1 Diagnostic performance of multiplex lateral flow tests in ambulatory patients with acute

2 respiratory illness

- ³ Caitriona Murphy¹, Loretta Mak¹, Samuel M. S. Cheng¹, Gigi Y. Z. Liu¹, Alan M. C. Chun¹,
- 4 Katy K. Y. Leung¹, Natalie Y. W. Sum¹, Eero Poukka^{2,3}, Malik Peiris^{1,4}, Benjamin J.
- 5 $Cowling^{1,5}$
- 6

7 Affiliations

- 8 1. WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of
- 9 Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- 10 Special Administrative Region, China
- 11 2. Infectious Disease Control and Vaccinations Unit, Department of Health Security, Finnish
- 12 Institute for Health and Welfare, Mannerheimintie 166, 00300 Helsinki, Finland
- 13 3. Department of Public Health, Faculty of Medicine, University of Helsinki, Yliopistonkatu
- 14 4, 00100 Helsinki, Finland
- 15 4. Centre for Immunology & Infection, Hong Kong Science and Technology Park, New
- 16 Territories, Hong Kong Special Administrative Region, China
- 17 5. Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology
- 18 Park, New Territories, Hong Kong Special Administrative Region, China
- 19
- 20 Corresponding author: <u>bcowling@hku.hk</u>
- 21
- 22 Key words: rapid antigen test; lateral flow assay; sensitivity; specificity; influenza; COVID-
- 23 19; RSV
- 24 Word count (abstract): 200
- 25 Word count (main text): 2,382

26 ABSTRACT

27	Background: We assessed the performance of three different multiplex lateral flow assays
28	which provide results for influenza, respiratory syncytial virus (RSV) and SARS-CoV-2.
29	Methods: Ambulatory patients 6 months and older presenting with two or more symptoms or
30	signs of an acute respiratory illness were enrolled in an outpatient clinic in Hong Kong.
31	Multiplex lateral flow tests manufactured by SureScreen, Microprofit and Goldsite were
32	performed by trained research staff using the nasal swabs from each test kit, and separate
33	swabs were collected for RT-PCR testing.
34	Results: Between 4 April and 20 October 2023, 1646 patients were enrolled and tested by at
35	least one lateral flow test. The point estimates for all three multiplex tests had high sensitivity
36	above 80% for influenza A and SARS-CoV-2, and the tests manufactured by Microprofit and
37	Goldsite had sensitivity exceeding 84% to detect RSV. Test sensitivity increased with viral
38	load. Specificity was higher than 97% for all three tests except for the SureScreen test which
39	had specificity 86.2% (95% CI: 83.9% to 88.3%) for influenza A.
40	Conclusions: The multiplex lateral flow tests provided timely diagnosis of influenza, RSV
41	and SARS-CoV-2 infection and can be used to inform clinical management and infection
42	control such as isolation behaviours.

44 INTRODUCTION

45	Timely and accurate diagnosis of infection from respiratory viruses is essential for managing
46	clinical care and reducing transmission. Lateral flow tests, also referred to as rapid antigen
47	tests, are point of care devices that can identify the presence of an infectious disease by
48	detecting microbial proteins within 30 minutes. The key advantage of lateral flow tests over
49	the current gold standard, polymerase chain reaction (PCR) assay is the lower cost and the
50	quick turnaround time for results. Additionally, performing PCR tests requires trained staff
51	and laboratory infrastructure that is resource intensive and may not always be available.
52	Lateral flow tests were widely distributed during the COVID-19 pandemic to improve
53	diagnosis of cases in the community and facilitate more efficient isolation and quarantine
54	policies. The use of lateral flow tests were deemed a successful strategy in multiple locations
55	for use in the community [1-3] and subgroups of the community where repeated testing using
56	lateral flow tests was utilised to help keep schools and workplaces open [4-7].
57	
58	In some locations, lateral flow tests are now available for detecting influenza A/B, SARS-
59	CoV-2 and RSV in a single test kit. Diagnostic tests that can quickly identify the presence of
60	infection while also indicating which respiratory virus an individual is infected with will aid
61	patient management, particularly when specific antivirals should be administered rapidly
62	after symptom onset. The turnaround time of lateral flow tests allows patients to receive
63	appropriate antiviral treatment in a timely manner and when it may be most beneficial during
64	the course of infection. The objective of this study was to assess the performance of three
65	different multiplex lateral flow tests for detecting SAR-CoV-2, influenza A/B and RSV
66	compared to RT-PCR in an outpatient setting in Hong Kong.

67

68 **METHODS**

69 Study participants

70 This study included outpatients enrolled in an ongoing influenza vaccine effectiveness study 71 in Hong Kong. Patients at least 6 months of age were enrolled if they presented with acute 72 respiratory illness defined as having at least two of seven signs/symptoms (fever \geq 37.8°C, 73 cough, sore throat, runny nose, headache, myalgia and phlegm) within 72 hours of symptoms 74 onset. Participants or their legal guardians were provided with a questionnaire to obtain 75 demographic details as well as vaccination history. 76 77 Rapid test procedures 78 Upon obtaining informed consent, two lateral flow assays namely "Fluorecare SARS-CoV-2 79 & Influenza A/B & RSV Antigen Combo Test Kit (Self-Test)" (Shenzhen Microprofit

80 Biotech Co. Ltd., Shenzhen, China) and "SARS-CoV-2 + Flu A&B Antigen Combo Rapid

81 Test Cassette (Nasal Swab)" (SureScreen Diagnostics Ltd, Derby, UK) were administered by

82 the research team. If either of these tests were unavailable at the time of participant enrolment

83 a third test, "SARS-CoV-2 & Influenza A/B & RSV Antigen Kit" (Colloidal Gold) (Goldsite

84 Diagnostics Inc., Shenzhen, China) was used. Throughout the paper, the three multiplex

85 lateral flow tests are named after their manufacturer, Microprofit, SureScreen and Goldsite

86 respectively.

87

88	The Microprofit and	Goldsite tests are	combination tests	for detecting	SARS-CoV-2,
	1			0	,

89 influenza A/B and RSV, while SureScreen detects SARS-CoV-2 and influenza A/B. All three

- 90 tests use a nasal swab and provide results within 15 minutes. Further details of the test
- 91 specifications are available in the Supplementary (Supp. Table 1; Figures 1 to 3). In the event
- 92 that a lateral flow tests result was invalid (i.e. there was no visible coloured band for the

93	control line) a second test was conducted but not a third test if the second was also invalid.
94	Those that had a third invalid test result were removed from the analysis.
95	
96	Laboratory testing
97	A separate set of nose and throat swabs were also collected by the research team or attending
98	physician and were pooled into a single vial of transport medium and transported to the
99	laboratory for testing. All samples were tested by reverse transcription-polymerase chain
100	reaction (RT-PCR) for influenza (A and B) and SARS-CoV-2. Moreover, all lateral flow test
101	RSV-positive and a randomly selected subset of lateral flow test RSV-negative samples were
102	tested for RSV using RT-PCR.
103	
104	A standard 20 $\Box\mu L$ RT-PCR assay was performed, comprising 5 $\Box\mu L$ of a 4X master reaction
105	mixture (TaqMan Fast Virus 1-Step Master Mix, ThermoFisher), $0.5\Box\mu M$ of the forward
106	primer, $0.5 \Box \mu M$ of the reverse primer, $0.25 \Box \mu M$ of the probe, and $2 \Box \mu L$ of the RNA
107	sample. The RT-PCR reactions were carried out using a ViiA7 Real-Time PCR system
108	(ThermoFisher) with the following thermal cycling conditions: reverse transcription at 50°C
109	for $5 \square$ minutes, inactivation of reverse transcriptase at 95°C for $20 \square$ seconds, followed by 40
110	cycles of PCR amplification (denaturation at 95°C for 5 seconds, annealing/extension at
111	58°C for Influenza A and B, SARS-CoV-2 , 50°C for RSV A and B for 30 \square seconds). Primer
112	and probe sequences can be found in Supplementary Table 2. The Ct-value was evaluated
113	from all the PCR positive samples. A false-positive result was defined as a positive result for
114	a particular virus on a lateral flow test and a subsequent negative confirmatory RT-PCR result
115	for that virus.
116	

117 Statistical analysis

118	The sensitivity and specificity of each of the lateral flow tests was estimated using RT-PCR
119	confirmed infection for each virus as the comparator. The incidence of influenza B was low
120	during the study period and therefore, the performance of lateral flow tests for detecting
121	influenza B was not evaluated. Multivariable logistic regression, including the RT-PCR
122	positives was used to evaluate the relationship between lateral flow test positivity and age,
123	sex, vaccination status and symptom onset. Positive and negative predictive values (PPV and
124	NPV) were estimated conditional on different values for the true prevalence. Confidence
125	intervals (CI) were estimated using binomial distributions. All statistical analyses were
126	conducted using R version 4.2.2 (R Foundation for Statistical Computing, Vienna, Austria).
127	
128	Ethical approval
129	The study protocol was approved by the Institutional Review Board of the University of
130	Hong Kong. The lateral flow tests aided with clinical management, and written informed
131	consent was obtained for each participant and parental consent was obtained for participants
132	below 18 years of age.
133	
134	RESULTS
135	Between 4 April and 20 October 2023, 1646 outpatients with acute respiratory symptoms
136	were enrolled. Males accounted for 47.0% and 63.3% were children (<18 years old). The
137	majority (26.3%) of adults were less than 50 years old with just 4.1% being 65 years of age or
138	older. All patients were tested for influenza and SARS-CoV-2 by RT-PCR. Influenza A was
139	detected in 651 (39.6%) patients and 171 (10.4%) were laboratory confirmed SARS-CoV-2.
140	During our study period the predominant SARS-CoV-2 strains in the community were
141	Omicron XBB subvariants. Of the 431 samples tested for RSV by RT-PCR 75 (17.4%) were

positive. The Microprofit test was used to test 814 (49.5%) patients, and 832 (50.5%) were
tested using the Goldsite test. SureScreen was performed by 1632 (99.1%) patients and the
reasons for not being tested for the remaining 23 patients were because the test was out of
stock (7/23), they were not feeling well (6/23), were too busy (3/23) or other unspecified
reasons (7/23).

147

148	The SureScreen test had a significantly higher sensitivity (89.7%, 95% CI: 87.0% to 91.9%)
149	compared to Microprofit (82.1%, 95% CI: 77.0% to 86.5%) and Goldsite (84.9%, 95% CI:
150	80.9% to 88.3%) for detecting influenza A but performed similarly for detecting SARS-CoV-
151	2. Both the Microprofit and Goldsite tests were comparable for detecting RSV (Table 1). This
152	is reflected in the NPV estimates for different values of prevalence in Figure 1. When the
153	viral load was high (i.e. low CT value) all three tests had a higher sensitivity compared to
154	patients with low viral loads particularly for detecting influenza A and SARS-CoV-2. The
155	sensitivity ranged from 87.5% to 100% for detecting CT values <25 and from 28.6% to
156	75.0% for detecting CT values \geq 30 (Figure 2). Microprofit and SureScreen had a
157	significantly lower sensitivity among those 65 years and older compared to younger age
158	groups for detecting influenza A (Supp. Table 2; Figure 4). Sensitivity for those 65 years and
159	older was 25.0% (95% CI: 3.2% to 65.1%) and 70.8% (95% CI: 48.9% to 87.4%) compared
160	to 86.3% (95% CI: 73.7% to 94.3%) and 94.6% (95% CI: 88.7% to 98.0%) for those 6
161	months to 5 years old for Microprofit and SureScreen respectively. Lateral flow tests were
162	more sensitive for detecting influenza A in patients with a symptom onset between 1 to 2
163	days prior to presentation (odds ratio: 1.2, 95% CI: 1.1 to 4.7) compared to those with
164	symptom onset within 1 day. The estimates of test sensitivity for patients that were
165	vaccinated for influenza and COVID-19 were similar to those who had not been vaccinated
166	for the respective pathogen (Supp. Table 3).

-11	~	_
	6	1
	()	1
	\sim	

168	Specificity for the Microprofit and Goldsite tests were significantly higher than SureScreen
169	for detecting both influenza A and SARS-CoV-2, resulting in a lower PPV for SureScreen
170	(Figure 1). Other than the lower specificity for SureScreen for detecting influenza A (86.2%,
171	95% CI: 83.9% to 88.3%), the remaining test and virus specific point estimates had a
172	specificity over 97% (Table 1). Specificity was similar across age groups and vaccination
173	status. Among the 138 influenza A false positives 8 (5.8%) were laboratory confirmed
174	SARS-CoV-2 infections and among the SARS-CoV-2 false positives (n=30) and RSV false
175	positives (n=5) there were 3 patients among each that tested positive for influenza A by RT-
176	PCR (Supp. Table 4).
177	
178	DISCUSSION
179	We evaluated the performance of three multiplex rapid tests, Microprofit, Goldsite and
180	SureScreen in symptomatic individuals in an ambulatory care setting in Hong Kong
181	compared to the gold standard of RT-PCR. Point estimates of Microprofit and Goldsite tests
182	reached the WHO minimum test performance for all three viruses with a sensitivity of $\geq 80\%$
183	and specificity $\geq 97\%$ [8]. SureScreen did not meet these requirements for all targeted
184	respiratory viruses in a single test kit. Instead it had a high sensitivity for detecting influenza
185	A and SARS-CoV-2 but had a lower specificity for detecting influenza A (86.2%, 95% CI:
186	83.9% to 88.3%). The study period was during the seasonal influenza epidemic in Hong
187	Kong, with one epidemic peak in late April dominated by influenza A(H1N1) and a second
188	peak in September dominated by influenza A(H3N2) [9]. An epidemic of SARS-CoV-2,
189	dominated by Omicron XBB subvariants also occurred from April to July 2023 [9] and
190	therefore, we expected the resulting PPV and NPV during periods of higher prevalence to be
191	moderate to high.

192

193	The estimates in this study are higher than those observed in some previous studies [10-15].
194	Although, studies estimating the performance of the same tests as those evaluated here were
195	among asymptomatic individuals and we were unable to find studies using the same
196	multiplex tests among symptomatic individuals. The varying sensitivity for symptomatic and
197	asymptomatic individuals has been documented [16] but a systematic review also identified
198	that the performance of lateral flow tests in symptomatic individuals had a wide range (34.3%
199	to 91.3%) depending on the manufacturer [16]. We identified one study estimating the
200	performance of a multiplex Microprofit test that reported a sensitivity for detecting influenza
201	A of 80.8% (95% CI: 67.2% to 94.4%) among asymptomatic individuals. However, the test
202	sensitivity was 41.5% (95% CI: 26.2% to 56.8%) for detecting RSV in that study [12]
203	compared to 94.6% (95% CI: 81.8% to 99.3%) estimated in this study. The performance of a
204	singleplex SureScreen test for detecting SARS-CoV-2 was evaluated in inpatients and
205	outpatients from a single centre in the UK with a lower estimated sensitivity of 65% (95% CI:
206	55.2% to 73.6%) but a very high specificity at 100% (95% CI: 96.3% to 100%) [10]. Another
207	study using a singleplex SureScreen diagnostic test to detect SARS-CoV-2 estimated a
208	sensitivity and specificity of 28.8% (95 CI%: 20.2% to 38.6%) and 97.8% (95% CI: 94.5%
209	to 99.4%) respectively for mass screening in unexposed asymptomatic individuals [11].
210	Compared to the sensitivity and specificity estimates reported by the manufacturers
211	(Appendix Table 1), our study estimates, in a real-world context, were slightly lower.
212	
213	The estimated sensitivity of the three lateral flow tests increased as the viral load increased
214	which is consistent with previous literature [17-20]. Some studies suggest that the viral load
215	is higher in patients with more severe outcomes, especially considering severe cases might
216	take longer to clear infection [21]. In turn, if the sensitivity is higher for detecting severe

217	cases, the use of lateral flow tests could support timely prescription of antivirals. A lower
218	sensitivity for those with a lower viral load could have negative implications when
219	implementing lateral flow tests. Of the 88 false negatives in this study, 76% had lower viral
220	loads. Falsely testing negative may lead to a failure to isolate and a missed opportunity to
221	reduce onwards transmission, albeit this typically occurred among individuals with lower Ct
222	values who might perhaps be less contagious. Health authorities in Hong Kong currently
223	recommend symptomatic individuals use a lateral flow test and for those who test negative it
224	is recommended to remain cautious and repeat the test over a few days [22].
225	
226	Our evaluation of lateral flow test performance has limitations. While RT-PCR is often
227	considered a gold standard it can detect inactive virions for a few weeks after infection [23].
228	An overestimate of infections identified by RT-PCR may subsequently underestimate the
229	sensitivity of lateral flow tests if the objective is to identify contagious individuals and
230	individuals early in their course of disease when antivirals would be more effective and
231	transmission-reducing measures such as isolation could be implemented more effectively.
232	Data were collected prospectively based on the presence of symptoms and with symptom
233	onset occurring within three days and therefore there was a smaller sample of patients with Ct
234	values >30, particularly for RSV. Viral culture was not carried out in this study to confirm
235	the relationship between infectiousness and testing positive by lateral flow tests. Finally, the
236	sensitivity may vary depending on the strains of SARS-CoV-2 circulating which in our study
237	period included Omicron XBB subvariants. The SureScreen test evaluated here target the
238	more conserved nucleocapsid protein of SARS-CoV-2 (as opposed to the spike protein),
239	however variation in the test performance may persist across virus lineages [14]. It was
240	unclear which SARS-CoV-2 protein Microprofit and Goldsite targeted.
241	

- 242 To conclude, each of the three evaluated multiplex tests performed well in detecting one of
- 243 the viral antigens in the multiplex lateral flow test but necessarily all targeted respiratory
- viruses. The use of lateral flow tests has been more limited in healthcare settings where PCR
- 245 is readily available. However, they can efficiently implement control measures and providing
- an accurate diagnosis will guide appropriate treatment.
- 247
- 248

249 ACKNOWLEDGMENTS

- 250 The authors thank Julie Au for technical support. This research was supported by the Health
- and Medical Research Fund, Health Bureau, The Government of the Hong Kong Special
- 252 Administrative Region (grant no. INF-HKU-3). BJC is supported by the Theme-based
- 253 Research Scheme (Project No. T11-712/19-N) of the Research Grants Council of the Hong
- 254 Kong SAR Government.
- 255

256 POTENTIAL CONFLICTS OF INTEREST

- 257 BJC consults for AstraZeneca, Fosun Pharma, GSK, Haleon, Moderna, Novavax, Pfizer,
- 258 Roche, and Sanofi Pasteur. The authors report no other potential conflicts of interest.
- 259
- 260
- 261

REFERENCES

- Pavelka M, Van-Zandvoort K, Abbott S, et al. The impact of population-wide rapid antigen testing on SARS-CoV-2 prevalence in Slovakia. *Science* 2021;372(6542):635-41.
- Ferrari D, Stillman S, Tonin M. Assessing the impact of COVID-19 mass testing in South Tyrol using a semi-parametric growth model. *Sci Rep* 2022;12(1):17952.
- Hodges E, Lefferts B, Bates E, et al. Use of Rapid Antigen Testing for SARS-CoV-2 in Remote Communities - Yukon-Kuskokwim Delta Region, Alaska, September 15, 2020-March 1, 2021. MMWR Morb Mortal Wkly Rep 2021;70(33):1120-3.
- Dewald F, Suarez I, Johnen R, et al. Effective high-throughput RT-qPCR screening for SARS-CoV-2 infections in children. *Nat Commun* 2022;13(1):3640.
- Mendoza RP, Bi C, Cheng HT, et al. Implementation of a pooled surveillance testing program for asymptomatic SARS-CoV-2 infections in K-12 schools and universities. *EClinicalMedicine* 2021;38:101028.
- Leng T, Hill EM, Holmes A, et al. Quantifying pupil-to-pupil SARS-CoV-2 transmission and the impact of lateral flow testing in English secondary schools. *Nat Commun* 2022;13(1):1106.
- Gorji H, Lunati I, Rudolf F, et al. Results from Canton Grisons of Switzerland suggest repetitive testing reduces SARS-CoV-2 incidence (February-March 2021). *Sci Rep* 2022;12(1):19538.
- The World Health Organization. Antigen-detection in the diagnosis of SARS-CoV-2 infection. Interim Guidance. 2021.
 (https://iris.who.int/bitstream/handle/10665/345948/WHO-2019-nCoV-Antigen-Detection-2021.1-eng.pdf?sequence=1). (Accessed 11 Mar 2024).
- 9. The Centre for Health Protection. COVID-19 & FLU EXPRESS. 2023;1(39):1-19.

- Pickering S, Batra R, Merrick B, et al. Comparative performance of SARS-CoV-2 lateral flow antigen tests and association with detection of infectious virus in clinical specimens: a single-centre laboratory evaluation study. *Lancet Microbe* 2021;2(9):e461-e71.
- Baro B, Rodo P, Ouchi D, et al. Performance characteristics of five antigen-detecting rapid diagnostic test (Ag-RDT) for SARS-CoV-2 asymptomatic infection: a head-tohead benchmark comparison. *J Infect* 2021;82(6):269-75.
- Bayart JL, Gillot C, Dogne JM, et al. Clinical performance evaluation of the Fluorecare(R) SARS-CoV-2 & Influenza A/B & RSV rapid antigen combo test in symptomatic individuals. *J Clin Virol* 2023;161:105419.
- Tonelotto V, Davini A, Cardarelli L, et al. Efficacy of Fluorecare SARS-CoV-2 Spike Protein Test Kit for SARS-CoV-2 detection in nasopharyngeal samples of 121 individuals working in a manufacturing company. *PLoS One* 2022;17(1):e0262174.
- Bown A, Sweed A, Catton M, et al. Detection of SARS-CoV-2 BA.2.86 by lateral flow devices. *Int J Infect Dis* 2024;139:168-70.
- Salvagno GL, Gianfilippi G, Pighi L, et al. Real-world assessment of Fluorecare SARS-CoV-2 Spike Protein Test Kit. *Adv Lab Med* 2021;2(3):409-16.
- 16. Dinnes J, Sharma P, Berhane S, et al. Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. *Cochrane Database Syst Rev* **2022**;7(7):CD013705.
- 17. Eyre DW, Futschik M, Tunkel S, et al. Performance of antigen lateral flow devices in the UK during the alpha, delta, and omicron waves of the SARS-CoV-2 pandemic: a diagnostic and observational study. *Lancet Infect Dis* 2023;23(8):922-32.
- Fernandez-Montero A, Argemi J, Rodriguez JA, et al. Validation of a rapid antigen test as a screening tool for SARS-CoV-2 infection in asymptomatic populations. Sensitivity, specificity and predictive values. *EClinicalMedicine* 2021;37:100954.

- Lefever S, Indevuyst C, Cuypers L, et al. Comparison of the Quantitative DiaSorin Liaison Antigen Test to Reverse Transcription-PCR for the Diagnosis of COVID-19 in Symptomatic and Asymptomatic Outpatients. *J Clin Microbiol* 2021;59(7):e0037421.
- Bond KA, Smith B, Gardiner E, et al. Utility of SARS-CoV-2 rapid antigen testing for patient triage in the emergency department: A clinical implementation study in Melbourne, Australia. *Lancet Reg Health West Pac* 2022;25:100486.
- Lin Y, Wu P, Tsang TK, et al. Viral kinetics of SARS-CoV-2 following onset of COVID-19 in symptomatic patients infected with the ancestral strain and omicron BA.2 in Hong Kong: a retrospective observational study. *Lancet Microbe* 2023;4(9):e722-e31.
- The Government of the Hong Kong Special Administrative Region. Rapid Antigen Tests. 2024.

(https://www.coronavirus.gov.hk/eng/rat.html#:~:text=An%20RAT%20is%20designe d%20to,or%20deep%20throat%20saliva%20samples.). (Accessed 22 Feb 2024).

 Singanayagam A, Patel M, Charlett A, et al. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. *Euro Surveill* 2020;25(32).

TABLES

Table 1: The performance of lateral flow tests for detecting influenza A, SARS-CoV-2 and

RSV infection.

Respiratory virus and	Sensitivity		Specificity	
test manufacturer				
	%	95% CI	%	95% CI
Influenza A				
Microprofit	82.1	77.0 to 86.5	97.6	95.9 to 98.7
Goldsite	84.9	80.9 to 88.3	98.0	96.2 to 99.1
SureScreen	89.7	87.0 to 91.9	86.2	83.9 to 88.3
SARS-CoV-2				
Microprofit	81.7	73.5 to 88.3	99.4	98.5 to 99.8
Goldsite	80.4	67.6 to 89.8	99.4	98.5 to 99.8
SureScreen	88.2	82.3 to 92.6	98.1	97.2 to 98.7
RSV*				
Microprofit	94.6	81.8 to 99.3	97.6	94.1 to 99.4
Goldsite	84.2	68.7 to 94.0	99.5	97.1 to 100

*The SureScreen test did not include RSV

FIGURE LEGENDS

Figure 1: Relationship between the positive and negative predictive values and prevalence for each test. Predictive values were estimated using the sensitivity and specificity presented in Table 1. The specificity for Microprofit and Goldsite were the same for detecting SARS-CoV-2 and the SureScreen test did not include RSV. The shaded areas represent the 95%

confidence intervals and the prevalence of each respiratory virus, during the study period, are

represented by the grey boxplots.

20%

0%

< 25

Figure 2: Sensitivity with 95% confidence intervals of each lateral flow test by Ct value category.

≥ 30

25-29

CT value