulting in a
subset total of 11,771. Conditions were categorized as in Khurshid et al. (2018). Details about
inclusion/exclusion criteria are provided in Figure S1.

MRI Acquisition and Preprocessing
We used the CIVET pipeline (Ad-Dabbagh et al., 2006) on T1-weighted brain MRI to extract cortical
features including thickness and gray/white matter intensity. This pipeline includes the following
serial steps: non-uniform intensity correction (Sled et al. 1998), brain extraction (Smith 2002),
registration to a stereotaxic space (Collins et al. 1994), brain tissue segmentation (Zijdenbos et al.
1998), and reconstruction of inner and outer cortical surfaces (Kim et al. 2005), resulting in 40,962
vertices in each hemisphere. These cortical surface models underwent an iterative surface
registration process to ensure optimal correspondence at each vertex across individuals (MacDonald
et al., 2000), (Lyttelton et al., 2007). Cortical thickness measurements were obtained by calculating
the Euclidean distance between the vertices of the inner cortical surface and their corresponding
vertices on the outer cortical surface. The GM/WM intensity ratio information was derived from the
inner surface (Lewis et al., 2018).

Regional Brain Age Index (BAI)
To develop predictive models for regional brain age indices (BAI), we divided the cortical surface into
ten functional subregions based on Yeo et al. (2011) and the AAL cortical parcellation atlas
(Tzourio-Mazoyer et al., 2002). These subregions include the sensorimotor, frontoparietal, dorsal
attention, ventral attention, default mode, salience, language, auditory, visual, and limbic networks.
Two additional regions have been defined – one based on the total cortical thickness and the other
based on the cortical regions associated with Alzheimer's disease (AD signature region) (Dickerson
et al., 2009). Regional brain ages were extracted using Graph Convolutional Networks (GCNs)
(Defferrard et al., 2016, Shuman et al., 2013), exploiting the graph structure of the data. Cortical
features such as cortical thickness (Thambisetty et al., 2010) and GM/WM intensity ratio (Putcha et
al., 2023) served as the signal at each node. GCNs used graph Fourier transforms, filtering, and
pooling operations for feature aggregation. The GCN architecture included a graph convolutional
layer, a ReLU activation function, a graph max pooling operation, and a fully connected layer for
brain age prediction. The overall flow of the GCNs model is shown in Figure S2. The training process
involved mean square error as the loss function, the Adam optimizer, 800 epochs, a learning rate of
10e-6, L2 regularization to prevent overfitting, and a batch size of 2. A 5-fold cross-validation was
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performed using 17,791 individuals of European ancestry (52.7% female with a mean age and
standard deviation of 63.15±7.42 years) who were considered to be neurologically healthy as defined
by ICD and self report, resulting in an ensemble of five trained models. BAIs were calculated by
subtracting the chronological age from the predicted brain age. A positive BAI indicates accelerated
aging, while a negative BAI suggests decelerated aging. To address regression dilution bias, we
used the linear trend removal method proposed by Smith et al., (2019). Linear trend removal involves
regressing the trend of BAIs on age to obtain corrected BAIs, eliminating age-related bias and
ensuring relative brain health status independent of age.

Cognitive Outcomes
Composite averages were calculated for four cognitive domains: memory, executive function,
processing speed, and reasoning. Memory was assessed using numeric memory and paired
associate learning tasks. Executive function was assessed using the trail making A and B tasks in
addition to tower rearranging. Processing speed used reaction times and symbol digit substitution
and lastly, reasoning used fluid intelligence and matrix pattern completion tasks. Respective data
fields for each of these domains may be found in Table S1. All scores were standardized such that
higher values indicate a better cognitive score (ex: reaction time was multiplied by -1). Values from all
four of these categories were additionally averaged to test a fifth cognitive variable – total cognition.

ECG Measures
Resting 12-lead ECGs and interval measurements were assessed using the Cardiosoft v6 program
from GE Healthcare. The PWD was measured as the duration from P-Onset to P-Offset
(https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/CardiosoftFormatECG.pdf).

Statistical Analysis
Principal component analysis (PCA) was run on mixed data, a combination of numerical and
categorical variables related to scanner biases affecting the T1w image (Alfaro-Almagro et al., 2021),
using the PCAmixdata package (Chavent et al., 2014). Linear regressions for each regional BAI were
run with the following covariates: 4 MRI PCA components that cumulatively explained at least 80%
of the variance, age, sex, college attendance, the presence of hypertension, diabetes,
hypercholesterolemia, sleep apnea, heel bone mineral density T-score, smoking status, alcohol
consumption, body mass index (BMI), ApoE4 carrier status, systolic blood pressure, diastolic blood
pressure, and PWD. We chose to model continuous PWD so as to not bias our outcomes with
previously defined “normal” ranges, as these largely vary across populations and by age, sex, and
ethnicity (Soliman et al., 2013), (Nielsen et al., 2015). CAD, HF, AF, and chronic kidney disease were
also included in the models with all subjects. Respective datafield IDs may be found in Table S1.
Cognitive associations were performed between PWD and regional BAI. All models included age,
sex, and college education as a binary variable. Benjamini & Hochberg correction for multiple testing
was performed across all 10 regional BAI measures, whole brain, and AD signature BAI for the
following: 1) regional BAI associations with PWD, 2) regional BAI associations with cognition, and 3)
PWD associations with cognition. Exploratory analyses were also performed to test the inclusion of a
quadratic PWD term as well as PWD interactions with AF and sex.
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Supplemental Figures/Tables

Figure S1. Inclusion flowchart. Self reported non-cancer illness codes (1082, 1083, 1240, 1244, 1245, 1246, 1247, 1256, 1258, 1259, 1261,
1262, 1263, 1264, 1266, 1289, 1397, 1425, 1433, 1659) and ICD10 codes for dementia and Parkinson disease.
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Figure S2. Methodological overview of BAI extraction. T1w brain aging features including cortical thickness and grey/white matter intensity
ratio were inputs into a graph convolutional network resulting in a fully connected layer and predicted “brain age” outputs. Chronological age
was subtracted from predicted brain age resulting in 12 regional brain age indices (BAI). Chronological age was regressed out from each BAI
and used for analysis. Linear modeling was performed with PWD as a predictor variable while correcting for possible confounders by including
them as covariates. PWD represents the current moving from the sinoatrial node to the atrioventricular node and characterizes atrial
depolarization.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304486doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304486
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S1. Variables and respective data fields used for cardiovascular risk related covariates, cognition variables, and scanner/bias (MRI) used
for principal component analysis. Dx: diagnosis; Tx: treatment. Note: Table Position was initially explored but due to high correlation with Brain
Z Position (r(12,762)=-0.92, p <0.001), it was not included in the MRI PCA.

Cardiovascular Risk Variables Datafield ID
Hypertension Dx 41270, 20002, 6150
Hypercholesterolemia Dx 41270, 20002
Diabetes Dx/Tx 41270, 20002, 6153, 6177
Coronary Artery Disease Dx 41270, 41272, 20002, 20004, 6150
Heart Failure Dx 41270, 20002
Atrial Fibrillation Dx 41270, 41272, 20002, 20004, 12653
Chronic Kidney Disease Dx 41270, 41272, 20002, 20004
Sleep Apnea Dx 41270, 20002
Alcohol Consumption (infrequent, frequent, occasional) 1558, 41270
Smoking Status (never, previous, current) 20116
BMI 23104
Heel bone mineral density T-score 4106, 4125
APOE4 carrier -
Systolic Blood Pressure 4080, 93
Diastolic Blood Pressure 4079, 94

Cognitive Variables -
Memory 4282, 20197
Executive Function 6348, 6350, 21004
Processing Speed 20023, 23324
Reasoning 20016, 6373

Scanner/Bias (MRI) Variables -
Scan Site 54
Brain X Position 25756
Brain Y Position 25757
Brain Z Position 25758
Inverse SNR 25734
Inverse CNR 25735
Linear Registration Discrepancy 25731
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Figure S3. A. T-statistics of regional BAI (overlapping) associated with PWD in those without major cardiac conditions. B. Standardized
coefficients of PWD and all other regression coefficients (with the exception of the four MRI PCA components) from all 12 models (whole brain
BAI, AD signature region BAI, and 10 regional BAI). Shorter P-wave duration was associated with a higher brain age. Regional BAI that
survived multiple comparisons included the fronto-parietal, dorsal attention, and ventral attention (middle panel), as well as the sensorimotor
network (right panel). Covariates associated with a higher BAI include hypertension, diabetes, smoking status, and frequent alcohol
consumption. Covariates associated with a lower BAI include a higher bone mineral density T-score, having a college education, and younger
age.
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