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Abstract 
Health strategies increasingly emphasize both behavioral and biomedical interventions, yet the 
complex and often contradictory guidance on diet, behavior, and health outcomes complicates 
evidence-based decision-making. Evidence triangulation across diverse study designs is essential 
for establishing causality, but scalable, automated methods for achieving this are lacking. In this 
study, we assess the performance of large language models (LLMs) in extracting both ontological 
and methodological information from scientific literature to automate evidence triangulation. A 
two-step extraction approach—focusing on cause-effect concepts first, followed by relation 
extraction—outperformed a one-step method, particularly in identifying effect direction and 
statistical significance. Using salt intake and blood pressure as a case study, we calculated the 
Convergeny of Evidence (CoE) and Level of Evidence (LoE), finding a trending excitatory effect 
of salt on hypertension risk, with a moderate LoE. This approach complements traditional meta-
analyses by integrating evidence across study designs, thereby facilitating more comprehensive 
assessments of public health recommendations. 
 
Introduction 
It is increasingly recognized that health strategies should prioritize both behavioral interventions 
and biomedical interventions (e.g., medications)1. Social determinants of health (SDoH), 
especially lifestyle factors such as diet and exercise, are pivotal in managing major chronic 
diseases such as cardiovascular diseases, cancer, chronic respiratory diseases, and diabetes. For 
instances, according to data from the Institute for Health Metrics and Evaluation (IHME), 
behavioral factors contribute significantly to ischemic heart disease and stroke, accounting for 69.2% 
and 47.4% of Disability-Adjusted Life Years (DALYs), respectively—the highest among all 
diseases. In particular, dietary factors contributed 57.1% and 30.6% of DALYs, respectively2. 
Developing evidence-based prevention and intervention strategies encounters significant 
challenges due to the rapidly growing and piecemeal evidence, along with complex causal 
relationships from various study designs, including confounding and reverse causation. Evaluating 
the level of causality within a body of scientific evidence is a fundamental task, especially when 
research findings are inconsistent3-5. 
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Meta-analysis (META) is an effective scientific method for quantitatively synthesizing research 
conclusions. Utilizing statistical techniques, it combines the results of different studies to obtain 
an overall quantitative estimate of the impact of specific interventions (e.g., salt restriction) on 
particular outcomes (e.g., blood pressure). It balances conflicting evidence quantitatively to 
achieve evidence-based decision-making based on synthesized scientific evidence. Since its 
introduction in the 1970s, meta-analysis has had a significant impact on various fields such as 
medicine, economics, sociology, and environmental science6. Over the past four decades, meta-
analysis has evolved to include increasingly complex methods for quantifying evidence, 
particularly concerning the consistency of results from the same study design or the replicability 
of studies. In contrast, convergency, reflecting the extent to which a given hypothesis is supported 
by different study designs, has not received the same attention4. Currently, considering consistency 
and convergency is recognized as an important strategy for addressing the reproducibility crisis 
for the scientific community4. 
 
In recent years, the idea of “triangulation” has been introduced into the scientific community to 
measure the convergency of scientific conclusions derived from different study designs 4, 7, 8, 
particularly in human behaviours9. These study designs have different and independent potential 
sources of bias7. Triangulation is a research strategy involving the use of at least two research 
methods to investigate and analyze the same research question, mutually validating each other to 
enhance the robustness and reproducibility of conclusions. If conclusions derived from different 
research designs (such as observational studies (OS), mendelian randomization studies (MR), and 
randomized controlled trials (RCT), etc.) regarding the same cause-and-effect question (in fact, 
these study designs all aim to establish correlation) are consistent, the reliability of causality is 
stronger. At this point, correlation is moving towards causality. When the results point to different 
directions, understanding the major source of bias instruct researchers future study designs7.  
 
However, current evidence triangulation studies primarily employ qualitative methods to explain 
the reliability of causality, lacking quantitative approaches. Researchers are accustomed to using 
retrospective description of relevant literature in the “Discussion” section of their papers, simply 
summarizing and discussing how many studies support the conclusions of the current study, how 
many do not, and reasons for lack of support, such as different experimental conditions8. A few 
pieces of empirical work on evidence triangulation involves a very high proportion of manual 
evidence screening and extraction for data elements10. Such retrospective, qualitative triangulation 
methods are susceptible to issues such as subjective selectivity of evidence and cognitive biases 
among different researchers. 
 
Implementing a fully quantitative method for evidence triangulation requires a computable 
representation of research findings and relevant metadata obtained from different study designs. 
Apart from determining the presence and direction of the effects (i.e., significant increase, 
significant decrease, and null) between an intervention and outcome, finer-grained information of 
research design among many lines of evidence need to be extracted. For evidence triangulation 
task, it is important to extract information such as measured outcomes, effect direction of 
intervention (increased vs. decreased), characteristics of study populations (e.g., demographics), 
and other relevant contextual information.  
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Currently, there are natural language processing methods available for extracting conclusions from 
clinical research reports. This includes the utilization of Large Language Models (LLMs) to extract 
entities and relationships from RCT reports 11-13. However, these methods are predominantly based 
on the less specific framework of evidence-based medicine, which emphasizes Population-
Intervention-Comparation-Outcome (PICO) related concepts, such as Trialstreamer and the 
EvidenceMap14, 15. While some of these methods involve effect size and direction16, 17, extracting 
and representing research design information from various sources of evidence, which is essential 
for triangulation, remains a subject for ongoing research. Most recently, there are attempts trying 
to accelerate evidence triangulation process by taking advantage of computable knowledgebase in 
the form of a Subject-Predicate-Object semantic triple, such as SemMedDB18. However, the 
accuracy and recall rates of medical concepts and their relationships extracted in SemMedDB are 
relatively low. 
 
In this study, we try to examine the capabilities of LLMs in extracting ontological information 
such as intervention-outcome concepts, determining effect directions, as well as identifying 
methodological information such as study design. Our objective is to develop an automatic 
approach to aggregate various lines of SDoH-related evidence across different study designs into 
a computable and comparable format that is ready for quantitative evidence triangulation. We also 
aim to utilize the extracted data elements to assess the Convergency of Evidence (CoE, which 
represents the trending effect direction after triangulation) and the Level of Evidence (LoE, which 
denotes the strength of that direction). The overall logic and overflow of this work is shown in 
Figure 1. 
 

 
Figure 1. Overall workflow of automatic evidence triangulation using LLM. (a) The pipeline of using LLM to extract study 

designs, entities, and relationships from textual titles and abstracts. (b)The framework of evidence triangulation; The 
Convergency of Evidence represents the integration algorithm of the supporting and opposing evidence behind the relationship. 
The Level of Evidence score represents the reliability of causal relationship with scaled classification in three levels: weak (one 

star*), moderate (two stars**), and strong (three stars***). 
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Results 
Validation of Model Performance 
To validate the performance of our model in named entity recognition (NER) and relationship 
extraction (RE) in SDoH research, we employed a comprehensive evaluation approach using 
BERTScore, a state-of-the-art metric for assessing the similarity between textual representations 
of exposure and outcome pairs19. BERTScore provides precision, recall, and F1-score metrics to 
quantify the semantic similarity between predicted and reference text sequences during validation. 
Given that LLM-extracted entities may not always perfectly align with human-extracted entities, 
we employed this similarity-based scoring method to more rigorously assess the extent to which 
the LLM’s extractions correspond to the gold standard. 
 
We compared the predicted associations generated by the model against the manually curated 
gold standard dataset. The following steps were undertaken: 

• Similarity Assessment: BERTScore was calculated for each exposure and outcome pair 
to evaluate the semantic similarity between the model’s predictions and the gold standard. 
For each PMID, precision, recall, and F1-score were computed, allowing for a nuanced 
understanding of the model’s ability to capture relevant associations. 

• Matching and Thresholding: We set a BERTScore threshold of 0.8 to identify matching 
pairs of exposures and outcomes between the predicted and gold standard data. Only those 
pairs exceeding this threshold were considered valid matches. 

• Evaluation of Direction and Significance: For the matched pairs, we further evaluated 
the model’s performance in predicting the direction (e.g., positive, negative) and 
significance of the associations. Standard metrics— precision, recall, and F1-score—were 
calculated to quantify the model’s performance in these dimensions. 

• Error Analysis: We identified and reported falsely predicted associations in terms of 
direction and significance, providing insights into areas where the model may need further 
refinement. This part is provided in Supplementary material #1. 

 
Part 1: an expert-extracted dataset of relationships between food&nutrition and 
cardiovascular outcomes 
In the one-step one-shot extraction, GPT-4o-mini achieved the highest F1 scores for exposure 
(0.86) and outcome (0.82) extraction, demonstrating strong overall performance. However, glm-
4-airx had slightly higher precision in extracting the direction of the relationship, although all 
models showed moderate performance in this category. For significance extraction, deepseek-chat 
and GPT-4o-mini exhibited high F1 scores (0.86 and 0.87). 
 
The two-step extraction method generally outperformed the one-step approach, particularly in 
handling complex indicators like direction and significance. Deepseek-chat was the most reliable 
model with an F1 score of 0.82 in direction and 0.96 in significance, especially in the two-step 
approach.  
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Table 1. Model performance comparison on one-step and two-step extraction of entities and relationships between 
food&nutrition and cardiovascular outcomes. 

 Exposure Outcome Direction Significance 
Model\Indicator P R F1 P R F1 P R F1 P R F1 

One-step extraction 
deepseek-chat 0.82 0.83 0.82 0.82 0.81 0.81 0.73 0.71 0.71 0.80 0.94 0.86 
glm-4-airx 0.86 0.84 0.85 0.80 0.79 0.79 0.73 0.73 0.73 0.86 0.81 0.82 
qwen-plus 0.85 0.87 0.85 0.82 0.83 0.82 0.69 0.72 0.70 0.38 0.45 0.40 
GPT-4o-mini 0.85 0.88 0.86 0.81 0.82 0.81 0.78 0.81 0.79 0.83 0.94 0.87 

Two-step extraction 
deepseek-chat 0.84 0.86 0.85 0.78 0.8 0.79 0.82 0.83 0.82 0.94 0.98 0.96 
glm-4-airx 0.80 0.80 0.80 0.81 0.81 0.80 0.80 0.83 0.81 0.64 0.95 0.72 
qwen-plus 0.84 0.87 0.85 0.79 0.81 0.80 0.55 0.55 0.55 0.82 0.89 0.84 
GPT-4o-mini 0.83 0.87 0.85 0.78 0.81 0.79 0.81 0.82 0.81 0.95 0.97 0.96 

 
Part 2: External validation of human-extracted relationships between dietary factors and 
coronary heart disease 
Additionally, we validated the approach in an external human-extracted dataset (validation dataset 
#2). In the one-step extraction approach, deepseek-chat achieved F1-scores of 0.76 for exposure, 
0.88 for outcome, and 0.67 for association. Glm-4-airx performed consistently with F1-scores of 
0.77 for exposure, 0.82 for outcome, and 0.79 for association. Qwen-plus showed competitive 
results with F1-scores of 0.76 for exposure, 0.84 for outcome, and 0.72 for association.  
 
In the two-step extraction approach, deepseek-chat improved to F1-scores of 0.78 for exposure, 
0.88 for outcome, and 0.75 for association. Glm-4-airx demonstrated balanced performance with 
F1-scores of 0.76 for exposure, 0.85 for outcome, and 0.86 for association. Qwen-plus maintained 
competitive performance with F1-scores of 0.74 for exposure, 0.88 for outcome, and 0.77 for 
association. Deepseek-chat and glm-4-airx emerged as the most reliable models across both 
extraction methods.  
 
Table 2. Model performance comparison on one-step and two-step extraction of entities and relationships in the external 
validation dataset of effect of dietary factors on coronary heart disease. 

 Exposure Outcome Association 
Model\Indicator P R F1 P R F1 P R F1 

One-step extraction 
deepseek-chat 0.77 0.77 0.76 0.89 0.88 0.88 0.68 0.71 0.67 
glm-4-airx 0.78 0.76 0.77 0.80 0.82 0.80 0.81 0.79 0.79 
qwen-plus 0.77 0.76 0.76 0.82 0.84 0.83 0.71 0.75 0.72 
GPT-4o-mini 0.76 0.75 0.75 0.76 0.79 0.77 0.72 0.74 0.73 

Two-step extraction 
deepseek-chat 0.78 0.79 0.78 0.87 0.88 0.87 0.74 0.83 0.75 
glm-4-airx 0.77 0.76 0.76 0.85 0.85 0.85 0.87 0.88 0.86 
qwen-plus 0.76 0.74 0.74 0.88 0.88 0.88 0.75 0.81 0.77 
GPT-4o-mini 0.79 0.79 0.78 0.81 0.83 0.82 0.76 0.82 0.78 
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A case of evidence triangulation of salt on blood pressure 
In our analysis, we explored the effect of salt intake on blood pressure using a dataset derived from 
1,488 studies. After re-classifying the study designs using LLM model, this dataset included 476 
RCTs, 5 MRs, 795 OSs and 140 Meta Analysis/Systematic Review/Review. We employed the 
proposed LLM pipeline to extract structured information based on the PICO framework along with 
primary efficacy results and other relevant metadata from these publications. A sample of the 
extracted evidence is presented in Figure 2. 
  

 
Figure 2. Example of automatic-extracted ready-for-triangulation evidence dataset of salt-on-hypertension 

To quantitatively triangulating the extracted evidence, we firstly designed an additional prompt 
asking LLM to identify if the extracted exposure/intervention and outcome match the target pair, 
i.e., salt intake on blood pressure (Supplementary file #4). We then removed irrelevant and only 
kept the matched extracted results. In this procedure, we also only included primary study designs 
(RCT, MR, and OS). Eventually 882 primary studies (325 RCTs, 3 MRs, and 554 OSs) with 1,931 
extracted results are included in the following analysis. 
 
In assessing the effect of salt intake on blood pressure, the LoE score indicates a moderate 
association with CoE 0.313 between increased salt intake and higher blood pressure (Figure 3). 
Interestingly, most OSs report increased salt intake, while RCTs primarily involve decreased salt 
intake. This difference reflects the varying definitions of intervention and exposure across study 
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types and emphasizes the importance of triangulating evidence to minimize bias from the 
directionality of the factor under study. 

 
Figure 3. Convergency and Level of Evidence calculation for the case of salt intake on blood pressure. A convergency score 
of 0.313 reflects the moderate evidence supporting the excitatory relationship between salt intake and blood pressure. Green area 

and ℰ denote excitatory, white area and 𝒩 denote no change, green area and  ℐ denote inhibitory.  

We lastly compared the triangulation result with LoE with results extracted from meta-analyses, 
systematic reviews and reviews that were not included (Figure 4). In general, both results from 
triangulation and existing reviewing studies are consistent on the excitatory relationship between 
salt intake and blood pressure. A majority of existing studies focused on the relationship between 
decreased salt intake and blood pressure (151/176), and they concluded with an excitatory result 
in general, which is consistent with triangulated conclusion in this study. Nevertheless, there is a 
lack of reviewing studies focusing on increasing salt intake on blood pressure, possibly from 
primary OS and MR studies.  Overall, our evidence triangulation method is consistent with existing 
meta-analyses and systematic review results, while also addressing the limitation of meta-analyses 
being constrained to a single type of study design. 

 
Figure 4. Number of relationships in meta-analyses, systematic reviews, and reviews of salt intake on blood pressure 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.03.18.24304457doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304457
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

Discussion 
This study illustrates the potential of using LLMs to automate the extraction and triangulation of 
SDoH-related evidence across diverse study designs. Our approach utilizes a two-step extraction 
method, which first sequences exposure-outcome concept extraction followed by relation 
extraction, exhibiting better performance over the one-step method. This strategy essentially 
functions as a triple extractor, capturing entities and the relationships between them, similar to the 
SemRep system that extracts Subject-PREDICATE-Object semantic triples from biomedical text 
using a rule-based approach. The related ASQ platform has provided a user-friendly way to query 
SemRep-extracted triples along with associated evidence sentences, contributing to a novel 
approach for evidence triangulation. However, the extraction performance of SemRep is limited 
due to its reliance on a rule-based method developed two decades ago, despite ongoing updates 
and extensions with relation classification approaches20-22. Through data evaluations using CoE 
and LoE with a focused case study on the impact of salt intake on blood pressure, we demonstrated 
that LLMs can significantly simplify the synthesis of medical evidence, enhancing the efficiency 
of evidence-based decision-making. After triangulating evidence from different study designs, the 
relationship between salt intake levels and the risk of hypertension tends to indicate an excitatory 
effect direction. However, the level of evidence for this effect is low, suggesting that there are still 
many contradictory research findings. This result is consistent with the evidence status of salt 
controversy discussed in recent years23, 24. 
 
This study also distinguishes our approach from others that utilize LLMs for meta-analysis. While 
decision-making should ideally be grounded in causal relationships between interventions and 
outcomes, predictions can be based on correlative relationships. Our objective was not to automate 
meta-analysis, which focuses on evidence derived from the same study design, such as RCTs. 
Recent proof-of-concept studies have shown that LLMs like Claude 2, Bing AI, and GPT-4 can 
improve the efficiency and accuracy of data extraction for evidence syntheses 25-27. However, these 
studies often involve limited datasets, either based on a single case27 or a small sample size of 
RCTs 25, 26. Although key data elements necessary for evidence triangulation, such as primary 
outcomes and effect estimates, can be accurately extracted in over 80% of RCTs, the performance 
of LLMs remains suboptimal with larger datasets. Additionally, other studies have evaluated the 
sensitivity and specificity of LLMs like GPT-3.5 Turbo in tasks such as title and abstract screening. 
The findings suggest that while these models offer promise, they are not yet sufficient to replace 
manual screening entirely28. On the other hand, GPT-4 Turbo-assisted citation screening has 
shown potential as a reliable and time-efficient alternative to systematic review processes 29. With 
these technological advances, Mayo Clinic has proposed an AI-empowered integrated framework 
for living, interactive systematic reviews and meta-analyses, enabling continuous, real-time 
evidence updates30, 31.  
 
In contrast, our focus is on utilizing LLMs to perform convergency analysis among results obtained 
from different study designs, known as triangulation analysis. The key difference between meta-
analysis and triangulation analysis lies in their focus: while meta-analysis assesses consistency 
within a single study design, triangulation analysis examines the convergency of conclusions 
across diverse study designs. Although there are no widely accepted quantitative methods for 
assessing convergency, insights can be drawn from convergency analysis, originated from 
neurobiological studies, primarily using a vote-counting approach across different study designs 
32-34. Lastly, in causal graphical models, the concept of a causal relationship is uniform across 
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different types of variables. Whether the graph pertains to biological or economic phenomena, the 
underlying principles of causality remain the same 35. This perspective also applies to the method 
in this study, that evidence should be and could be triangulated with CoE and LoE to conclude a 
causal relationship, whether in biomedical, economic, and environment field. As a result of 
constantly evolving research, the CoE ratings may change as more research findings becomes 
available. This is particularly the case for exposure-outcome pairings with low LoE due to 
contradictory results. Our approach is to harmonize confusion and help consumers make informed 
decisions about diet, exercise, and other activities that can affect their long-term health, as well as 
help researchers shape future clinical studies.  
 
Limitations 
This study faced several limitations, including difficulties in accurately classifying study designs 
and interpreting associations due to data inconsistencies. The extracted entities were not mapped 
to standard biomedical vocabularies like SNOMED CT36 or UMLS37, leading to potential 
misalignment and incorrect relationship pairing, which could affect the final LoE. Furthermore, 
not all relevant study designs were included, limiting the comprehensiveness of the conclusions. 
The reliance on expert annotations also introduced subjective bias, potentially affecting the 
generalizability of the findings. While the two-step extraction approach showed improved 
performance, it requires further refinement to handle the complexity and variability of biomedical 
data effectively.  
 
To maximize the utility of LLMs in evidence triangulation, future work should focus on addressing 
these limitations through continuous model fine-tuning and the development of more objective 
evaluation methods. A critical challenge remains in harmonizing evidence, including standardizing 
study populations and cause-and-effect entities across different study designs. The study aims to 
use LLMs to extract and align these elements through concept similarity measures like BERTScore, 
rather than relying on superficial string-based matches. Future studies will also introduce 
biomedical ontologies to better map the hierarchical structure of cause-and-effect concepts, 
leading to a more standardized and comprehensive approach to evidence triangulation. 
 
Methods 
Our procedure begins by collecting titles and abstracts from relevant literature. We then apply a 
LLM to systematically process these texts across various study designs, extracting key outcomes 
and methodological details. This leads to the aggregation of data into a coherent, transparent 
dataset that is ready for triangulation analysis. The workflow ends with a quantitative evidence 
triangulation algorithm to discover the level of evidence behind a relationship between a SDoH 
factor and a health outcome. 
 
(1) Data sources 
Validation dataset #1: Regarding data sources, the study utilizes literature categorized under 
publication types marked as meta-analysis, systematic reviews, observational studies, randomized 
controlled trials, clinical trials and related types available on PubMed. The MeSH terms 
“cardiovascular diseases” and “Diet, Food, and Nutrition” are utilized as search terms, with MeSH 
major topic as the search field. The resulting search query is outlined below: “(cardiovascular 
diseases[MeSH Major Topic]) AND (Diet Food,and Nutrition[MeSH Major Topic])”. For studies 
employing mendelian randomization (not a conventional publication type in PubMed), we 
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additionally narrowed down the search to include only publication titles and abstracts containing 
the phrase “Mendelian randomization”. In total, 4,268 articles were retrieved. This first dataset 
will consist of 100 randomly selected studies from the corpus, used to validate the results extracted 
by LLM. The extracted results dataset and validation dataset are provided in supplementary data 
1&2. Entities and relationships are manually annotated by 4 domain experts and clinicians (see 
Acknowledgement for details). 
 
Validation dataset #2: The dataset used for external validation consists of 291 human-extracted 
relationships between dietary factors and coronary heart disease, derived from the Nurses’ Health 
Study38. It includes a wide range of dietary exposures, such as specific nutrients and food items, 
and their associations with cardiovascular outcomes. This data was meticulously curated and 
visualized in a knowledge graph, capturing both positive and negative associations, as well as 
effect size (hazard ratio, risk ratio, odds ratio, etc.) which can be served as a critical external 
foundation for testing the two-step extraction approach. The extracted results dataset and 
validation dataset are provided in supplementary data 3&4. 
 
A Pilot-study dataset: To provide a specific example of the relationship between a particular 
disease and dietary factors, we further selected salt intake and hypertension as the intervention-
outcome pair and retrieved relevant publications. Consistent with the aforementioned limitations 
on publication types, we refined the search terms to include MeSH terms related to salt intake and 
hypertension. The full constructed search queries are provided in Supplementary Material #2. 
After removing duplicates, we retrieved a total of 1,488 primary research articles. This case study 
dataset will be used to exhibit the formation of automatic-extracted ready-for-triangulation 
evidence dataset in the results section. The extracted results data is provided in supplementary data 
5. 
 
(2) LLM-based study results extraction 
For the task of extracting precise and insightful results from health-related documents, we 
employed medium-tier open source LLMs, which includes deepseek-chat39, glm-4-airx40, qwen-
plus41, and GPT-4-mini42. While these models were not the top performers in all metrics, they 
were selected as a compromise, balancing both extraction performance and economic accessibility, 
such as cost per token. This balance makes them suitable for large-scale extraction tasks where 
both accuracy and cost-effectiveness are critical. The pricing of each model is shown in 
Supplementary Table 1.  
 
The specific extraction tasks for the model are designed as following: 
Methodological information: 

• Identification of study design 
The initial step involves using LLM to categorize the study design present in medical 
abstracts. The designs considered include RCT, MR, OS, and META. 

• Extraction for meta-analyses and systematic reviews 
For abstracts identified as META, we ask LLM to extract the number of included studies 
and their respective study designs. This step is crucial for understanding the strength and 
diversity of evidence in these comprehensive analyses. 

Ontological information: 
• Primary result identification 
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Next, we ask LLM to identify the primary result from each abstract. This involves 
recognizing the main findings that the study reports, which is essential for summarizing 
the study’s major contribution to the field. 

• Intervention/Exposure and outcome extraction 
Following the identification of the primary results, the model extracts key entities including 
intervention or exposure and the corresponding primary outcome. The model also identifies 
the direction (increased or decreased) of intervention/exposure for later relationship 
alignment. 

• Relationship and statistical significance 
First the model extracts the direction of the relationship from the intervention/exposure to 
the outcome. The model assesses whether the intervention/exposure increases, decreases 
or an effect was not found. Then we ask LLM to extract statistical significance of the 
identified relationship, ensuring the ability to distinguishing positive results from negative 
results.  

• Population, Participant Number and Comparator Group information 
Adhering to the standard representation medical evidence, we ask the model to extract 
information on the population condition under study, the number of participants, and 
details of the comparator group if applicable.  
 

This prompt is to follow a logical progression from study-level information (study design), to more 
specific study result extraction (intervention/exposure, primary outcome, relationship direction, 
statistical significance), then contextual details (population, participant number, comparator). 
Figure 5 shows a graphical illustration of the overflow and logics of the designed prompt. For each 
abstract, LLM first determines the study design. If the abstract pertains to a meta-analysis, the 
model then identifies the number and types of included studies. Subsequently, it locates the 
primary result, extracts relevant details about the intervention/exposure and outcome, and assesses 
the direction and significance of the relationship. Information about the study population, the 
number of participants, and comparator group details are also extracted, providing a 
comprehensive overview of each study’s evidence. 
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Figure 5. A flowchart describing the overall logic of using LLM to extract medical evidence in structured format. Gray 
boxes represent each part of the prompt in each step. Circled numbers (1-9) represent the extracted information by the model. 

To enhance the accuracy and robustness of entity and relationship extraction, we implemented and 
compared a two-step extraction pipeline with a direct one-step extraction approach (Figure 6). The 
one-step extraction method simultaneously identifies and extracts both entities (e.g., exposures and 
outcomes) and their relationships directly from the text. In contrast, the two-step extraction process 
separates these tasks: the first step involves using NER to identify and extract entities from the 
text, such as specific dietary factors and cardiovascular outcomes. In the second step, these 
extracted entities are then used to identify and extract the relationships among them using RE 
techniques. This sequential approach allows for more precise entity recognition before relationship 
extraction, potentially reducing errors and improving overall extraction accuracy. Full prompts 
and code implementations for both the one-step and two-step extraction methods are detailed in 
the Supplementary Material #3, providing a comprehensive guide for replicating these processes. 
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Figure 6. An illustration of one-step and two-step NER and RE in study results 

 
(3) Convergency and level of evidence 
To quantitatively analyze the dataset, we developed an evidence triangulation algorithm derived 
from the Cumulative Evidence Index (CEI) score from ResearchMap, which is a graph-based 
representation of empirical evidence and hypothetical assertions found in research articles, 
allowing biologists to systematically evaluate and plan experiments32-34. The scoring algorithm 
uses a Bayesian approach to evaluate the strength of evidence for a causal relationship in research 
maps by integrating results from various types of experiments, accounting for convergency and 
consistency. Originally, CEI calculates the amount of evidence of relationships between 
agents(source) and targets(outcome) across different study designs including positive 
interventions, positive non-interventions, negative non-interventions, and negative interventions.  
 
In this study, we optimized the CEI algorithm for population-based health studies and proposed 
CoE. CoE score is calculated by first categorizing studies into different classes based on primary 
study designs and exposure/intervention directions (e.g., RCT with increased intervention or OS 
with decreased exposure). Then each study result is entered into a scoring table using Laplace 
smoothing, which adds a pseudo count to avoid zero denominators. The evidence is then tallied to 
determine how strongly each type of relationship (excitatory, inhibitory, or no change) is supported.  
 
The final score is derived by normalizing the difference between the maximum observed evidence 
and a baseline prior, resulting in a value between 0 and 1 that reflects the strength and consistency 
of the evidence for a causal relationship. Each relationship is given a possibility score representing 
the average proportion across study designs, and the determinate relationship is the relationship 
with biggest possibility. The detailed Bayesian algorithm can refer to ResearchMaps33. In this 
study we calculated the CoE score for each relationship then categorized the score into 3 levels: 
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weak [0-0.3], moderate (0.3-0.7), and strong [0.7-1.0], and named the scoring method as LoE to 
represent different levels of convergency in evidence. 
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