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Abstract 

Objectives: Segmentation of anatomical structures on dento-maxillo-facial (DMF) computed 

tomography (CT) or cone beam computed tomography (CBCT) scans is increasingly needed in digital 

dentistry. The main aim of this research was to propose and evaluate a novel open source tool called 

DentalSegmentator for fully automatic segmentation of five anatomic structures on DMF CT and 

CBCT scans: maxilla/upper skull, mandible, upper teeth, lower teeth, and the mandibular canal.  

Methods: A retrospective sample of 470 CT and CBCT scans was used as a training/validation set. The 

performance and generalizability of the tool was evaluated by comparing segmentations provided by 

experts and automatic segmentations in two hold-out test datasets: an internal dataset of 133 CT 

and CBCT scans acquired before orthognathic surgery and an external dataset of 123 CBCT scans 

randomly sampled from routine examinations in 5 institutions.  

Results: The mean overall results in the internal test dataset (n = 133) were a Dice similarity 

coefficient (DSC) of 92.2 ± 6.3% and a normalised surface distance (NSD) of 98.2 ± 2.2%. The mean 

overall results on the external test dataset (n = 123) were a DSC of 94.2 ± 7.4% and a NSD of 98.4 ± 

3.6%.  

Conclusions: The results obtained from this highly diverse dataset demonstrate that this tool can 

provide fully automatic and robust multiclass segmentation for DMF CT and CBCT scans. To 

encourage the clinical deployment of DentalSegmentator, the pre-trained nnU-Net model has been 

made publicly available along with an extension for the 3D Slicer software. 

Clinical Significance: DentalSegmentator open source 3D Slicer extension provides a free, robust, and 

easy-to-use approach to obtaining patient-specific three-dimensional models from CT and CBCT 

scans. These models serve various purposes in a digital dentistry workflow, such as visualization, 

treatment planning, intervention, and follow-up. 
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1. Introduction 

The clinical practice of dentistry has radically evolved in the last few years, partly because of the 

increasing use of digital three-dimensional (3D) data that can be gathered from dento-maxillo-facial 

(DMF) computed tomography (CT) scans, cone beam computed tomography (CBCT) scans, intraoral 

scanners, and facial scanners. This data has improved diagnosis, treatment planning, intervention, 

and patient follow-up in several areas of dentistry [1–4]. More specifically, patient-specific 3D 

models derived from CT or CBCT scans are already used for educational purposes, computer-assisted 

surgical planning or navigation, tooth auto-transplantation planning, and virtual treatment planning 

for orthodontic treatments [5–8]. It may not be long before these 3D models become a key part of 

precision medicine in dental practice based on finite element methods, providing an opportunity to 

individually assess anatomical and biomechanical characteristics and adapt treatment options 

accordingly [9]. 
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 To obtain a patient-specific 3D model from a CT or CBCT scan, the anatomical structures of 

interest must be carefully delineated on the 3D image slices, a process called segmentation. The 

most frequent workflows require the segmentation of jaws (maxilla and mandible), teeth (upper and 

lower), and the mandibular canal. When performed manually, this segmentation process takes an 

expert two to five hours to complete [10,11]. The current gold standard for 3D DMF image 

segmentation is the semi-automatic method where automatic segmentations are refined manually 

by an expert [12].  In recent years, several research reports have shown that deep learning-based 

(DL) methods could fully automate this task with results on a par with those of the experts 

[10,11,13–16]. Several commercially available solutions already claim to use DL methods for CBCT 

segmentation [17–19].  

Despite these promising results, a recent systematic review of automatic tooth segmentation 

approaches using CBCT scans revealed that most of the studies were at high risk of bias in data 

selection leading to potential overestimation of the accuracy of the methods [20]. Most published 

studies report results from cross-validation approaches or small-sized hold-out test dataset (less than 

50 CBCT scans), which is probably insufficient for evaluating the robustness and generalizability of 

the methods in real-world clinical settings [21].   

 In an effort to help the deployment and broad evaluation of rapidly evolving research, the 

biomedical computer imaging community has relied heavily on open research. This has led to the 

development of international challenges such as The Medical Segmentation Decathlon [22], the 

sharing of DL frameworks such as nnU-Net [23], and the sharing of pre-trained DL models for various 

segmentation tasks such as TotalSegmentator [24]. As far as the authors know, only two pre-trained 

DL models for DMF CT and CBCT segmentation are currently publicly shared. The first one is 

integrated in 3D Slicer software (version 5.6.1 and later - http://www.slicer.org/) [25] as an extension 

called Slicer Automated Dental Tools and provides segmentation of 4 anatomical structures: the 

mandible, the maxilla, the cranial base and the cervical vertebrae [15]. Unfortunately, this tool does 

not delineate the teeth from the jaws, which is a critical limitation in most digital dentistry and 

surgery workflows. The second one is based on the nnU-Net framework and provides segmentation 

of the tissues of interest, but is not supposed to be used with CBCT scan data as it has been 

developed and tested exclusively on CT scan data [26].  

 The main aim of the research presented in this paper was to propose and evaluate a novel 

tool for multiclass DMF CT and CBCT image segmentation called DentalSegmentator. The 

performance of the tool was thoroughly evaluated on two hold-out test datasets acquired from 

routine clinical practice in seven clinical centers.  
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2. Materials and Methods  

A DL framework was trained on an internal dataset for automatic segmentation of DMF CT and CBCT 

scans. The results obtained from this DL-based method (the index test) were compared with those 

obtained by semi-automatic segmentation (the reference test) on two hold-out test datasets. The 

outcome set included both volume-based and surface-based metrics. The Institutional Review Board 

“Comité d'Ethique pour la Recherche en Imagerie Médicale” (CERIM) gave ethical approval for this 

research (IRB No. CRM-2001-051b), and its reporting conforms to recently published 

recommendations on artificial intelligence in dental research [21]. 

 

2.1. Dataset 

2.1.1. Patient selection 

The dataset was composed of an internal dataset and an external dataset. Data from the internal 

dataset was selected from a retrospective sample of consecutive patients who had undergone 

orthognathic surgery in two French maxillofacial surgery departments. Patients referred to these 

public centers presented a wide variety of dentofacial deformities, came from a variety of 

socioeconomic backgrounds, and were ethnically diverse. Patients were considered for inclusion 

regardless of the dental deformity they presented, and there was no minimum age. Exclusion criteria 

were refusal to participate in the research and lack of industry-certified CT or CBCT scan 

segmentation. As a result, 603 subjects (453 CT scans, 150 CBCT scans) were included in the internal 

dataset.  

Data from the external test dataset was randomly sampled retrospectively from routine CBCT 

examinations in five private centers located in India. All of the subjects were referred for a CBCT scan 

for various reasons such as surgical planning, orthodontic management of impacted teeth, 

temporomandibular joint (TMJ) disorders, or diagnosis of cysts of the jaws. Patients were considered 

for inclusion regardless of the condition they presented, and there was no minimum age. The only 

exclusion criterion was refusal to participate in the research. 123 subjects (123 CBCT scans) were 

included in the external test dataset. 

 

2.1.2. Data characteristics 

All the scans in the internal dataset had a full-head field of view (FOV). The median in-space pixel size 

of the scans was 0.43*0.43mm
2
 and their median slice thickness was 0.31mm. Most CT scans (n = 

417) were obtained using a GE Healthcare Discovery (GEHC) CT750HD scanner and all CBCT scans (n = 

150) were obtained using a Carestream CS 9600 scanner. Scans were randomly distributed between 
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a training/validation set (n = 470; 374 CT scans and 96 CBCT scans) and an internal test set (n = 133; 

79 CT scans and 54 CBCT scans). 91% of the scans in the internal test set exhibited metal artefacts.  

 The FOV of the scans in the external test dataset ranged from full-head to being localized on 

anatomical parts (maxilla and mandible or only part of the maxilla or mandible). The median voxel 

size of the CBCT scans was 0.16*0.16*0.16mm3. The scans were acquired using five CBCT devices: 

Vatech Smart Plus (n = 25), Carestream CS 9300 (n = 29), Dentium Rainbow CBCT (n = 27), Planmeca 

Promax 3D (n = 12), and Sirona Orthophos XG 3D (n = 30). 42% of the CBCT scans showed metal 

artefacts. 

Due to the anonymization process, the age of the subjects could not be retrieved. Descriptive 

characteristics of the dataset are shown in Table 1. 

 Train/Validation  Internal Test  External Test 

Number of scans 374 CT + 96 CBCT 79 CT + 54 CBCT 123 CBCT 

Median voxel size (mm
3
) 0.43 * 0.43 * 0.31 0.43 * 0.43 * 0.31 0.16 * 0.16 * 0.16 

Number of scans by CT Device    

       GEHC Discovery CT 750 HD 353 75  

       Other CT Device 21 4  

Number of scans by CBCT Device    

       Carestream CS 9600 CBCT 96 54  

       Carestream CS 9300 CBCT   29 

       Vatech Smart Plus CBCT   25 

       Dentium Rainbow CBCT   27 

       Planmeca Promax 3D CBCT   12 

       Sirona Orthophos XG 3D CBCT   30 

Metal artifacts, no. (%)    

      Orthodontic materials 364 (78.1) 107 (80.5) 3 (2.4) 

      Metal dental filling/crown 168 (35.7) 44 (33.1) 49 (39.8) 

      No metal artefact 57 (12.1) 12 (9.0) 71 (57.7) 

Skeletal deformity, no. (%)    

      Class I 61 (13.0) 13 (9.8)  

      Class II
a
 246 (52.3) 69 (51.9)  

      Class III
b
 163 (34.7) 51 (38.3)  

a
Prognathic maxilla and/or retrognathic mandible evaluated on the 3D models. 

b
Retrognathic maxilla and/or prognathic mandible 

evaluated on the 3D models. 

Table 1: Characteristics of the data in the training/validation, internal test, and external test 

datasets. 

 

2.1.3. Ground truth segmentation process (Reference Test) 

The treatments carried out on patients in the internal dataset involved segmentation of the 3D scans 

prior to study. The ground truth segmentations were used for diagnosis, computer-aided surgical 

planning, and manufacture of personalized 3D-printed surgical guides and fixation implants. This was 

carried out by Materialise (Leuven, Belgium) according to a certified internal procedure which cannot 
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be fully described here for reasons of confidentiality. The two-step procedure started with semi-

automatic patch-based segmentations using expert priors [27] which were manually refined by an 

initial operator from a trained team [Step 1]. The segmentations were then verified slice-by-slice for 

validation by a senior operator from a trained team [Step 2] with a focus on the regions of interest 

(the external surface of the bones, teeth, and mandibular canals). Steps 1 and 2 were repeated until 

the segmentations were approved and certified for clinical use. This process resulted in five 

segmentation masks: maxilla/upper skull; mandible; upper teeth; lower teeth; and both mandibular 

canals. 

 The CBCT scans in the external dataset were segmented specifically for this study by using a 

semi-automatic three-step approach. First, the CBCT scans were segmented automatically using a 

publicly available deep-learning model trained on CT scans [26] [Step 1]. Second, the proposed 

segmentations were then corrected manually by five dentists familiar with 3D image visualization 

and trained for the task in 3D Slicer software (version 5.6.0) [Step 2]. Finally, the segmentations were 

verified slice-by-slice and corrected where necessary by a senior expert (a dentist with more than 

five years of experience in 3D image evaluation) in 3D Slicer software [Step 3]. This process resulted 

in five segmentation masks: maxilla/upper skull, mandible, upper teeth, lower teeth, and both 

mandibular canals. 

 

2.2. Deep-Learning based segmentation (Index Test) 

2.2.1. Training 

The nnU-Net deep learning framework (version 2.2.1) was used as an out-of-the-box tool according 

to instructions given by its authors [23]. Our raw training/validation internal dataset was used to 

automatically configure preprocessing, network architecture, and 3D full resolution U-Net training 

pipelines. No modifications were made in setting the nnU-Net hyperparameters and data 

augmentation strategy, and the target spacing of the model was 0.31*0.43*0.43mm
3
. Training time 

was about 24 hours on our laboratory workstation (CPU AMD Ryzen 9 3900X 12-Core; 128Gb RAM; 

GPU Nvidia Titan RTX 24Gb).   

 

2.2.2. Inference 

Inference (prediction made by the trained model) was performed once on the internal and external 

test datasets following nnU-Net guidelines.  

 

2.3. Evaluation 

Quantitative evaluation of the model performance was carried out on the internal and external test 

datasets by comparing ground truth segmentations (reference test) with DL-based segmentations 
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(index test) for each of the five segmentation masks. The recommendations of the Metrics Reloaded 

project [28] were followed by using both volume-based Dice similarity coefficient (DSC) and surface-

based normalized surface distance (NSD). The tolerance for NSD was set at 1 mm, consistent with 

recent international challenges in biomedical imaging [22]. Furthermore, recent studies have shown 

that NSD was more strongly correlated with the amount of time needed to correct a segmentation 

for clinical use compared to classic metrics such as DSC [29].  

 

2.4. Statistical Analysis 

Continuous variables were presented as mean ± standard deviation and categorical variables were 

expressed as numbers and percentages. DSC and NSD results were presented as percentages (%). 

The results were nonparametric (Shapiro-Wilk normality test). The Wilcoxon-Mann-Whitney test was 

used to compare results from internal and external test datasets. The Kruskal-Wallis test was used to 

compare DSC and NSD results from different CT/CBCT devices; when significant, post-hoc Dunn's test 

was used to compare each group. p values <0.05 were considered to be statistically significant. All of 

the data was analysed using Python (v.3.7) and R Statistical Software (v4.2.2; R Core Team 2022). 

 

3. Results 

3.1. Quantitative evaluation  

Inference time was approximately 1 to 2 minutes for one 3D scan performed on the laboratory 

workstation described above. The mean overall results in the internal test dataset (n = 133) were a 

DSC of 92.2 ± 6.3% and an NSD of 98.2 ± 2.2% (Table 2). The mean overall results in the external test 

dataset (n = 123) were a DSC of 94.2 ± 7.4% and an NSD of 98.4 ± 3.6% (Table 3). The distribution of 

results is shown in Figure 1.  

The statistical analysis showed similar results for both DSC and NSD metrics. Overall, the 

results obtained on the external and internal test dataset were statistically different. There was no 

statistical difference in the internal test dataset when scans obtained using the various devices were 

compared. In the external test dataset, the results obtained for scans acquired using Carestream 

9300 and Sirona Orthophos XG 3D showed statistically significant differences.  

 

Metric, mean ± SD 

[%] 

Maxilla / 

Upper Skull 
Mandible 

Upper 

teeth 
Lower Teeth 

Mandibular 

canal 

DSC 94.6 ± 2.7 94.5 ± 1.6 95.3 ± 1.6 95.3 ± 1.6 81.4 ± 6.2 

NSD 97.1 ± 2.9 98.3 ± 1.1 98.9 ± 1.0 98.7 ± 1.0 98.0 ± 3.2 

Table 2: DSC and NSD results from the internal test dataset (n = 133). SD: Standard Deviation. 
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Metric, mean ± SD 

[%] 

Maxilla / 

Upper Skull 
Mandible 

Upper 

teeth 
Lower Teeth 

Mandibular 

canal 

DSC 93.0 ± 3.8 96.2 ± 4.0 96.7 ± 3.5 97.3 ± 1.9 87.0 ± 12.9 

NSD 97.2 ± 2.8 98.6 ± 3.5 98.8 ± 3.3 99.4 ± 1.9 97.7 ± 5.4 

Table 3: DSC and NSD results from the external test dataset (n = 123). SD: Standard Deviation 

 

Figure 1: DSC and NSD results from the internal (left) and external (right) test datasets. 

 

3.2. Three-Dimensional Visualization 

Six subjects representative of the test dataset were chosen to illustrate the segmentation results and 

the diversity of the CBCT data (Figure 2). When segmentation failures occurred, they were mainly 

under-segmentations of thin bony parts (resulting in holes in the maxilla or mandible inferior border) 

and missing mandibular canal parts (Figure 3). 
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Figure 2: 3D surface models for six subjects representative of the diversity and the challenges arising 

from the test CBCT dataset. (A) Class III maxillo-mandibular deformity, before orthognathic surgery; 

(B) Edentulous jaws; (C) Left condylar hyperplasia; (D) Upper posterior edentulous space; (E) Maxilla 

with impacted teeth; (F) Mandible with impacted third molar. 

 

 

Figure 3: 3D surface models for four subjects, exhibiting some typical failures (red circles). (A) Under-

segmentation of the mandibular inferior border and mandibular canal; (B) Under-segmentation of 

the anterior maxillary sinus walls; (C) Under-segmentation of the palate; (D) Discontinuity of the 

mandibular canal. 
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3.3. DentalSegmentator model sharing and 3D Slicer extension 

The pre-trained nnU-Net model is now publicly available [30]. This model can be used out-of-the-box 

via the nnU-Net version 2.2.1 command-line interface. 

Implementation in a user-friendly interface to encourage clinicians to use the DL method is 

also proposed. DentalSegmentator is an open source extension for the 3D Slicer software (version 

5.7.0 and later), which is a free, open source software for visualization, processing, and analysis of 

medical 3D images (http://www.slicer.org/) [25]. The extension, downloadable from the extension 

manager of 3D Slicer, offers an easy-to-use approach for DMF CT and CBCT scans automatic 

segmentation and 3D patient-specific model export (Figure 4). Slice-by-slice verification and manual 

refinement of the segmentations can be performed directly in the 3D Slicer software. More 

information about the extension and its code are shared on the Github platform: 

https://github.com/gaudot/SlicerDentalSegmentator. 

These tools work on all computer platforms but obtaining results quickly requires a 

compatible graphics processing unit (GPU) with at least 4Gb of RAM. On a laptop personal computer 

(CPU Intel Core i7-13850HX; 32Gb RAM; GPU NVIDIA RTX 2000 8Gb), the segmentation required a 

mean time of 178 ± 100 seconds on 10 CT and CBCT scans randomly selected from the test dataset.  

 

 

Figure 4: Screenshot of DentalSegmentator 3D Slicer extension. 
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4. Discussion 

This article introduces DentalSegmentator, a deep learning-based tool for multiclass segmentation of 

DMF CT and CBCT images. This tool, based on the nnU-Net framework, was evaluated on a highly 

diverse test dataset of 79 CT and 177 CBCT scans from seven institutions. The comprehensive 

evaluation was composed of both volume-based and surface-based metrics, and demonstrated that 

DentalSegmentator was able to provide fully automatic robust segmentation results for the five 

segmentation labels: maxilla/upper skull, mandible, upper teeth, lower teeth, and the mandibular 

canal. The pre-trained model is publicly available along with an open source 3D Slicer extension with 

an easy-to-use graphic interface.  

 Due to the lack of a publicly available DMF CT and CBCT segmentation dataset, it is difficult to 

compare the results obtained here directly with those previously published. A recent systematic 

review highlighted that the DSC results obtained in the 23 selected studies ranged from 90 ± 3% to 

97.9 ± 1.5% [20]. Only a few studies in dentistry report NSC results because this metric has recently 

been proposed by the biomedical community [28,29]. This systematic review also pointed out that 

the heterogeneity in the methods employed for dataset construction and model evaluation is a 

frequent problem in DL studies [21]. Some of the studies excluded patients with metal artefacts or 

significant skeletal deformities, while most of the models were evaluated on cross-validation 

datasets or on hold-out test datasets of fewer than 50 CBCT scans. The main risk of these approaches 

is that they may yield over-optimistic results which could be difficult to reproduce in routine clinical 

care (i.e. poor generalizability of the model). As far as the authors know, the only study reporting 

results of DMF segmentation on a large-scale external test dataset (n = 407) had a mean DSC result of 

93.8% [11], a result very close to that found in the present study. However, this model is not publicly 

available, which limits further evaluation and dissemination. As the dataset used in the present study 

was randomly selected from clinical practice, most of the test images (67.6%) showed metal 

artefacts. The images in our external dataset exhibited fewer metal artefacts than our internal test 

dataset, which might explain the statistically significant difference between the results obtained on 

these two datasets. Despite these statistical results, the clinical impact of the variations observed 

between our internal and external test results is questionable. Part of the DSC errors found in the 

external dataset may be caused by the resolution of the external dataset as the median voxel size of 

this data was half the target spacing of the model presented in this paper. 

 In recent years, several deep learning architectures have been proposed for the 

segmentation of 3D biomedical data. The study presented in this paper used the open source nnU-

Net framework, which was introduced in 2018 [23]. This framework is well supported, has been 

shown to provide state-of-the-art results on numerous datasets, and does not necessarily require 
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expert knowledge. New data recently published shows that in 2024 the framework was still providing 

highly competitive results compared to more modern architectures [30]. It is likely that slightly better 

results could be obtained by tailoring the deep learning architecture to the task, but that would 

require additional expertise. 

 The results demonstrated the robustness and generalizability of the model for the 

segmentation of routine CT and CBCT scans acquired in several cases of use such as orthognathic 

surgery planning, guided implant surgery, impacted teeth visualization, and digital orthodontics. 

Methods in health data science are evolving at a very fast pace, with growing dataset sizes and 

constantly improving results [32]. The results presented in this paper should improve if more training 

data is obtained from different CT and CBCT machines, or if post-processing steps are added (for 

example, to fill in some of the under-segmentations shown in Figure 3). However, automatic 

segmentation for DMF CT and CBCT scans is now mature enough for dental practitioners and 

researchers to use. This is why the pre-trained nnU-Net network and the DentalSegmentator 

extension for the 3D Slicer software have been publicly shared. It is hoped that this effort will help 

disseminate the use of 3D models in dentistry and encourage the sharing of open datasets and 

improved methods. It has to be said that while quantitative evaluation is necessary to assess the 

performance of the models, such evaluation is not always clinically relevant A clinical application 

such as personalized implant manufacturing will be particularly demanding in terms of segmentation 

precision while computer-aided diagnosis or other digital dentistry tasks may not require such 

precision. The more demanding the clinical situation, the more human oversight of validation and 

correction must be incorporated into the workflow [33]. 

 The results presented in this paper have several limitations. The first one is their 

retrospective and relatively small-scale nature. A large prospective multi-center study is needed to 

fully evaluate the generalizability of the tool. The model was tested on 6 CBCT devices, a small 

number compared to the 47 CBCT devices marketed by 20 companies that were available in 2012 

[34]. Moreover, it was not possible to retrieve the age of the patients in the dataset, which calls into 

question the applicability of the solution for subjects with primary teeth. Secondly, the construction 

of the reference test was a major problem due to the lack of a hard “gold standard” like dry skulls. A 

solid segmentation process with industry-certified segmentations (for the internal dataset) and a 

multi-stage approach involving experts (for the external dataset) have been provided, but bias 

remains possible. Finally, each tooth was not segmented and labelled separately as proposed in 

several other methods [11,13,16,17,19], which could be a limitation in some applications.  

 The ethical implications of developing and using a tool such as DentalSegmentator have not 

been studied at length in the literature. A checklist for the evaluation of artificial intelligence 

applications in dentistry from an ethical perspective has recently been proposed [35]. When 
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evaluating the study presented in this paper from this point of view, several ethical pillars such as 

transparency, diversity, protection of privacy, equity, solidarity and governance were considered and 

addressed. More research needs to be carried out to address the pillars related to the clinical use of 

such a tool: wellness, respect of autonomous decision-making, accountability and responsibility, 

prudence, and sustainable development. 

The perspectives of this study will depend on the adoption of the tool by the dental 

community. The main targets of this study in the short term are dental researchers and educators 

because 3D Slicer software is not approved for clinical use and the application distributed is intended 

for research use. Clinical use of this tool will require a few adaptations and further research to meet 

regulation such as the Artificial Intelligence Act recently adopted by the European Parliament [36]. In 

particular, several developments will be needed to mitigate the risk of automation bias and ensure 

that clinicians review and check the results before their clinical use. Thanks to the open source 

nature of the nnU-Net framework, the model could be easily fine-tuned with more CT and CBCT data 

to meet specific needs. Detection of specific pathologies like periapical lesions or bone lesions could 

be added to the method [37,38]. In the medium term, it is likely that other DL methods will exceed 

the classical 3D U-Net used in this study. For example, foundation models like the recently proposed 

MedSAM could allow for universal image segmentation, improving the generalizability of the current 

methods [39].  

 

5. Conclusions 

This study, based on a highly diverse dataset of more than 700 CT and CBCT scans, demonstrated the 

robustness of DentalSegmentator, a free open source tool for automatic segmentation of five key 

anatomical structures on DMF CT and CBCT scans.  
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