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Abstract

The detection and tracking of progressive memory impairments, particularly in the context of
neurodegenerative disorders, relies predominantly on traditional neuropsychological assessment
and short cognitive screening tools. These methods, however, are resource-intensive and lack
the accessibility and/or the repeatability necessary for effective early identification and tracking
interventions. This study addresses the critical need for reliable and efficient diagnostic tools to
track and predict memory decline in clinical settings. We demonstrate that an online, remote
model-based memory assessment, can identify individuals with Mild Cognitive Impairment (MCI)
with an accuracy rate exceeding 84% in a single 8-minute session. Furthermore, the test can be
repeated multiple times with increasing accuracy over multiple assessments. The system's ability
to monitor individual memory function inexpensively and longitudinally across various materials
offers a robust and repeatable alternative to the static measures currently employed. Our findings
show that traditional methods to assess memory decline could be replaced by adaptive, precise,
and patient-friendly online tools based on computational modeling techniques. Moreover, our
findings also open avenues for the proactive management of Alzheimer's disease and other
dementias, as well as sensitively tracking the effect of interventions in early disease.

Significance Statement

We introduce, for the first time, a dependable, reliable, and repeatable model-based system for
the online assessment of clinical memory impairment. Our findings demonstrate that this system
can efficiently detect memory impairments using only 8 minutes of data collected online, marking
a significant improvement over traditional assessments that typically require 3 hours in a clinical
setting. These findings open up the possibility of inexpensive population-level monitoring of
memory function.

Main Text

Introduction
Memory impairments, particularly prevalent in conditions such as dementia, pose a significant
public health challenge. This challenge is exacerbated by aging populations and the high costs
associated with care. The current diagnostic landscape for these impairments is fraught with
limitations: tests are time-consuming, culturally biased, require specialized administration, and
are vulnerable to practice effects. These factors collectively contribute to a significant
underestimation of conditions such as Mild Cognitive Impairment (MCI), with studies revealing
that only a small fraction of expected cases are accurately diagnosed in the United States. For
example, one study estimated that only 8% of expected MCI cases are diagnosed (1), and similar
studies confirm low detection rates (11-15%; (2, 3)), often attributing this to clinicians' limited skills
and time constraints. This discrepancy highlights a critical gap in our healthcare system's ability to
identify and address cognitive decline early on.
Despite these challenges, recent research indicates improvements in the detection rates of

dementia, suggesting that these rates are now more closely aligned with expected figures (4).
However, this progress is overshadowed by the continued oversight of the early stages of
cognitive impairment. The early detection of such conditions is crucial, as many MCI causes are
reversible, and lifestyle modifications can halt or reverse cognitive decline (5). The potential for
early intervention to significantly alter patient outcomes underscores the pressing need for
diagnostic tools that are not only more accurate but also accessible and patient-centric (6).
In response to these needs, an ideal diagnostic tool would bridge the existing gaps. It would

provide reliable, interpretable data that accurately reflects an individual's memory function in
real-world settings, distinguish between normal aging and pathological memory decline, facilitate
frequent and unbiased testing, and require minimal intervention from specialists. Such a tool
would be specifically designed to address memory-related concerns, be minimally influenced by
external variables, and be easily usable by patients themselves.
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Moreover, the ideal diagnostic tool would be adaptable for remote use, aligning with the
growing need for telemedicine. This feature would allow for the assessment of memory
impairments from a distance, making it accessible to individuals who cannot easily visit
healthcare facilities. Such remote administration capabilities would not only extend the tool's
reach but also enhance patient convenience, safety, and inclusiveness.
Notably, traditional screening and diagnostic tools have not fully utilized contemporary

computational frameworks of memory encoding and retrieval (7–9). In the present study, we
pioneer using such a computational approach for diagnostic applications. Specifically, we utilize a
well-established episodic memory model (7) in combination with an adaptive fact-learning system
(AFLS) to create a unified diagnostic framework. The AFLS tailors stimulus presentation rates to
individual users, and the computational model, iteratively calibrated through AFLS response data,
evolves into a 'cognitive twin' of the user. This twin's internal parameters offer a quantified
measure of the patient’s latent memory capacity (10).
Central to our model is the Speed of Forgetting (SoF) parameter. The SoF quantifies the initial

rate of episodic trace decay without rehearsal, setting the initial forgetting trajectory of a memory,
and determining how much it could benefit from subsequent re-encodings and retrievals (7, 11,
12). Here, the SoF parameter is used to quantify an individual’s memory function in real time.
This aspect of our approach is a first in the field, enabling fast assessment of memory
performance with unprecedented accuracy. Furthermore, by calibrating the SoF parameter using
AFLS data, our method offers an individualized and continuously evolving assessment for each
individual. This represents a significant advancement beyond the static, one-size-fits-all approach
of traditional diagnostic tools.
Importantly, the SoF parameter's interpretation is transparent and straightforward, making it

accessible for both clinicians and researchers. Its independence from standardization norms
further enhances its utility, as it does not rely on conventional benchmarks that may not apply
universally across diverse populations. This independence is crucial in ensuring that a diagnostic
tool is broadly applicable and adaptable to various individual contexts. Thus, our model is not only
aligned with the ideal criteria for diagnostic tools but also pushing forward the frontiers of
understanding and assessing memory impairments.
To test this new approach, we conducted a longitudinal study of healthy elderly adults and

elderly individuals with Mild Cognitive Impairment (MCI). We chose individuals with MCI, rather
than dementia, to both ensure participants had sufficient cognitive abilities to perform the task
and to test the model’s ability to detect earlier, more subtle differences in memory function as it is
often a precursor to AD and other forms of dementia (13). This cohort of individuals was followed
for 6+ months, during which they performed weekly online model-based assessments to
characterize their Speed of Forgetting. We hypothesized that (1) SoF values would be reliable
across repeated assessments; (2) individuals with MCI would exhibit higher SoF values than
healthy controls, with accelerated forgetting observed over time; (3) SoF values would have
clinical validity, allowing for the identification of abnormal memory function; and finally, (4) SoF
would primarily indicate consolidation processes rather than retrieval processes in memory
formation.

Results
In our study, 24 individuals diagnosed with Mild Cognitive Impairment (MCI; 5 female) and 27
age-matched controls (19 female) participated in weekly assessments. These assessments were
conducted through the AFLS website1, allowing participants to engage from the comfort of their
home on a computer, tablet, or smartphone (Fig. 1A). The assessments, termed "lessons" or
"memory games" covered an array of topics such as Nature, History, Science, Art, Geography,
Media, Food, and Culture, providing a diverse range of facts for memorization (Fig. 1B). The
content was presented as cue-response pair associates, with responses provided through
multiple-choice options or verbal recall. Throughout the study, participants completed up to 49
multiple-choice recognition sessions and four quarterly verbal recall sessions. The verbal recall

1 adrc.memorylab.nl

3

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 16, 2024. ; https://doi.org/10.1101/2024.03.15.24304345doi: medRxiv preprint 

https://paperpile.com/c/4M27WG/nW0ER+3bBq+VwEL
https://paperpile.com/c/4M27WG/nW0ER
https://paperpile.com/c/4M27WG/jVFzW
https://paperpile.com/c/4M27WG/nW0ER+0pIOn+aoHdx
https://paperpile.com/c/4M27WG/nW0ER+0pIOn+aoHdx
https://paperpile.com/c/4M27WG/GmXhy
https://doi.org/10.1101/2024.03.15.24304345


sessions were conducted online using a video conferencing platform, with vocal responses
automatically translated through Google's speech-to-text software, and subsequently checked by
trained assistants.

Speed of Forgetting Shows Reliable Patterns Across Different Cognitive Materials. Our
findings demonstrated that the Speed of Forgetting (SoF) remained consistent over time,
corroborating earlier observations by Sense et al. (14). Among the 51 subjects who completed
>35 lessons, the SoF metrics showed a range from the lowest individual score of 0.23 to the
highest individual score of 0.54 (Fig. 1C). This range, reflecting the full spread of SoF values
across all participants and lessons, aligned with a normal distribution pattern (Fig. 1D). The
lesson means for SoF ranged from 0.36-0.41 with a mean of 0.39 (SD = 0.0129). Although lesson
averages showed limited variation from their respective means, there were slight differences in
the SoF across various cognitive materials. This variability was more pronounced in some
participants than others, implying that specific materials might be less memorable for certain
individuals. Nevertheless, the reliability of the SoF parameter was confirmed by its test-retest
reliability. Across all pairs of lessons, the SoF exhibited a Pearson correlation coefficient of r =
0.70, indicating consistent inter-lesson correlations (Fig. 1E-F). The reliability across different
materials not only validates the SoF measure but also highlights its potential for repeated
assessments in future studies.

Speed of Forgetting Reveals Clear Differences in Cognitive Performance Between Mild
Cognitive Impairment and Healthy Individuals. Next, we examined whether patients
diagnosed with Mild Cognitive Impairment (MCI) would exhibit significantly higher Speed of
Forgetting values than age-matched healthy controls. On average, MCI patients exhibited
markedly higher SoF values than healthy controls, with healthy controls demonstrating a mean
SoF of 0.37 +/- 0.02, notably lower than MCI patients' mean SoF of 0.42 +/- 0.02 (Welch's t =
47.65, p < 0.0001) (Fig. 2A-C).
Further analysis using a mixed linear model, which explained 56% of the variance, showed a

significant main effect of diagnosis, with the MCI group displaying consistently higher SoF values
(β = 0.34, p < 0.001). The time course of the study was examined by including both linear and
quadratic terms for time in the model. While the linear progression of weeks did not significantly
impact SoF (β = -0.03, 95% CI [-0.15, 0.08], p = 0.588), the quadratic term approached
significance (β = 0.08, 95% CI [-0.02, 0.17], p = 0.107), indicating a potential nonlinear effect of
time on SoF. Notably, the interaction between MCI diagnosis and the quadratic time term was
significant (β = -0.14, 95% CI [-0.26, -0.03], p = 0.015), suggesting a stronger nonlinear pattern of
memory decline over time in MCI patients (Fig. 2D).
In addition to the main effects, age (β = 0.0016, p < 0.005) and sex (β = 0.020, p = 0.02) were

significant factors influencing SoF, with older age and male sex linked to an increased rate of
forgetting. The interaction between MCI status and age was also significant (β = -0.00, 95% CI
[-0.01, -0.00], p < 0.001), indicating that age modifies the relationship between MCI and SoF,
albeit with a minimal effect size.
Finally, to explore our approach’s ability to parse out the nuances in cognitive deficits, we

categorized the MCI participants into distinct MCI subtypes based on their initial diagnosis:
amnestic single domain (aMCI S), amnestic multiple domains (aMCI M), and non-amnestic single
MCI (naMCI S). Both amnestic subtypes exhibit impairments in memory, whereas the naMCI
subtype demonstrates intact memory functionality (15). Our results from a Kruskal-Wallis rank
sum test revealed significant SoF discrepancies between subtypes (χ²(4) = 480, p < 0.001), with
pairwise comparisons indicating lower SoFs in healthy controls versus all MCI subtypes and
distinctive SoF values among MCI subtypes (Fig. 2E). These findings elucidate that naMCI S
individuals demonstrate cognitive abilities that lie between those of healthy controls and MCI
patients, consistent with their language processing impairments and preserved memory functions.

Speed of Forgetting as a High-Validity Diagnostic Tool for Cognitive Impairment. To
evaluate the Speed of Forgetting as a diagnostic tool for cognitive impairment, we first compared
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it to the Montreal Cognitive Assessment (MoCA), the most commonly used screening
questionnaire for MCI diagnosis (16). As expected, we found a pronounced negative correlation (r
= -0.71, p < 0.0001) between MoCA scores and SoF, confirming the predictive validity of SoF as
a clinically applicable cognitive performance metric (Fig. 3A).
Next, we quantified the probability of MCI diagnosis given a participant’s SoF values by binning

results from individual sessions, using bins ranging from 0.25 to 0.55 in increments of 0.025. For
each bin, we computed the proportion of scores coming from MCI individuals. Our analysis
revealed that the probability of an MCI diagnosis grows as a logistic function of SoF, with an
inflection point at 0.40 (Fig. 3B, red dotted line). A logistic model fitted to the data accounted for
42% of the variance in diagnosis probability. Additionally, we identified an optimal SoF threshold
value of 0.388 using Youden's J statistic. At this threshold, the model demonstrated a specificity
of 0.747 and a sensitivity of 0.741, effectively distinguishing between MCI and healthy controls.
We further scrutinized the diagnostic precision of SoF by employing it as a binary classifier

between healthy controls (HC) and MCI cases. Receiver Operating Characteristic (ROC) analysis
incorporating SoF measurements from approximately 2000 individual sessions revealed that a
single-session SoF can achieve a classification accuracy of 84% (Fig. 3C).
Comparatively, SoF outperformed isolated behavioral metrics derived from the AFLS, including

accuracy and response time, emphasizing the added value of a model-based interpretation of
data. It is important to mention that comparing SoF with accuracy and response time in this
paradigm can pose challenges due to their common origin in the AFLS. This can lead to inflated
accuracies and response times that could skew comparative analyses. Despite this, however, the
superior performance of SoF underscores its utility as a dependable measure for detecting
cognitive impairment.
Finally, we explored the impact of multiple assessments on classification accuracy. While

participants' total mean SoF across all 49 recognition sessions indicated a higher diagnostic
accuracy of 94% (Fig. 3D), ROC curves generated from just the first 10 sessions revealed peak
predictive accuracy at four assessments (Fig. 3E). This key finding suggests that only four
assessments are needed to achieve the same level of classification accuracy as all 49
recognition assessments.

Recall Tests Confirm Speed of Forgetting Captures Consolidation Rather than Retrieval
Processes. In our final analysis, we examined the recall sessions in contrast with the recognition
sessions to ascertain the underlying memory processes (Fig. 4A-C). We observed significantly
lower Speed of Forgetting values in recall compared to recognition (paired t(45) = -10.90, p <
0.0001), aligning with the notion that, while free verbal recall may be more difficult, recall tests
facilitate better encoding through deeper information processing (17).
Using a random slope mixed linear model, incorporating clinical diagnosis and test type as

factors, we noted a significant interaction between test type and diagnosis (p < 0.001).
Specifically, individuals with MCI showed diminished benefits from recalling items compared to
healthy controls. Despite theoretical distinctions between recall and recognition memory (18),
SoF values exhibited a strong correlation across all participants for both test types (Pearson r(44)
= 0.86, t = 11.34, p < 0.0001), suggesting a common mechanism of memory consolidation
processing, rather than retrieval mode specificity.
Further analysis of SoF's diagnostic ability for recall sessions revealed comparable

classification accuracy to recognition SoF, as indicated by ROC AUC values of 91-93% (Fig.
4D-F). The slightly higher AUCs in recall sessions likely stem from increased separation between
MCI and healthy controls. This consistency between recall and recognition assessments
underscores the robustness of SoF in capturing memory consolidation processes and its
consistent diagnostic utility across different memory retrieval modes.

Discussion
This study introduces a model-based, online assessment as a novel approach for diagnosing and
monitoring memory impairments, such as Mild Cognitive Impairment (MCI). By implementing a
computational model that dynamically adjusts to individual forgetting patterns—captured through
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the novel metric, the Speed of Forgetting (SoF)—we have developed a more personalized
solution for early memory impairment detection. Our methodology not only addresses various
limitations of traditional neuropsychological assessments but also offers enhanced efficiency and
scalability, particularly in handling large-scale data collection, making it a versatile tool for
seamless widespread implementation.

Speed of Forgetting as a Novel Memory Metric. The SoF, central to our findings, emerges as a
robust metric for memory decline, validated across a variety of cognitive materials and memory
assessments. Its high test-retest reliability substantiates its role as a reliable measure of memory
function, while its clarity and interpretability render it a valuable asset for both clinical and
research applications.
The study design, spanning weekly assessments over a six-to-twelve-month period, provided

unique insights into the trajectory of cognitive decline in MCI, crucial for identifying and
intervening in early-stage neurodegenerative conditions. The statistical analysis of MCI
interaction with time illustrated a complex, nonlinear relationship (β = -0.14, p = 0.015),
suggesting a decline in memory with patterns that change over time, which could be pivotal for
tailoring individual treatment plans (Fig. 2D).
Our study also offers a granular look at MCI subtypes. The differential cognitive profiles within

MCI subgroups, especially highlighted in non-amnestic MCI individuals with language processing
intact, suggest a more intricate understanding of MCI (Fig. 2E). Such specificity in diagnosis is
particularly relevant given the heterogeneity of neurodegenerative diseases like Alzheimer's and
the need for assessments that transcend traditional reliance on verbal memory metrics.
The SoF's diagnostic accuracy—84% for single sessions and 94% for multiple

sessions—strongly advocates for its adoption into clinical practice (Fig 3C, D). Moreover, SoF's
design for remote administration is timely, paralleling the rise of telehealth solutions and meeting
the demand for accessible cognitive assessment tools in the global pivot towards digital health
services for patient care and monitoring.

Comparison to Other Cognitive Assessment. When comparing our SoF-based method with
the Montreal Cognitive Assessment (MoCA; (16)), SoF not only matches the accuracy of MoCA
but also advances the field in terms of test administration and frequency (Fig. 3A). This is
particularly notable due to the potential risks associated with using brief cognitive screening tools,
such as overdiagnosis and underdiagnosis, especially when relying solely on a single diagnostic
test (19, 20). Moreover, repeated measuring using SoF offers a unique advantage, particularly in
tracking cognitive fluctuations, such as "lucid days," which may not be effectively captured by
single assessments. These fluctuations provide valuable insights into the dynamic nature of
cognitive functioning and aid clinicians and researchers in understanding the progression of
cognitive disorders over time. Additionally, while brief assessments like the MoCA excel in
identifying substantial cognitive impairments, they may overlook early or subtle deficits and
struggle to determine their underlying causes. Furthermore, comprehensive neuropsychological
evaluations, although considered the gold standard, are often unavailable in community-based or
primary care settings.

Underlying Memory Processes. A crucial evaluation of our model revolved around whether the
SoF parameter effectively tracks error rates or effective forgetting. In one scenario, we would
anticipate a higher SoF for the recall condition (due to increased error rates), while in the other,
we would expect it to be lower (attributable to enhanced encoding). To validate this prediction, we
included a recall version of the assessment where recognition options were omitted, and
responses were recorded via a voice-activated microphone.
In our investigation into recall versus recognition memory processes, we observed lower SoFs

in recall conditions (Fig. 4C), reinforcing the idea that recall tasks, while more challenging,
enhance memory encoding and retention (17). These findings are consistent with established
literature and affirm the memory processes in our model, as evidenced by the substantial
correlation between SoF values from recall and recognition trials (Pearson r = 0.85, p < 0.001).
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This strong correlation is also beneficial because the recall versions are more difficult to
administer remotely

Limitations and Considerations. While the study demonstrates the effectiveness of the
adaptive fact-learning system in detecting memory impairments, it also revealed certain
limitations.
First, the Speed of Forgetting, in essence, measures what we believe to be the speed of

“passive” forgetting. Passive forgetting, i.e. the loss of information over time due to the passage
of time rather than a deliberate attempt to forget, could be due to loss of context clues, retrieval
interference from other similar memories, and “natural” biological decay (21). Critically, some of
these processes are accelerated in aging (22) and abnormally elevated in amnestic dementias,
such as AD. More research is needed to determine which of these passive mechanisms is most
closely linked to this parameter.
However, it's important to note that a similar criticism can be made of other existing

assessments. They all operate at the level of observable performance, so compared to them, our
study takes a step further in the direction of mechanistic explanations of performance. By
focusing on the ‘forgetting’ process, we delve into the underlying mechanisms contributing to
memory decline, which provide valuable insights beyond mere performance metrics and could
thus be used to examine existing debates in the field regarding the contributions of various
biological processes.
Second, while the SoF model parameter is theoretically independent of the assessments used

in this study and can be adapted to data from other memory assessment tools, it remains
tethered to a specific model of episodic memory. This underlying computational model is derived
from a Bayesian analysis of memory (23) combined with the Multiple Trace Theory (24) and is
just one conceptual framework for understanding memory, not the sole model.
Third, while our model shows promise in assessing early memory impairment, it has not been

tested on participants with dementia. This is a significant limitation, as dementia presents unique
challenges in cognitive functioning that may not be adequately captured by the model's current
capabilities. Additionally, like any test, there are limits to the applicability of our model across
diverse patient populations. Patients must still be able to perform certain basic tasks for the
model to effectively assess memory impairment. Factors such as motor skills, language
comprehension, and attention span may impact the utility of the model in accurately assessing
cognitive decline.
However, it's worth mentioning that in the analysis of language-impaired non-amnestic MCI

patients, SoF emerged as a more precise measure of memory impairment, suggesting it can still
provide valuable insights for certain subsets of conditions.
Overall, further refinement and validation of the model in diverse populations is crucial for

enhancing its clinical utility and reliability.

Future Directions and Applications. Despite these limitations, the Speed of Forgetting emerges
as a reliable and highly valid metric for diagnosing cognitive impairment, surpassing traditional
assessment tools in utility due to its online, unsupervised nature and adaptability for frequent use.
These findings hold promising implications for the field of computational psychiatry and for the
broader community. This paradigm can facilitate the collection of reliable data from populations
that are often underrepresented in research and lack easy access to professional clinical
assessment, including ethnic, racial, and linguistic minorities, as well as individuals residing in
rural, low-income, or remote regions.
The remarkable repeatability and stability of the SoF model parameter position it as an

exceptional tool for evaluating the effectiveness of interventions such as newly FDA-approved
immunotherapies (25), and other neuromodulation tools and cognitive enhancers. Furthermore,
by integrating the SoF model with neuroimaging data, it is possible to uncover the underlying
neural mechanisms responsible for memory decline in aging and disease. Recent studies by
Zhou et al. (26) and Xu et al. (27) have demonstrated this approach utilizing previous iterations of
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the SoF task to analyze differences in functional connectivity networks and pinpoint specific brain
regions correlated with forgetting.
Lastly, the SoF's ability to track memory changes over time is particularly valuable for the early

detection of MCI, crucial in delaying the onset of Alzheimer's Disease and related conditions.
These combined attributes establish the SoF memory metric as a potent tool in both research and
clinical practice.

Materials and Methods

Participants. Fifty-one participants were recruited on a rolling basis from the University of
Washington Alzheimer’s Disease Research Center. The inclusion criteria for the study were as
follows: (1) age between 55 and 85 years, (2) fluency in English, and (3) no major medical or
psychiatric conditions that would affect cognitive performance. Participants were classified into
two groups: healthy cognition (N = 27; 19 female aged 58-84, 5 male aged 60-84) and those with
Mild Cognitive Impairment (MCI; N = 24; 5 female aged 64-77, 19 male aged 68-83). All
participants provided informed consent and were compensated for their participation in the online
memory game portion of the study. All recruitment and testing procedures were approved by the
University’s Institutional Review Board.

Patient Selection and Diagnosis. Mild Cognitive Impairment (MCI) has commonly been used to
describe the intermediary stage between normal cognitive aging and dementia (28). It can be
defined as a decline in cognitive abilities that is greater than what is typical for a person's age and
educational background (1−1.5 standard deviations below normative expectations) but does not
meet the criteria for a diagnosis of dementia (29). MCI was diagnosed using a combination of
methods including clinical evaluation, cognitive testing, and medical history. The clinical
evaluation was conducted by a geriatric psychiatrist or a neurologist, who assessed the
participant's cognitive and functional abilities using standardized tools. Cognitive testing was
performed using a battery of neuropsychological tests that measured various cognitive domains
such as memory, attention, and executive function. Medical history was obtained through a
structured interview and review of medical records. Participants were classified as having MCI if
they had a Clinical Dementia Rating scale <= 0.5. Additionally, individuals with subjective reports
of decline by self and/or informant in conjunction with objective cognitive deficits were also
included in the MCI group. Healthy controls were screened for cognitive impairment using the
same methods as MCI participants. They were classified as healthy controls if they scored within
normal limits on cognitive tests and had no history of cognitive decline or functional impairment.
All participants with memory impairment were classified as having amnestic Mild Cognitive

Impairment (MCI) at the moment of enrollment. During the study, one participant was reclassified
as a non-amnestic MCI (naMCI), one was diagnosed with Alzheimer’s Disease (AD) upon
re-assessment, and one was diagnosed as having Autism Spectrum Disorder (ASD) in addition to
memory impairments. Of the 19 individuals who were classified as amnestic MCI, seven exhibited
deficits only in the memory domain (aMCI Single), and 11 exhibited deficits in multiple domains
(aMCI Multiple), such as executive function, language, or visual reasoning (15).

Episodic Memory Model. The model used herein was originally developed by Anderson &
Schooler (7) and later expanded by Pavlik and Anderson (11) and van Rijn (12). Consistent with
the Multiple Trace Theory (24), the model assumes that a memory is made of individual traces
created every time the same information is encountered. Each trace decays according to the
power law of forgetting (30). The odds of retrieving a memory m at time t are proportional to its
activation A(m, t), which represents the log odds of retrieving any of its component traces, as
shown in Eq. (1).

A(m, t) = log ∑i (t - t(i))-d(i) (1)
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Where t(i) is the creation time of the i-th trace, and d(i) is its characteristic power decay rate. This
trace-specific decay rate, in turn, depends on the residual activation of the memory at the time the
trace was created (11, 14):

d(i) = eA(m, t = t(i)) + φ (2)

Because Eq. (2) makes the decay rate of each trace dependent on the memory’s activation, it
provides an explanation for the spacing effect (31). Traces closer in time have higher decay rates
because of the memory's greater activation A(m, t) at time t(i). Note that this model still depends
on a single parameter, φ, which we refer to as the Speed of Forgetting (SoF). Thus, the odds of
being able to recall a memory at a later time depend solely on the rate at which the memory is
forgotten. Additionally, this suggests that by looking at the history of a memory and the number of
times it has been assessed, it is possible to determine the rate at which that memory is forgotten.

Adaptive Memory Assessment. Weekly at-home assessments were completed with the online
adaptive fact-learning system (AFLS) described in Sense et al. (14). This system continuously
estimates the individualized Speed of Forgetting values in real time as the participant works
through the lesson. The software was designed so that participants could perform the task from
home using any mobile device. The AFLS works by presenting new study pairs (e.g., “France /
Paris”) and scheduling repeated tests (e.g., “France / ?”) at strategic points based on the online
estimates of a user’s Speed of Forgetting. Figure 1A provides an example of the software
interface. Test probes included only the cue of a pair, e.g. “France / ?”; participants responded by
selecting one of four options on a screen.

Study Materials. Fifty-three lessons were prepared in advance, spanning different topics (such
as European capitals, Swahili words, Asian flags, bird species, types of pasta, and flower
species). The materials were vetted before the experiment to make sure they were comparable in
terms of familiarity and difficulty. For each lesson, 15 different pairs were created, each of which
associated an object with an English noun. In half of the pairs, the object was presented as an
image (e.g., a picture of a pasta shape with the name “Fettuccine” for the Pasta lesson), and in
the other half, the object was a word (e.g., “France” / “Paris” for European capitals). The number
of pairs studied in each lesson depended on the response times and errors of the individual.

Data Processing. The repetition, activation, and Speed of Forgetting values for each term were
calculated using functions from the AFLS. The average Speed of Forgetting values for each
lesson and the individual were identified by using the terminal φ value of each pair at the very last
repetition of that term. The data was then filtered to only contain the first full session of a topic (>6
min). This was needed to eliminate any superfluous sessions (some participants desired to
complete the task more than once). The data was also organized by the week the lesson was
completed to view temporal trends.

Statistics. Behavioral data were assessed for outliers defined as being outside of 2.5×SD of the
mean and were subsequently excluded from analysis. Further statistical analysis was handled in
R (v4.2.2) using the R Studio GUI (version 2022.7.2.576).

Data, Materials, and Software Availability. Our online repository containing both raw data files
and analyzed data can be accessed at our online OSF Repository.
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Figures and Tables

Figure 1. Multifaceted Analysis of Speed of Forgetting Across Diverse Categories.
(A) Mobile interface of the MemoryLab recognition task. (B) Categories. Pie chart shows the
distribution of lessons into nine categories. (C) Materials. Scatterplot with the horizontal axis
representing individual participant Speeds of Forgetting (SoF) and data points colored by
category. (D) Distribution. Ridge plot illustrates the distribution of SoF across recognition lessons,
with each line representing a lesson and color intensity reflecting tail probabilities. (E) Reliability
of SoF. The heatmap represents the Pearson correlations between the individual SoF values of
different lessons. The mean correlation coefficient (r) is 0.7. (F) Correlation Distribution.
Histogram displaying the distribution of correlation coefficients from the heatmap in E.
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Figure 2. Speed of Forgetting Reveals Clear Differences in Cognitive Performance
Between Mild Cognitive Impairment and Healthy Individuals.
(A) Materials. Scatterplot with the horizontal axis representing Speed of Forgetting (SoF),
color-coded by clinical status: Healthy Control (HC) and Mild Cognitive Impairment (MCI). (B)
Participant Distributions. Ridge plots illustrate the distribution of SoF among participants for all
recognition lessons they completed. (C) Group Differences. Rain plots showing group differences
in SoF between HC and MCI, indicating distinct memory retention capabilities between the
groups. (D) Timecourse. Line graph displaying the time course of SoF over 40 weeks, with
shaded areas representing 95% confidence intervals, for both HC (yellow) and MCI (purple)
groups. (E) Subtype. Beeswarm plots for AD (dark blue), aMCI M (dark purple), aMCI S (light
purple), HC (yellow), and naMCI (orange), with each point reflecting an individual lesson. Median
and quartiles are summarized by boxplots, and data density by violin plots.
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Figure 3. Speed of Forgetting as a High-Validity Diagnostic Tool for Cognitive Impairment.
(A) Gold Standard. Scatter plot correlating SoF with Montreal Cognitive Assessment (MoCA)
scores, showing a significant negative correlation (r = -0.71). (B) Diagnosis Probability. Sigmoid
curve correlating SoF scores with the likelihood of MCI diagnosis, where point size indicates the
number of observations contributing to each data point. (C) ROC curve for predicting cognitive
status using a single SoF recognition measurement, with the area under the curve (AUC)
demonstrating the model's accuracy, and individual points representing varying SoF thresholds.
(D) Improved prediction model using the average SoF, as shown by higher AUC values,
suggesting better performance with aggregated SoF data. (E) Multiple ROC curve AUC values
represent the accuracy of predictions based on the number of recognition assessments,
illustrating the incremental benefit of repeated measurements.
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Figure 4. Comparative Analysis of Recall and Recognition Memory Performance.
(A) Recall Materials. Boxplots contrasting individual performance on memory tasks, stratified by
lesson topic and clinical status (MCI in purple, HC in yellow), horizontal axis represents Speed of
Forgetting (SoF). (B) Recall vs Recognition. Lines connect participant mean recall SoF versus
mean recognition SoF. (C) Speed of Forgetting Correlation. Scatter plot depicting the relationship
between recognition and recall performance, stratified by clinical status, shaded area represents
95% confidence interval. (D, E) ROC curves assessing the single- and average-measurement
diagnostic accuracy of SoF for cognitive status, with the area under the curve (AUC) reflecting
model precision. (F) Bar graphs depicting AUC values for multiple ROC curves, demonstrating
the predictive accuracy based on the number of SoF assessments.
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