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Abstract 

Background and objective: Hypertension increases the risk of cardiovascular diseases 

(CVD) such as stroke, heart attack, heart failure, and kidney disease, contributing to global 

disease burden and premature mortality. Previous studies have utilized statistical and machine 

learning techniques to develop hypertension prediction models. Only a few have included 

genetic liabilities and evaluated their predictive values. This study aimed to develop an 

effective hypertension prediction model and investigate the potential influence of genetic 

liability for risk factors linked to CVD on hypertension risk using Random Forest (RF) and 

Neural Network (NN). 

Materials and methods: The study included 244,718 participants of European ancestry. 

Genetic liabilities were constructed using previously identified genetic variants associated 

with various cardiovascular risk factors through genome-wide association studies (GWAS). 

The sample was randomly split into training and testing sets at a 70:30 ratio. We used RF and 

NN techniques to develop prediction models in the training set with or without feature 

selection. We evaluated the models’ discrimination performance using the area under the 

curve (AUC), calibration, and net reclassification improvement in the testing set. 

Results: The models without genetic liabilities achieved AUCs of 0.70 and 0.72 using RF 

and NN methods, respectively. Adding genetic liabilities resulted in a modest improvement in 

the AUC for RF but not for NN. The best prediction model was achieved using RF (AUC 

=0.71, Spiegelhalter z score= 0.10, P-value= 0.92, calibration slope=0.99) constructed in 

stage two.  

Conclusion: Incorporating genetic factors in the model may provide a modest incremental 

value for hypertension prediction beyond baseline characteristics. Our study highlighted the 

importance of genetic liabilities for both total cholesterol and LDL within the same prediction 

model adds value to the classification of hypertension.  

 

Keywords: The Receiver Operation Characteristic (ROC), Area Under the Curve (AUC). 
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Introduction 

Approximately, 1.28 billion people aged 30 to 79 have hypertension worldwide (1) and it 

continues to rise globally causing a significant socioeconomic burden due to low awareness 

and poor control (2). Hypertension significantly increases the risk of cardiovascular diseases 

including stroke, heart attack, heart failure, and kidney disease, contributing to the global 

disease burden and premature mortality (1, 3, 4).  

Every year, the burden of hypertension and related cardiovascular diseases is increasing in 

the United Kingdom (UK). As of 2017, hypertension prevalence in England was estimated at 

around 26.2% among adults (5). It is responsible for more than half of all strokes and heart 

attacks, costing the National Health Service (NHS) more than £ 2.1 billion per year (6).  

The current guidelines (7-9) suggest lifestyle modification and the use of blood pressure-

lowering medication for preventing hypertension and its consequences. Medication is often 

successful in lowering blood pressure and reducing the risk of hypertension-related 

cardiovascular disease and stroke. Lifestyle modifications also offer benefits like reduced 

drug costs, improved control of other disorders like diabetes and hypercholesterolemia, and 

avoiding unwanted pharmacological therapy (10). The current guidelines have remained 

silent on the genetic components of hypertension, which are quantifiable at birth and may be 

used to determine an individual's lifelong disease risk before clinical risk factors are 

established (11), allowing adequate time to determine lifetime measures to lower 

hypertension risk, particularly in a high-risk group. 

Genome-wide association studies (GWAS) have identified numerous multiple single 

nucleotide polymorphisms (SNPs) associated with hypertension and/or high blood pressure 

levels (12-17). Developing methods to incorporate genetic factors into prediction models of 

hypertension has the potential to improve hypertension prediction, management and control.  

Previous studies have successfully predicted hypertension using standard statistical 

techniques or machine learning (18-25). A study in rural Chinese populations (25) 

incorporated a single hypertension polygenic risk score and showed improvement in 

hypertension prediction using several machine learning techniques. Several studies (26-28) 

have used a method called metaGRS to combine several polygenic risk scores into regression 

models for cardiovascular disease and showed that including multiple genetic factors 

improves the prediction model's accuracy compared to using one genetic liability. Whether 

machine learning methods could be used to improve prediction models from multiple genetic 

liabilities remains to be elucidated.  

Recent studies have provided evidence for genetic correlations between hypertension and 

type 2 diabetes (29), adiposity traits, (30), lipids traits (31, 32) and smoking traits (33). In the 

current study, we created genetic liabilities using these risk factors and used machine learning 

models to test the best combination of genetic liabilities and clinical factors that could 

optimise the prediction of hypertension in the European ancestry population.  
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Material and method 

Ethical Approval 

We received approval for this study from the UK Biobank Research Ethics Committee and 

Human Tissue Authority, and all the participants gave informed consent. This study is done 

using the UK Biobank data under application number 60549. Additionally, we obtained ethics 

approval from Brunel University London, College of Medicine, and Life Sciences Research 

Ethics Committee to work with secondary data from the UKB (reference 27684-LR-

Jan/2021-29901-1). 

Study Population  

The UK Biobank (UKB) is a prospective observational study with more than half a million 

participants aged between 40 and 69 years. The participants were recruited between 2006 and 

2010 across 22 centres located throughout the United Kingdom (UK). The full description of 

the UKB study as well as the data collected and a summary of the characteristics, are publicly 

available on the UKB website (www.biobank.ac.uk) and elsewhere by Sudlow and colleagues 

(34). In brief, during the recruitment, detailed information about socio-demographics, health 

status, physician-diagnosed medical conditions, family history, and lifestyle factors was 

collected via questionnaires and interviews. Several physical measurements, including height, 

weight, body mass index (BMI), waist-hip ratio (WHR), systolic blood pressure (SBP), and 

diastolic blood pressure (DBP) were obtained. The records of participants in the UKB project 

were accordingly linked to Hospital Episode Statistics (HES) data, as well as national death 

and cancer registries.  

The current study is based on a subset of unrelated individuals of European ancestry 

(n=244,718; Figure 1). In brief, we used 40 genetic principal components created centrally by 

the UKB and applied the k-means clustering method on 502,219 UKB participants to identify 

individuals of European descent. We then obtained genetic data from the individuals who had 

passed the UKB internal quality control and had genotype data (n=459,042). We excluded 

participants who had withdrawn their consent (n=61), mismatched genetic and self-reported 

sex (n= 320), were pregnant, or were not sure of being pregnant(n=278). Using the kinship 

cut of 0.0884 for third-degree relatives, we excluded participants who were up to second-

degree related (n=33,369). We further excluded participants who were diagnosed with a 

stroke, heart attack, or angina before or at baseline (n=25,340), and participants with missing 

data on the potential confounders (n=61,961; see statistical analysis for detail). Furthermore, 

individuals who were on cholesterol-lowering medication (n=34,243), stopped smoking or 

drinking due to health reasons, or doctor’s advice (n=58,752) were excluded from the dataset 

leaving a final 244,718 unrelated individuals of European ancestry for our analyses. 

Genotyping and imputation 

The UKB conducted all the DNA extraction, genotyping, and imputation. The detailed 

processes have been discussed elsewhere (35-37). In brief, blood samples from participants 

were obtained at UKB assessment centers, and DNA was extracted and genotyped using the 

UKB Axiom Array. The genotype imputation was conducted by UKB using the IMPUTE4 

tool. Three reference panels: Haplotype Reference Consortium, UK10K, and 1000 Genomes 

phase 3 were used for the imputation. The genetic principal components and kinship 

coefficients were calculated centrally by UKB to account for population stratification and 

identify related individuals (35, 37). 
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Variables and outcome 

Definition of the outcome 

Our main outcome is hypertension which was defined as (1) the presence of a recorded SBP 

≥ 140 mmHg or a DBP ≥ 90 or (2) hypertension diagnosed by a doctor or (3) a record of 

using blood pressure (BP) lowering medication at baseline (38). In the UKB, two blood 

pressure readings were obtained a few minutes apart using a standard automated device or 

manual sphygmometer (www.ukbiobank.ac.uk). We calculated both mean SBP and mean 

DBP from two automated or two manual readings of BP measurements. For Participants with 

one manual and one automated BP reading, the average of these two values was used. For 

individuals with a single BP measurement (one manual or one automated BP reading), the 

single measurement was used for approximating the participant’s BP value. For the 

participants who self-reported to be taking BP-lowering medication, we added 15 mmHg to 

SBP and 10 mmHg to DBP (39). The participants with missing BP readings were excluded. 

Demographics, Clinical and lifestyle features 

We included factors such as age, sex, BMI, diabetes mellitus, total cholesterol (TC), Low-

Density Lipoprotein (LDL), High-Density Lipoprotein (HDL), smoking status, drinking 

status, and sedentary lifestyle in our study. Diabetes was defined as a record of diabetes 

diagnosed by a doctor or using insulin medication or a record of serum level of hemoglobin 

A1c (HbA1c) ≥ 48 mmol/mol (6.5%) or glucose level ≥ 7.0 mmol/dl (40). Smoking and 

alcohol consumption data were collected through a self-reported questionnaire by the UKB 

and were classified into current, previous, and never.  

We calculated a sedentary lifestyle variable by approximating the total self-reported hours per 

day the participants spent on (1) driving, (2) using a computer, and (3) watching television. 

We considered 30 minutes of sedentary behavior if individuals indicated that they spent less 

than an hour per day driving or watching television or using a computer. 

Computation of genetic liabilities 

Single Nucleotide Polymorphism (SNP) Selection 

We selected a list of genetic variants in the form of SNPs (table 1) that were previously 

identified as associated with 10 cardiovascular risk factors traits including three smoking 

traits, four lipid traits, two adiposity traits, and type 2 diabetes at a genome-wide association 

study (GWAS) significant threshold (P-value <5.0×10-8) in the European population. We 

included SNPs from studies mentioned in Table 1 ensuring no overlap with the UKB to avoid 

bias. SNPs that were palindromic or in high linkage disequilibrium (LD; r2 <0.1) were 

removed by LD pruning which was performed using the SNPclip module of the LDlink 

(https://ldlink.nci.nih.gov; access date: 15 /05/ 21). In brief, LDlink is a suite of web-based 

applications, an LD analysis tool, which is designed specifically for easy and efficient 

examination of linkage disequilibrium between a set of SNPs in population groups (41). 

The SNPs used in calculating the GRSs were pruned with the LD pruning procedure 

employed in LDlink using a threshold of minor allele frequency (MAF) = 0.01 and r2 = 0.1. 

The SNPclip module removed SNPs if they were duplicates, not biallelic, had MAF < 0.01, 

and were in LD with other SNPs (r2 >0.1).  

We used the final list of selected LD-pruned SNPs to estimate genetic liabilities for all the 10 

traits under the current study using PLINK version 1.9 (42). To allocate weight to each SNP, 

we used the effect sizes estimated for the association of the SNPs with each of the traits 

mentioned in Table 1. These effect estimates were obtained from previously published, 

publicly available genome-wide association summary statistics data (Supplementary Data 1-
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10). PLINK uses a weighted method where the effect size (beta coefficient) of each SNP is 

considered as weight and is multiplied by the number of risk alleles an individual carries. The 

product is then summed across all SNPs to produce genetic liability for each person. All the 

genetic liabilities were standardized (i.e. mean-centered with standard deviation 1).  

Statistical Analysis 

We summarized the categorical variables using frequencies and percentages and the 

continuous variables were expressed as mean (SD) in Table 3. When comparing the 

characteristics differences between hypertension and non-hypertensive groups, the 

nonparametric test (Wilcoxon rank sum test) was utilized for continuous variables. The Chi-

square test was used to compare hypertension and non-hypertensive groups for categorical 

variables. We also performed univariable and multivariable logistic regression analysis to 

assess the relation between the outcome and the selected features and present the results in 

supplementary tables1and 2. The statistical significance was defined where associations 

demonstrated a 2-sided P-value less than 0.05 (Supplementary Tables1 and 2). 

Training and testing datasets 

In this study we employed the train-test split approach (43), we randomly partitioned the 

dataset at a ratio of 70:30 (Figure 2) into a training set (70%; n=171,304; case =81,967 and 

control = 89,337) and a testing set (30%; n=73,414) using the "createDataPartition" function 

in the R-package. The training set is used to train the models, whilst the testing set is reserved 

for the final model evaluation. To ensure that all the numerical variables contribute equally to 

our models (44), we applied the max-min scaling method to the numerical variables to bring 

them to a common scale before training the models. This is because some of the numerical 

variables were measured on different scales.  

The models were trained in the training set and the performance of the models in terms of 

discrimination ability (defined as the model’s capacity to distinguish between persons with 

and without outcomes) was assessed in the testing set (n=73,414; Figure 2). To this end, we 

constructed the receiver operating characteristic curve (ROC) for each model and calculated 

the area under the curve (AUC) with 95% confidence intervals (Cl) (45-47). The AUC ranges 

from 0.5 to 1.0, with 0.5 indicating no better discrimination than chance and 1.0 representing 

perfect discrimination power. 

Handling Data Imbalance 

Models trained on imbalanced datasets may become biased towards the dominant class, 

predicting the minority class incorrectly (48). A binary classifier, which is the case in the 

current study, trained on a balanced dataset typically outperforms a model trained on an 

imbalanced dataset (49). The imbalanced class in the training set can lead to an unjustified 

evaluation of two-class classification algorithms. To overcome this issue, we utilized the 

random over-sampling method using a bootstrapping method to balance the number of events 

in the training set before training the models. To do this the “ROSE” (Random Over-

Sampling Examples) package (50) included in the R-program was utilized. The package deals 

with imbalanced datasets by generating synthetic samples for the minority class to balance 

the class distribution (50). 

Machine learning model construction 

Machine learning algorithms, unlike traditional statistical techniques, are flexible and free of 

prior assumptions, such as the type of error distribution, capable of capturing the 

complicated, nonlinear relationships between predictors. It is an application of algorithms to 

automate decision-making processes using models that have been trained on historical data 
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(51).They can analyze various data types and integrate them into predictions for disease risk 

(52). There are many types of machine learning algorithms, but some of the most common 

ones include Support vector machines (SVM), Decision tree (DT), Random Forest (RF), and 

Neural Network (NN). Prior studies have investigated SVM, RF DT and XGBoost in 

prediction of hypertension in European samples (53). In this study, we considered two 

machine learning-based classifiers, the Random Forest, and Neural Network, which have 

been shown in many studies to have been most promising in classification of hypertension 

among individuals of European ancestry (53). 

The Random Forest is a powerful machine learning algorithm that constructs an ensemble or 

forest of decision trees that are often trained using the bagging method. Each decision tree is 

constricted on a random subset of the training set and a random subset of the features. This 

keeps the trees from getting overly correlated and hence overfitting the data (54). In this 

study, the Random Forest models were constructed with the “ranger” package in the R-

program (55) without hyperparameter tuning (all the hyperparameters were set to the default 

setting on the “ranger” package i.e. 500 trees and 10 nodes) and the optimal model was 

selected based on out-of-bag (OOB) estimate of the error rates in the training set. In a 

Random Forest model, the maximum number of features that can be considered for splitting 

at each node of the decision trees within the ensemble was determined and reported using the 

“mtry” parameter within the “ranger” package (Supplementary Table 3).  

Neural Network is another powerful machine learning algorithm that automatically learns 

from patterns between the inputs and the output within the data (56). The Neural Network 

consists of interconnected processing nodes organised in three layers: input, hidden, and 

output layers (Supplementary Figure S4). The input layer is connected to the hidden layer 

with updated weight, which is then connected to the output layer (57). 

Overfitting and underfitting are two common problems in machine learning that can have a 

major impact on the performance and generalization ability of models (58). Overfitting is 

where the model fits the training set properly but performs poorly on the testing or unseen 

dataset thereby resulting in low training error, but high-test error. Underfitting is simply the 

opposite of overfitting.  

To prevent the problem of overfitting, and underfitting within the Neural Network models, 

and to provide more reliable estimates of the predictive ability of the models on unseen data 

(59, 60), we performed a 5-fold cross-validation on the balanced training set(n=171,304) and 

the receiver operation characteristic (ROC) (61) was used to select the optimal model (the 

largest ROC value). The optimal threshold for the ROC value from 5-fold cross-validation 

was identified as 0.70 (Supplementary Table 4). This means that models with ROC values 

above 0.70 in the testing set would improve prediction. We constructed the Neural Network 

classifiers with the “nnet” function (62) implemented in the R-program “caret” package. 

In the current study, we adopted a two-stage approach in the construction of the machine 

learning algorithm. 

Stage one models 

In stage one, we built models without feature selection in the training set (n=171,304). In the 

first subset of models, we used Random Forest method (55, 63) and in the second subset of 

models, we used Neural Network (Figure 2). For each of these methods, we used two 

different sets of features. (1) the traditional features that included baseline characteristics (i.e. 

age, sex, BMI, diabetes mellitus, smoking status, drinking status, total cholesterol (TC), 

HDL, LDL, and sedentary lifestyle). (2) Saturated features included all baseline 
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characteristics above together with additional genetic variables including ten genetic 

liabilities.  

 

The optimal number of features used for splitting at each of the decision trees was identified 

as 3 features in the construction of traditional Random Forest model and this was identified 

as 4 features in the construction of the saturated Random Forest model. Both Random Forest 

models above showed a prediction error of 0.22 (Supplementary Table 3).  

In the construction of traditional and saturated Neural Network models, the optimal number 

of hidden layers was identified as 5 hidden layers.  

 

In the testing set, we tested and compared the performance of (1) the Random Forest model 

with genetic liabilities and the Random Forest model without genetic liabilities (saturated vs. 

traditional model). (2) the Neural Network model with genetic liabilities and the Neural 

Network model without genetic liabilities (saturated vs. traditional model). 

Stage two models 

In stage two, we built models with a feature selection step. Similar to stage one, we used 

Random Forest and Neural Networks as our classification method. We applied the feature 

selection method on the variables to achieve the best model performance and to minimize 

capturing unnecessary noise or random fluctuation in the data and to overcome the problem 

of overfitting that may be caused by irrelevant features. Feature selection was achieved using 

the Random Forest and Neural Network methods and selected the top ten most important 

features from the list of all the twenty features under the study. The most important features 

were extracted with “vip” functions in the R-program. Features were ranked based on their 

predictive power (figure 1). We then used the topmost important features to build models 

using both Random Forest and Neural Network as the classifying method regardless of the 

method used in feature selection step. This approach created four different analysis paths to 

hypertension classification including path (1) where the feature selection model was Random 

Forest, and the classifying method was Random Forest as well; path (2) where Random 

Forest was used as the feature selection method and classification method was Neural 

Network; path (3) where feature selection model was Neural Network, and the classification 

method was Neural Network as well; path (4) where Neural Network was feature selection 

method and classification method was Random Forest (see Figure 2). In the testing set, we 

used the AUC (see above) to assess the performance of these four models built with the 10 

most important features selected. Stage one and stage two resulted in construction and testing 

of a total of eight models. 

Model Performance Assessment by Calibration 

We used a calibration curve and Spiegelhalter z score test to examine the models’ calibration 

(64, 65). Model calibration measures the ability of a model to accurately predict an outcome 

(66, 67). In the calibration curve, the Y-axis represents the observed probability, and the X-

axis represents the predicted probability of developing a disease. The calibration curve 

includes a diagonal line (i.e. Ideal line) that indicates the prediction of the ideal model. A 

model is said to be well calibrated if the calibration curve stays close to the line of perfect 

calibration (i.e. a 45-degree line with an intercept of 0 and a slope of 1). Overestimation and 

underestimation are represented by curves below and above the ideal calibration line, 

respectively. The Spiegelhalter z test is a statistical test used to assess the calibration accuracy 

of a risk prediction model. A perfectly calibrated model would have a Spiegelhalter z score of 

zero. A Spiegelhalter z score close to zero indicates good calibration, while a Spiegelhalter z 

score far from zero indicates poor calibration. A positive Spiegelhalter z score indicates that 
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the model is over-calibrated, meaning that the predicted probability of the outcome is too 

high. A negative Spiegelhalter z score indicates that the model is under-calibrated, meaning 

that the predicted probability of the outcome is too low. 

To confirm the overall accuracy of the models, we also calculated the Brier score (68), which 

is the mean square error (MSE) between observed and predicted outcomes. The Brier score 

evaluates both the calibration and discrimination ability of a model (67). The scores range 

from 0 to 1, with lower scores suggesting superior calibration. Brier scores approaching 0 

imply that the model has been adequately calibrated and discriminated. We used the “val. 

prob” function from the “rms” packages in the R-program to generate calibration curves, 

Spiegelhalter z test, and Brier score. 

Net reclassification index and Integrated discrimination index  
We conclusively assessed the performance of well calibrated models using the net 

reclassification index and integrated discrimination index statistics. The net reclassification 

improvement is a commonly used metric to compare the relative ability of two models to 

classify individuals as low- and high-risk (69). A positive net reclassification index value 

indicates that the new model correctly reclassifies more individuals into higher or lower risk 

categories compared to the old model. Conversely, a negative net reclassification index value 

suggests that the old model is better at reclassifying individuals than the new model. 

The integrated discrimination index statistic is used to measure the improvement in the ability 

of two models to distinguish between event and nonevent (70, 71). A positive integrated 

discrimination index value implies an improvement in the model's discriminative ability, 

while a negative integrated discrimination index value suggests a deterioration in the 

discriminative ability of the new model. In this study, we used the “reclassification” function 

from the “PredictABEL” packages in the R-program to obtain the integrated discrimination 

index and integrated discrimination index values. The discrimination ability, calibration, and 

reclassification results are described further in Figure 2 , Tables 4 and 5. All the analysis was 

performed with (R version 4.2.2, www. r-project.org), and for reproducibility, we set the seed 

of random number generator to a value 500 throughout this analysis. 
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Results 

Baseline Characteristics of the Participants 

A total of 244,718 (Figure 1) unrelated individuals of European ancestry from the UK 

Biobank were included in this study (Table 3). The average age of the participants was 55.4 

±7.98 years old and 141,931 (58.0%) were female. The sample contained 7011 (2.9%) 

participants with diabetes. The majority (n= 229,539(93.8%) of the participants reported to be 

current alcohol drinkers and 164,847 (67.4%) reported to have never smoked. The average 

BMI was 26.8 (4.58) kg/m2. The sample included 117,095 (47.8%) participants with 

hypertension.  More women were hypertensive then men (52.4% vs. 47.6%; P-value<0.001). 

The hypertensive participants were older (57.6 ± 7.53 vs. 53.4 ± 7.84 years; P-value<0.001), 

had higher BMI (28.0 ± 4.83 kg/m2 vs. 25.8 ± 4.06 kg/m2; P-value<0.001), had higher total 

cholesterol levels (6.05 ±1.06 vs. 5.79 ± 1.04 mmol/L; P-value<0.001), and had more 

sedentary lifestyle (4.87 ± 2.39 vs. 4.50 ± 2.33 hours per day; P-value<0.001) than the non-

hypertensive participants. There were statistically significant differences in all baseline 

characteristics between the hypertensive and non-hypertensive groups (Table 3). A total of 20 

clinical and genetic features were included in the analysis (see methods; Table 2). All the 

demographic, clinical and lifestyle features had a statistically significant association with 

hypertension (Supplementary Tables 1 and 2).  

Stage one models 

In stage one models (Figure 2), the traditional features included the baseline characteristics as 

the predicting features (i.e. age, sex, BMI, diabetes, smoking status, drinking status, total 

cholesterol, HDL, LDL, and sedentary lifestyle; see methods). The saturated models included 

ten genetic liabilities in addition to the traditional features. 

The traditional models (Table 4 and Figure 3 top panel) achieved AUCs of 0.70 (95% CI = 

0.70, 0.71) using the Random Forest method (Table 4 and Figure 3 top left panel) and 0.72 

(95%CI= 0.71, 0.72) using Neural Network (Table 4 and Figure 3 top right panel). The 

calibrations measured by Spiegelhalter’s z score were 1.03 (P-value= 0.30, calibration 

slope=0.98) for Random Forest (Table 4 and Supplementary Figure S2 Top left panel) and -

14.39 (P-value= 6.4×10-47, calibration slope=1.18) for Neural Network (Table 4 and 

Supplementary Figure S2 top right panel). The addition of the genetic liabilities resulted in a 

slight improvement in the AUC only for Random Forest (AUC=0.71; Table 4 and Figure 3 

bottom left panel).  

The saturated models showed poor calibration using both Random Forest and Neural 

Network methods (Table 4). The saturated Random Forest model showed a Spiegelhalter’s z 

score of -5.64 (P-value= 1.7×10-08, calibration slope=1.06; Table 4 and Supplementary Figure 

S2 bottom left panel). The saturated Neural Network model showed a Spiegelhalter’s z score 

of -14.44 (P-value= 3.0×10-47, calibration slope=1.18; Table 4 and Supplementary Figure S2 

bottom Right panel) 

Stage two models 

Feature selection (Figure 2) using Random Forest identified age as the most important 

classifying feature for hypertension, followed by sex, BMI, total cholesterol, LDL, sedentary 

lifestyle, HDL, total cholesterol genetic liability, LDL genetic liability, and smoking status. 

(Supplementary Figure S1 left panel). Feature selection using Neural Network identified 

HDL as the most important feature followed by total cholesterol, LDL, sedentary lifestyle, 

LDL genetic liability, BMI, total cholesterol genetic liability, age, WHR genetic liability, and 

HDL genetic liability (Supplementary Figure S1 right panel).  
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The first model (i.e. model built with the important features selected using Random Forest 

and classified using Random Forest; see methods) achieved an AUC of 0.71 (95 %Cl= 0.70, 

0.71; Table 4 and Figure 4 Top left panel). The model was well-calibrated showing a 

Spiegelhalter’s z score of 0.10 (P-value= 0.92, calibration slope=0.99; Supplementary Figure 

S3 Top left panel).  

 

The second model (i.e. the model built with the important features selected using Random 

Forest and classified using Neural Network) achieved and AUC of 0.72 (95 %CI= 0.71, 0.72; 

Table 4 and Figure 4 Top right panel) but was poorly calibrated showing Spiegelhalter’s z 

score of -15.51 (P-value= 3.1×10-54, calibration slope=1.20; Supplementary Figure S3 Top 

right panel).  

The third model (i.e. model built with the feature selection using Neural Network and 

classified using Random Forest method) achieved an AUC of 0.70 (95 %Cl= 0.70, 0.71; 

Table 4 and Figure 4 bottom left panel). The model was well-calibrated (Spiegelhalter’s z 

score -044, P-value= 0.66, calibration slope=1.00; Table 4 and Supplementary Figure S3 

bottom left panel).  

The fourth model (i.e. model with the feature selection and classified using Neural Network 

method) achieved AUC of 0.71 (95 %CI= 0.71, 0.72; Table 4 and Figure 4 bottom right 

panel) but was poorly calibrated (Spiegelhalter’s z score= -13.80, P-value= 1.6×10-43, 

calibration slope=1.18; Table 4 and Supplementary Figure S3 bottom right panel). 

 

Three models with Random Forest classifier including one from stage one and two from stage 

two analysis were identified as well-calibrated (Figure 2). These models were included in the 

reclassification index analysis where the stage one model was used as the reference (i.e. 

model including all traditional features and using Random Forest as classifier; Figure 2). The 

model built with both feature selection and classification using Random Forest (Table 5) 

showed a slightly improved reclassification compared with the reference model indicated by 

a net reclassification index of 0.06 (95% CI= 0.05,0.08;Table 5). The model showed an 

integrated discrimination index of 1.7 ×10-03 (95% CI= 9.0×10-04, 2.5×10-03;Table 5).  

Conversely, the model built with the feature selection using Neural Network and classified 

using Random Forest method showed a deteriorated reclassification compared the reference 

model indicated by a net reclassification index of -010 (95% CI= 0.12,0.09;Table 5). The 

model showed an integrated discrimination index of -0.01(95% CI=- 9.3×10-04, -0.01; Table 

5). 
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Discussion 
This is the first and large-scale research that has been carried out on hypertension 

classification using machine learning that investigates the prediction value of a combination 

of genetic liabilities for type 2 diabetes, adiposity traits, lipids traits, and smoking traits in a 

single model. Aided by machine learning, we used a European dataset with 244,718 

participants from the UK Biobank and identified the best integrated predictive models for 

classification of hypertension. We found that incorporating multiple genetic risk factors into 

prediction models could lead to minor but statistically significant improvement in the 

classification ability and reclassification of the models beyond conventional risk factors. Of 

all the genetic liabilities we considered, those estimated for total cholesterol and LDL 

cholesterol were identified to be a combination that could improve the classification of 

hypertension compared with the model without any genetic factors. This is the first study that 

identifies the predictive value of genetic liability of lipid traits in hypertension classification. 

Several cohort studies have found a link between high cholesterol levels (72, 73) as well as 

dyslipidemia (74, 75) and an increased risk of developing hypertension. Dyslipidemia is 

known to impair the functional and structural features of the arteries and cause 

atherosclerosis (76). These changes may compromise blood pressure control, predisposing 

individuals with dyslipidemia to hypertension.  

Previous literature has only described traditional statistical techniques and machine learning 

models for hypertension mainly with non-genetic risk factors (18-23, 77). The studies that 

included genetic risk factors were limited to simply using single SNPs at a time (78, 79) and 

gene expression (80). In addition, the studies that utilised machine learning models (25) and 

included genetic liabilities were limited to one genetic liability at a time. Our study is unique 

in a sense that it incorporated multiple polygenic liabilities using machine learning to 

investigate a more integrated strategy in the classification of hypertension. Niu and 

colleagues incorporated a genetic liability component within machine learning models for 

hypertension (25) in which the authors used three machine learning models including 

Random Forest and Neural network to predict hypertension in rural China. The models 

included an Asian ancestry hypertension polygenic risk score (PRS) calculated using 13 

single-nucleotide polymorphisms (SNPs). Our study included 10 various genetic liabilities 

incorporating a total of 883 SNPs. The study by Niu and colleagues found that including 

hypertension PRS in the models improved hypertension incidence prediction and risk 

reclassification (AUC Random Forest=0.84; AUC Neural Network=0.80). Our study took a different 

approach in terms of the type of genetic liabilities used. Instead of incorporating hypertension 

genetic liability, we included genetic liabilities for risk factors associated with hypertension 

and CVD (see methods). Compared with the study by Niu and colleagues, our study achieved 

a lower performance. Also, in terms of the net reclassification improvement in prediction 

value, our study showed only a marginal improvement whereas the study by Niu and 

colleagues showed an improvement of up to 4.7% in prediction value. This implies that 

incorporating genetic factors relating to the risk factors of hypertension may not be as 

promising as incorporating the hypertension genetic liability itself. However, it should be 

noted that our study investigated a large-scale European ancestry population and the study by 

Niu and colleagues investigated a population of Asian ancestry in rural China (The Henan 

Rural Cohort Study). These two populations have significant differences in their genetic 

make-up. Another reason for the observed differences could be environmental exposures and 
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lifestyle variables, which can play a role in modifying the expression or impact of these 

genetic variants on phenotypes across populations (81, 82). 

Our feature selection approach was successful in creating machine learning models that 

slightly improved the classification of hypertension. However, this came at the price of 

excluding clinically relevant features (e.g. diabetes mellitus and drinking status). We used a 

specific definition for diabetes (diabetes diagnosed by a doctor, or use of diabetic medication, 

or Hb1Ac ≥48 mmol/mol or glucose level ≥ 7.0 mmol/dl) (40). However, literature shows 

that diabetes mellitus and hypertension may co-exist, and it is not exactly clear which of the 

two precedes the other (83, 84). The observation that our machine learning feature selection 

approach did not prioritize diabetes as an important feature in classifying hypertension may 

align with the existing inquiries in the literature regarding the extent to which diabetes 

influences the development of hypertension, or conversely (85).  

A strength of our study is in the novelty of the approaches used including (1) the use of 

machine learning to build a prediction model of hypertension in European setting, (2) in 

testing various methods of feature selection to identify the best performing set of predictive 

features and to ensure that the features included in the final model were robust and the model 

was well-calibrated, and (3) addition of multiple genetic liabilities in one single prediction 

model to identify the best performing classification model. In our integrated genetic 

approach, we included multiple genetic liabilities comprising a large number of SNPs within 

10 genetic liabilities and allowed machine learning to identify the best pattern of feature 

combination in terms of model performance and accuracy. This gave us a comprehensive 

picture of the effectiveness of various genetic liabilities in comparison with each other and 

hypertension risk factors. Another strength is in the use of the large sample size of the UKB 

that allowed us to develop a large training set comprising 171,304 participants. This is 

beneficial in detecting the true effect of risk factors on outcomes, reducing bias, and making 

risk predictions in the testing set more reliable (86, 87). Our study contributes to the ongoing 

research on the potential role of genetic liabilities in risk prediction of complex diseases (88-

90).  

A limitation of our research is that the UK biobank data is imbalanced in terms of the ratio of 

cases and controls and as a result, our sample included 10,528 more controls than the cases. 

The training set included 7,370 more controls than cases. Models trained on imbalanced 

datasets may become biased towards the dominant class, predicting the minority class 

incorrectly (48). To address the imbalance in the dataset and minimise error, we utilised an 

over-sampling approach to balance the sample (91). This may introduce noise into the 

synthetic sample in the dataset, resulting in some level of bias remaining in the models (92). 

In this study, we also used an integrative approach and included multiple features in a 

machine learning model with the 5-fold cross-validation techniques which enabled us to 

evaluate the performance of the model on multiple subsets of the training set. However, some 

residual overfitting caused by the possible complexity of the model might still exist in the 

data despite the application of the cross-validation technique (93). To overcome this issue 

caused by potentially irrelevant features, we performed a sensitivity analysis and used a 

feature selection technique to focus on the most important features. Another limitation of our 

study is that the population investigated was of European ancestry, which limits the 

generalizability of our findings to other ethnicities or ancestries. The non-European ancestral 

groups within the UKB have very small sample size which limits their statistical power to be 

used for genetic studies and specifically using machine learning methods that need 

partitioning data into training and testing sets. We propose that incorporating a more diverse 

participant pool and conducting studies across diverse populations in future work could 
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potentially improve the generalizability and robustness of predicting hypertension using 

genetic liabilities. 
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Conclusions  

Our research highlighted that, out of the 10 genetic liabilities considered in our study, genetic 

liability for two lipids (total cholesterol and LDL) was found to add value to the classification 

of hypertension within a European ancestry population. The inclusion of these two genetic 

liabilities in the Random Forest model slightly improved the hypertension risk discrimination 

as well as risk reclassification for individual participants beyond the conventional factors. 

Incorporating multiple genetic liabilities in machine learning-based models is proposed for 

future studies which might identify complex patterns within the data.  
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Figure legend 

Figure 1. Exclusion Criteria of the study: The flowchart of the study participant selection. 

UK biobank (UKB) data had 502,219 participants at the time of beginning of this study. We 

extracted 459,042 participants of European ancestry who have passed UKB internal quality 

control (QC) and have genetic data. The final dataset included 244,718 participants who have 

met the inclusion criteria. 

Figure 2. Overview of the study and the construction of machine learning models: The 

flowchart of the study design. The data was split into training and testing sets. Stage 1 models 

were constructed in the training set without selection and their performances assessed in the 

testing set. Stage two models were built after feature selection was applied and their 

performances evaluated in the testing set.  

Figure 3. Top panel shows ROC plot for traditional Models. The figure shows the area 

under the curve (AUC) for both traditional Random Forest (top left panel) and traditional 

Neural Network (top right panel). The bottom panel shows ROC for saturated Models. The 

figure shows the AUC for saturated Random Forest (bottom left panel) and saturated Neural 

Network (bottom right panel).  

Figure 4. Top panel shows the ROC plot for models created with features selected by a 

saturated Random Forest. The figure shows the area under the curve (AUC) for Random 

Forest (top left panel) and Neural Network (top right panel). The bottom panel shows ROC 

plot for models created with features selected by saturated Neural Network. The figure 

shows the AUC for Random Forest (bottom left panel) and Neural Network (bottom right 

panel). 
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Table 1: Characteristics of the genetic variants included to create each genetic liability 

variable within the UK biobank.  

Trait category  Genetic liability Study (publication 

year)  

Number of 

SNPs  

reference 

Smoking Smoking initiation Liu et al. 2019 311 Liu et al., 2019  
Smoking cessation Liu et al. 2019 16 Liu et al., 2019 

 
Smoking 

Heaviness 

Liu et al. 2019 38 Liu et al., 2019 

Diabetes Type 2 diabetes Mahajan et al. 

2018 

210 Mahajan et al., 2018 

Adiposity BMI Winkler et 

al.2016 

159 Winkler et al., 2016 

 
WHR Shungin et al., 

2015 

39 Shungin et al., 2015 

Lipid traits Total cholesterol Surakka et al., 

2015 

36 Surakka et al., 2015 

 
HDL Surakka et al., 

2015 

19 Surakka et al., 2015 

 
LDL Surakka et al., 

2015 

30 Surakka et al., 2015 

 
Triglycerides Surakka et al., 

2015 

25 Surakka et al., 2015 

SNPs: Single nucleotide polymorphisms, BMI: Body mass index, WHR: waist-hip-ratio, 

HDL: High density lipoprotein, LDL: Low density lipoprotein 
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Table 2: Features included in the machine learning algorithm.  

Feature category Feature type Feature 

Characteristics features 
 

• Sex 

• Age 

Lifestyle-related features Phenotype • smoking status 

• Sedentary lifestyle 

• drinking status 

  Genetic  • Genetic liability smoking 

heaviness 

• Genetic liability for  smoking 

cessation 

• Genetic liability for smoking 

initiation 

Diabetes-related features  Phenotype  • Diabetes (see methods for 

definition) 

  Genetic  • Genetic liability for type 2 

diabetes 

Adiposity related features  Phenotype  • BMI 

  Genetic  • Genetic liability for BMI 

• Genetic liability for WHR 

Lipid related features  Phenotype  • Total Cholesterol 

• LDL 

• HDL 

  Genetics  • Genetic liability for LDL 

• Genetic liability for HDL 

• Genetic liability for Total 

cholesterol 

•  Genetic liability for 

Triglycerides 

 BMI: Body mass index, WHR: waist-hip-ratio, HDL: High density lipoprotein, LDL: Low 

density lipoprotein.  
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Table 3: Baseline characteristic of the UK biobank participants within the overall 

sample and hypertensive subgroups. 

  Hypertensive  
Non-

Hypertensive  
Overall  P-value*  

  N=117095  N=127623  N=244718    

Diabetes Diagnosed by a 

Doctor:  
        

YES; N (%)  
4697 

(4.00%)  
2314 (1.80%)  7011 (2.9%)  

<0.001  

NO; N (%)  
112398 

(96.0%)  

125309 

(98.2%)  

237707 

(97.1%)  

Age(years); mean (SD)  57.6 (7.53)  53.4 (7.84)  55.4 (7.98)  <0.001  

Body Mass 

Index(kg/m^2); mean 

(SD)  

28.0 (4.83)  25.8 (4.06)  26.8 (4.58)  <0.001  

Total Cholesterol(mmol/l); 

mean (SD)  
6.05 (1.06)  5.79 (1.04)  5.91 (1.06)  <0.001  

HDL (mmol/l); mean 

(SD)  
1.46 (0.38)  1.51 (0.38)  1.49 (0.38)  <0.001  

LDL (mmol/l); mean 

(SD)  
3.84 (0.81)  3.62 (0.80)  3.73 (0.81)  <0.001  

Sedentary 

style(hours/day); mean 

(SD)  

4.87 (2.39)  4.50 (2.33)  4.68 (2.37)  <0.001  

Sex:          

Male; N (%)  
55686 

(47.6%)  

47101 

(36.9%)  

102787 

(42.0%)  
<0.001  

Female; N (%)  
61409 

(52.4%)  

80522 

(63.1%)  

141931 

(58.0%)  

Drinking Status:          

Current; N (%)  
109655 

(93.6%)  

119884 

(93.9%)  

229539 

(93.8%)  

<0.001  Never; (%)  
4052 

(3.46%)  
3967 (3.11%)  8019 (3.3%)  

Previous; N (%)  
3388 

(2.89%)  
3772 (2.96%)  7160 (2.9%)  

Smoking Status:          

Current; N (%)  
37458 

(32.0%)  

39476 

(30.9%)  

76934 (31.4 

%)  

<0.001  Never; N (%)  
78292 

(66.9%)  

86555 

(67.8%)  

164847 

(67.4%)  

Previous; N (%)  
1345 

(1.15%)  
1592 (1.25%)  2937 (1.2 %)  

 Generated with gtsummary package using Pearson's Chi-squared test, Wilcoxon rank sum 

test. 
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 SD: standard deviation. BMI: Body mass index, HDL: High density lipoprotein, LDL: Low 

density lipoprotein. 
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Table 4: Discrimination and calibration results of the models applied to the testing set.  

  

Classification 

models  

Numb of 

Features 
R^2  

  

 AUC%  

(95%Cl)  

Brier 

Score  

  

Spiegel  

halter z 

score  

  

Spiegel  

halter P-

value  

  

Slope  

  

Intercept  

  

Models without Genetic Liabilities (Traditional models) 

Random 

Forest  
10 0.17  

0.70  

(0.70,0.71)  
0.22  1.03  0.30**  0.98  0.04  

Neural 

Network  
10 0.19  

0.72  

(0.71,0.7 
0.21  -14.39  6.4×10-47  1.18  0.08  

Models with Genetic Liabilities (Saturated model= Traditional model + Genetic liabilities  

 Random 

Forest  
20 0.18  

0.71 

(0.71,0.72)  
0.22  -5.64  1.7×10-08  1.06  -0.04  

Neural 

Network  
20 0.19  

0.72 

(0.71,0.72)  

 

0.21  -14.44  3.0×10-47  1.18  0.07  

Random Forest as feature selection method 

Random 

Forest  
10 0.17  

0.71 0 

(70,0.71) 
0.22  0.10  0.92**  0.99  -0.04  

Neural 

Network  
10 0.18  

0.72 

(0.71,0.72)  
0.21  -15.51  3.1×10-54  1.20  -0.09  

Neural Network as feature selection method 

Random 

Forest  
10 0.16  

0.70  

(0.70,0.71) 
0.22  -0.44  0.66**  1.00  -0.04  

Neural 

Network  
10 0.17  

0.71 

 (0.70,0.71) 
0.22  -13.80  1.6×10-43  1.18  -0.08  

Traditional model: age, sex, body mass index, diabetes, Smoking Status, Drinking Status, 

Total Cholesterol, HDL, LDL, and Sedentary Lifestyle. Discrimination is measured by the 

AUC. The Brier score is a combined measure of discrimination and calibration. Calibration is 

measured by the Spiegelhalter z test, logistic slope, and intercept. **P-value >0.05(test is not 

significant) good calibration, AUC: Area under the curve, HDL: High density lipoprotein, 

LDL: Low density lipoprotein. 
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Table 5: Net reclassification and integrated discrimination index 

 

Feature selection 

Method 

Classification 

Method 

NRI>0 

(95 %Cl) 

P-value 

IDI 

(95 %Cl) 

P-value 

None 

 

*Random  

Forest 

Ref Ref 

Random Forest 

 

Random  

Forest 

0.06 

(0.05,0.08) 

P-value<0.00001 

1.7 ×10-03 

(9.0×10-04, 2.5×10-03) 

P-value=1. 0×10-05 

 

Neural Network  Random 

 Forest 

-0.10 

(-0.12, -0.09) 

P-value<0.00001 

-0.01 

(- 9.3×10-04, -0.01) 

P-value<0.00001 

 

*The traditional Random Forest model was chosen as a reference model. NRI>0: Continuous 

Net Reclassification Index, IDI: Integrated Discrimination Index, Cl: Confidence Interval, 

Ref: Reference 
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Figure 1. 
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Figure 2. 
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Figure 3.  
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