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Abstract
Histopathology is considered the reference standard for diagnosing the presence and 
nature of many malignancies, including cancer. However, analyzing tissue samples and 
writing pathology reports is time-consuming, labor-intensive, and non-standardized. To 
address this problem, we present HistoGPT, the first vision language model that 
simultaneously generates reports from multiple pathology images. It was trained on 
more than 15,000 whole slide images from over 6,000 dermatology patients with 
corresponding pathology reports. The generated reports match the quality of 
human-written reports, as confirmed by a variety of natural language processing 
metrics and domain expert evaluations. We show that HistoGPT generalizes to six 
geographically diverse cohorts and can predict tumor subtypes and tumor thickness in 
a zero-shot fashion. Our model demonstrates the potential of an AI assistant that 
supports pathologists in evaluating, reporting, and understanding routine 
dermatopathology cases.
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Histopathology stands as the clinical gold standard for the diagnosis of a wide range of 
diseases, including malignant cancers and inflammatory disorders1. It involves the 
examination and interpretation of diseased tissues and cells under a microscope2 according 
to widely accepted international guidelines that ensure accuracy, consistency, and objectivity. 
The analysis results are then summarized in a comprehensive pathology report that serves as 
the basis for the communications with clinicians for further testing and treatment. Creating 
such reports, however, is time-consuming, labor-intensive, and non-standardized3. For some 
tumors, such as basal cell carcinoma, an experienced pathologist can make a diagnosis in 
seconds, but it takes considerably longer to dictate or type the microscopic findings. With the 
number of cancer cases increasing and the number of pathologists decreasing in many 
countries4, patient turnaround times are likely to worsen in the future.

Artificial intelligence (AI) has the potential to ease the burden on pathologists in their daily 
workflow by handling common and uncomplicated cases. Advanced systems like deep neural 
networks5 excel at vision tasks such as cancer classification6, tissue segmentation 7, survival 
prediction8, and biomarker detection9, and are typically applied to digitized microscope slides, 
also known as whole slide images (WSIs). Rather than replacing pathologists, AI is generally 
viewed as a tool and complement to other medical tests10.

Currently, there are two approaches to computational pathology. Patch-level approaches 
use a single crop of a WSI (called an image patch), ranging from 224 x 224 pixels to 1024 x 
1024 pixels, to generate an output11. Thus, by design, these patch-level approaches ignore up 
to 99% of the entire tissue, miss potentially diagnostically relevant areas, and cannot be 
applied to tasks that require the full context of the entire tissue sample (e.g., tumor thickness 
prediction). Slide-level approaches, on the other hand, aggregate the information from 
patch-level approaches into a slide-level representation that can be used in downstream tasks 
like biomarker prediction9. A recent research direction is to extend the capabilities of such 
methods by including text data. Contrastive vision language models in pathology, such as 
PLIP16 and CONCH19, align text and images at the patch level. They are zero-shot learners, 
which means they can solve downstream tasks they have never seen before like subtyping 
cancers. However, they cannot generate detailed text to describe the input image. Generative 
vision language models such as Med-PaLM M14, LLaVA-Med17, or PathChat18 can generate text, 
but only at the patch level for small image regions up to 1024 x 1024 pixels. This means that 
none of the existing medical foundation models can generate reports from an entire 
pathology image at full resolution, let alone from multiple pathology images.

Here, we present HistoGPT, the first vision language model to generate histopathology 
reports from gigapixel WSIs (see Fig. 1). Given multiple tissue sections from the same patient 
at up to 20x magnification, HistoGPT uses a vision foundation model (VFM) to extract 
meaningful features from the images and combines them with a large language model (LLM) 
via cross-attention mechanisms to generate the final report. The generated report describes 
the tissue composition, cellular subtypes, and potential diagnosis. In addition, users can 
interact with the model through various prompts ("Expert Guidance") to extract additional 
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Figure 1: HistoGPT, a vision language foundation model for dermatopathology. (A) Traditionally, pathologists 
analyze tissue samples from patients under a microscope and summarize their findings in a comprehensive 
pathology report. This manual process is time-consuming, labor-intensive, and non-standardized. (B) In our 
proposed AI-powered clinical workflow, pathologists work alongside HistoGPT. It generates human-level written 
reports, provides disease classification, discriminates between tumor subtypes, predicts tumor thickness, and 
returns text-to-image gradient-attention maps that provide model explainability. All this serves as a second opinion 
for the pathologist, who can use the output of HistoGPT as a general overview and first draft for the final report. (C) 
We provide an example of such a generated report for a basal cell carcinoma case from our external validation 
cohort.
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information such as tumor subtypes and tumor thickness predictions (see Fig. 1B). The output 
text is fully interpretable because HistoGPT provides saliency maps that highlight the 
corresponding image regions for each word or phrase in the generated text (see Fig. 1C).

To train HistoGPT, we collect a large multimodal skin histology dataset from the 
Department of Dermatology at the Technical University of Munich with 15,129 paired WSIs 
and pathology reports from 6,705 patients written by board-certified pathologists. To validate 
HistoGPT, we are using one internal and six external test cohorts covering different scanners, 
medical procedures, and countries. To our knowledge, we also provide the first evaluation of 
a pathology vision language model by an international team of board-certified pathologists 
from a clinical perspective. In this regard, the reports generated by HistoGPT are often found 
to be highly consistent with both the reference report and histologic specimens for the most 
common diseases. We are releasing HistoGPT in different sizes as an end-to-end deep 
learning pipeline that can be deployed on local machines. As a result, users can select and 
fine-tune a copy of our machine learning algorithm according to their needs.
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Results

HistoGPT is the first slide-level model that learns from image and text

HistoGPT is a family of models with three configurations (small, medium, and large), each 
consisting of two components (see Fig. 2A): a vision module and a language module. The 
vision module is based on the patch encoder CTransPath (CTP)22 for the small and medium 
models and UNI23 for the large model. The former is a lightweight Swin Transformer24 trained 
on over 32,000 WSIs from TCGA25 and PAIP26 using a semantically guided contrastive learning 
algorithm27. The latter is a much larger Vision Transformer28 trained on over 100,000 WSIs 
from 22 major tissue types using self-distillation and masked modeling29. Our language 
module reuses BioGPT20, an autoregressive generative model based on the Transformer30 
decoder architecture of GPT-331 trained on 15 million biomedical articles from PubMed.

For the small and medium models, we sample image features from the vision module with 
a custom pre-trained (see Fig. 2B) slide encoder based on the Perceiver Resampler32 and 
integrate its outputs into the LLM via interleaved gated cross-attention (XATTN) blocks33. Only 
these new XATTN blocks are trained from scratch. In this way, we endow HistoGPT with 
existing visual and linguistic domain knowledge, which is crucial for tackling the challenging 
problem of generating histopathology reports from entire WSIs. Similar to Flamingo33, we 
freeze the parameters of all pre-trained modules during optimization to further reduce the 
computational cost and to avoid catastrophic forgetting of the inductive biases encoded in the 
learned weights.

The large model skips the Perceiver Resampler. This is computationally more expensive 
because we work directly with all high-dimensional feature vectors, but we do not lose any 
information due to compression. The large model uses a graph convolutional network34 to 
encode slide-level position information, which we remove for the small and medium models 
due to its space and time complexity. Due to the computational resources required to run the 
large model, we report most of our experiments for the small and medium models, which are 
much faster and more likely to be used in practice.

A language model predicts a probability distribution over a vocabulary. The next word in a 
text is randomly selected based on a combination of top-p and top-k sampling. Once the first 
few words have been chosen, the outline of the report is roughly pre-determined. To avoid 
being locked into a fixed text structure, we use an advanced inference method called 
Ensemble Refinement, introduced in Med-PaLM 235, to randomly sample multiple reports – 
each focusing on slightly different aspects of the WSI (see Fig. 2C). This sampling allows us to 
thoroughly search the model distribution and generate a wide variety of medical reports, 
maximizing the likelihood of including all important observations. A general-purpose LLM 
such as GPT-421 is then used to aggregate all the bootstrapped reports.
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Figure 2: HistoGPT learns simultaneously from vision and language to generate clinical-grade histology 
reports from whole slide images. (A) HistoGPT is available in three sizes (Small, Medium, and Large). It consists of 
a patch encoder (CTP for HistoGPT-S and HistoGPT-L as well as UNI for HistoGPT-L), a position encoder (used only 
in HistoGPT-L), a slide encoder (used only in HistoGPT-S and HistoGPT-M), a language model (BioGPT base for 
HistoGPT-S as well as BioGPT large for HistoGPT-M and HistoGPT-L), and gated cross-attention blocks. Specifically, 
HistoGPT takes a series of whole slide images (WSIs) as input and outputs a written report. Optionally, users can 
query the model for additional details using prompts such as "The tumor thickness is", and the model will 
complete the sentence, e.g., "The tumor thickness is 1.2 mm". (B) We train HistoGPT in two phases. In the first 
phase, we pre-train the vision module of HistoGPT using multiple instance learning (MIL). In the second phase, we 
freeze the pre-trained layers and fine-tune the language module on the image-text pairs. Since HistoGPT-L does 
not use a slide encoder, it skips the first step. To prevent the model from overfitting on the same sentences, we 
apply text augmentation. This is done using GPT-4, a general-purpose large language model that faithfully 
paraphrases the medical notes. (C) During deployment, we can optionally use an advanced inference method 
called Ensemble Refinement (ER). Here, the model stochastically generates multiple possible pathology reports 
using temperature sampling to capture different aspects of the input image. An aggregation module (GPT-4) then 
combines the results to provide a more complete description of the underlying case.

Tran et al. 2023 HistoGPT 6

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.03.15.24304211doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.15.24304211
http://creativecommons.org/licenses/by/4.0/


HistoGPT generates human-level pathology reports for common diseases

We train HistoGPT on 15,129 whole slide images from 6,705 dermatology patients with 
corresponding pathology reports from a real-world medical cohort (see Fig. 3A). This internal 
dataset contains 167 skin diseases of varying frequency and has a total size of 10 terabytes. 
To assess the impact of model architecture and parameter size, we train and evaluate four 
versions of HistoGPT: HistoGPT-S, HistoGPT-M, HistoGPT-L, and HistoGPT-L-ER as described 
above. In the following experiments, we use HistoGPT in "Expert Guidance" mode, where the 
model is prompted with the correct diagnosis, simulating a pathologist who is confident in the 
WSI assessment but wants to leave the work of writing a draft to an AI assistant (see Fig. 3B).

Currently, no deep learning model can generate a histopathology report from an entire 
WSI, let alone a series of WSIs for patients with multiple tissue sections cut from the tissue 
block. Therefore, we compare the generated reports with those of text-only and patch-only 
architectures. For the former, we choose the domain-specific language model BioGPT-1B, 
fine-tuned on our internal cohort. For the latter, we rely on the multimodal foundation model 
GPT-4V(ision)21, which takes low-resolution images of size 2000 x 768 as input. We introduce 
two additional baselines to further validate that HistoGPT does not simply memorize and 
repeat sentences from the training set: A lower baseline, where we select two random reports 
with arbitrary diagnoses; and an upper baseline, where we compare two random reports with 
the same diagnosis (see Methods for more details).

We evaluate the performance of the models using four semantic-based machine learning 
metrics as well as two blinded domain expert evaluations (see Fig. 3C). In "Expert Guidance" 
mode, HistoGPT-L captures on average 69% of all dermatological keywords56 from the original 
pathology reports (see Fig. 3D), outperforming alternative language models such as 
BioGPT-1B and GPT-4V by at least 7%. This gap is reduced to 5% with the lightweight 
HistoGPT-S and HistoGPT-M. HistoGPT-L-ER further improves the Jaccard index to 75%, which 
is 9% above the upper baseline. A similar trend is observed when ScispaCy36 is used as a 
keyword extractor (see Fig. 3D). All variants of HistoGPT produce text with high cosine 
similarity to the ground truth, as indicated by the embeddings provided by BioBERT37 and 
GPT-3-ADA31 (see Fig. 3D). 

Overall, "Expert Guidance" is the recommended modus operandi for HistoGPT because it 
allows a pathologist to work interactively with the model while improving the quality of the 
report compared to the unguided mode (see Fig. 3D, translucent vs opaque columns). We also 
evaluate all models using traditional syntax-based measures (BLEU-4, ROUGE-L, METEOR, and 
BERTscore). The relatively low syntax-based scores (see Supplementary Table: Automatic 
Report Scoring) combined with the high semantic-based scores (see Fig. 3D) further confirm 
our hypothesis that HistoGPT is not overfitting the training set by simply repeating common 
phrases and medical terms, but is deeply rooted in the input image.
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Figure 3. HistoGPT generates human-level pathology reports of skin diseases. (A) Our internal Munich dataset 
is a real-world cohort of 6,705 patients with 167 skin diseases from the Department of Dermatology at the 
Technical University of Munich. It includes malignant cases such as basal cell carcinoma (BCC, n = 870) and 
squamous cell carcinoma (SCC, n = 297); precursor lesions such as actinic keratosis (AK, n = 396) as well as benign 
cases such as benign melanocytic nevus (BMN, n = 770) and seborrheic keratosis (SK, n = 412). We divide the 
patient-level dataset into a training set and a test set using a stratified 85/15 split. (B) Through years of experience, 
pathologists are often able to make a diagnosis at first glance. Instead of writing a pathology report themselves, 
they can use HistoGPT in "Expert Guidance" mode by giving the model the correct diagnosis to complete the 
report. (C) We evaluate the model's performance using four semantic-based machine learning metrics: (i) match 
critical medical terms extracted from the original text with the generated text using a dermatology dictionary; (ii) 
use the same technique but with ScispaCy, a scientific name entity recognition tool, as the keyword extractor; (iii) 
compare the semantic meaning of the original and generated reports by measuring the cosine similarity of their 
text embeddings generated by the biomedical language model BioBERT; (iv) use the same technique but with the 
general purpose large language model GPT-3-ADA for text embedding. (D) In "Expert Guidance" mode (translucent 
colors), HistoGPT-L-ER (HistoGPT-L with Ensemble Refinement) surpasses BioGPT-1B and GPT-4V on the two text 
accuracy metrics Dictionary and ScispaCY and is also better on the two text similarity metrics, BioBERT and 
GPT-3-ADA (see Methods for details). (D) Two independent external board-certified pathologists (P1 left and P2 
right) evaluated 100 original and generated reports together with the corresponding WSI in a randomized, blinded 
study. For BCC, P1 found that 38% of the generated reports described the WSI better than the original report. In 
31% of cases, both reports performed equally well, while in 31% of cases, the original report was preferred. In 58% 
(P1) and 55% (P2) of all cases, the pathologists did not prefer the original report to the generated one.
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To evaluate the content of the generated reports from an expert perspective, we 
conducted a blinded study in which we randomly selected 100 cases from our Munich test 
split, generated a report for each patient in "Expert Guidance" mode, and paired it with the 
original human-written report. The two reports were then randomly shuffled and 
anonymized. Two independent board-certified pathologists, who were neither involved in the 
construction nor annotation of the Munich cohort, were given the original WSIs and asked to 
identify the report that best described each case, with the option of selecting "no difference" if 
both were deemed equally accurate. Ensemble Refinement was not used in this study to avoid 
easy identification of the GPT-4 generated summary. For the five largest diagnostic classes 
(basal cell carcinoma (BCC), benign melanocytic nevus (BMN), seborrheic keratosis (SK), actinic 
keratosis (AK), squamous cell carcinoma (SCC), see Fig. 3A), we found moderate agreement 
between the two pathologists. Analyzing the results for each class separately, we found that 
Pathologist 1 overwhelmingly preferred the AI or found the AI and human report similarly 
good in about 70% of the BCC cases. Pathologist 2, on the other hand, preferred the 
AI-generated report for BMN 80% of the time. The AI-generated report for SK is preferred by 
both pathologists 90% of the time. Across all 100 report pairs, both pathologists found no 
difference between the generated and human reports about 45% of the time and preferred 
the AI-generated reports about 15% of the time (see Fig. 3D).

According to a post-analysis provided by the two pathologists, after about 20 cases, they 
were able to tell which report was likely generated by the AI. The AI-generated text tends to be 
more structured and comprehensive. It includes more observations that are informative but 
not always necessary for the final diagnosis (for example, the AI mentioned a bystander cyst 
that was irrelevant to the diagnosis of BCC). Overall, there are some interesting cases worth 
mentioning: In one interesting case, there was a disagreement between the ground truth 
diagnosis and Pathologist 1 – resulting in both AI and human reports being disputed. In 
another case, a slide was incorrectly annotated by the human, but the AI still provided the 
correct report. In one case, the AI failed to detect small or unusual objects, such as a scabies 
mite. In one slide, the model mistook erythrocytes for eosinophils. However, these two cell 
types were difficult to distinguish due to the quality of the slide. Pathologist 1 mentioned that 
about 10 human reports were preferred because the reported tumor thickness seemed more 
accurate than in the generated report, but the text itself was equally good. After adjusting for 
this, and including only reports where "Expert Guidance" and model prediction agreed, the 
pathologist preferred the AI report or was indifferent 80% of the time (see Supplementary 
Figure 1). In retrospect, the model was described as having the skill level of a novice 
pathologist. Notably, this was achieved with only 5K training samples, which is small by LLM 
standards.
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HistoGPT accurately predicts diseases in geographically diverse cohorts

To demonstrate from another perspective that HistoGPT has effectively learned to encode 
medical knowledge, we extract the predicted diagnosis from the generated reports, calculate 
the classification accuracy, and compare the results with state-of-the-art multiple instance 
learning (MIL) approaches. For this purpose, we run HistoGPT without "Expert Guidance", i.e. 
we only prompt the model with the phrase "Final diagnosis" instead of "Final diagnosis: 
[expert label]" and let it make a diagnostic decision on its own (see Fig. 4A).

Multiple instance learning methods such as AttentionMIL12, TransMIL13, and 
TransfomerMIL9 achieve relatively low weighted F1 scores (a measure that balances precision 
and recall across different classes, giving more importance to larger classes) between 0.34 
and 0.48 on the Munich test set (see Fig. 4B). A major challenge for all these methods is that 
the training dataset is highly unbalanced, ranging from a handful of samples in the minority 
classes to several hundred samples in the majority classes (see Fig. 3A). Compared to 
PerceiverMIL, which achieves a weighted F1 score of 44% on the internal test set (see Fig. 4B), 
our much larger HistoGPT does not overfit and exceeds the performance of its vision module 
by 1%. Compared to the highly specialized AttentionMIL, TransMIL, and TransfomerMIL 
models, HistoGPT is competitive in terms of classification performance. It is important to note 
that, unlike MIL approaches, the output of HistoGPT is pure text and not integer class indices, 
highlighting the flexibility of a vision language model.

A challenging clinical question with a high therapeutic impact in dermatology is the 
differentiation of cancer from non-cancer. In routine diagnosis it is important to distinguish, 
for example, basal cell carcinoma (BCC) from other conditions; squamous cell carcinoma (SCC) 
from precancerous actinic keratosis (AK); and melanoma from benign melanocytic nevus 
(BMN). Unlike the previous classification task with over 150 classes, we now face a 
classification problem with only two alternatives. In this case, HistoGPT automatically calls a 
lightweight binary classifier to solve the task at hand (called "Classifier Guidance", see 
Methods), overcoming the class imbalance problem from before. With HistoGPT, we achieve 
classification performance for the three clinical tasks with weighted F1 scores of 98%, 87%, 
and 89%, respectively (see Fig. 4C).

HistoGPT in "Classifier Guidance" mode also generalizes to previously unseen datasets and 
problems. We demonstrate this by evaluating HistoGPT on five external, publicly available 
cohorts from different countries, scanner types, staining protocols, and medical procedures 
such as shave biopsies, punch biopsies, and excisional biopsies (see Fig. 4D). While some of 
the cohorts include a variety of dermatologic diseases (Queensland and Linköping), some 
other cohorts (TCGA and CPTAC) include only melanoma cases, but can still be used to assess 
the accuracy of HistoGPT. Since F1 scores cannot be calculated for single-class datasets, we 
only present accuracy (see Fig. 4E) for all datasets and refer the reader to the Supplementary 
Tables for additional metrics. We retrain PerceiverMIL as a state-of-the-art classifier on the 
entire Munich cohort and compare its classification performance on the external datasets.
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Figure 4. HistoGPT accurately predicts diseases in-domain and out-of-domain without human guidance. (A) 
In the absence of a human-in-the-loop, HistoGPT predicts the patient's diagnosis on its own and generates the 
corresponding pathology report. (B) On the internal Munich test set, HistoGPT is comparable to state-of-the-art 
classification models in predicting over 100 dermatological diseases, even though the model's output is pure text. 
(C) HistoGPT (medium) discriminates malignant from benign conditions with high accuracy on the Munich dataset: 
basal cell carcinoma (BCC, n = 107) vs. other conditions (n = 621) with an accuracy of 0.98 and a weighted F1 score 
of 0.98; actinic keratosis (AK, n = 47) vs. squamous cell carcinoma (SCC, n = 33) with an accuracy of 0.88 and a 
weighted F1 score of 0.87; benign melanocytic nevus (BMN, n = 86) vs. melanoma (n = 21) with an accuracy of 0.89 
and a weighted F1 score of 0.89. (D) We evaluate HistoGPT in five independent external cohorts covering different 
countries, scanner types, staining techniques, and biopsy methods. (E) Both PerceiverMIL and HistoGPT perform 
well on external datasets by conditioning them on the class distributions. (F) HistoGPT is able to produce highly 
accurate pathology reports, as indicated by the high keyword and cosine-based similarity scores on Münster. As in 
Figure 3C, the lower baseline compares two randomly selected reports.
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 In the BCC subset of Münster, both PerceiverMIL and HistoGPT correctly identify BCC in
88% of cases (see Fig. 4E). In multi-class settings (Queensland with 3 classes and Linköping 
with 14 classes), we achieve accuracies of 83% and 64% and weighted F1 scores of 83% and 
66%, respectively. The models also reliably discriminate melanoma from other types with 
accuracies of 80% and 90% in TCGA and CPTAC, respectively. For comparison, we also report 
the results of HistoGPT without class imbalance awareness (see Fig. 4E, light color bars). 
"Classifier Guidance" significantly improves the effectiveness and generalizability of the model 
across different external cohorts.

Of the five cohorts, only Münster (excluding the BCC subset) includes unstructured 
pathology reports. In contrast to the Munich reports, these reports contain only the critical 
findings and the final assessment (e.g., "Lichen planus-like keratosis (regressive solar 
lentigo/flat seborrheic keratosis), no evidence of basal cell carcinoma in the present biopsy.") 
and thus lack the detailed microscopic description of the Munich training set. Since the critical 
findings include different classes not seen in Munich and are not available separately from the 
written text, it was not possible to extract individual class labels for classification. 
Nevertheless, we can calculate how much diagnostic information HistoGPT encodes by 
comparing the extracted keywords and measuring the cosine similarity (see Fig. 4F). HistoGPT 
captures nearly 60% of all biomedical keywords using our dermatology dictionary and the 
ScispaCy model, even though the ground truth was written in a completely different style and 
structure. HistoGPT also achieves high cosine similarity under BioBERT and GPT-3-ADA. 
Compared to a random report generated by BioGPT-1B and a grounded report given by 
GPT-4V, the text quality of these models is much lower compared to HistoGPT, with or without 
Ensemble Refinement (see Fig. 4F).
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HistoGPT predicts tumor thickness and tumor subtypes zero-shot

In the diagnosis of skin tumors, information about tumor thickness and assignment to a 
specific tumor subtype in the final report is critical. These parameters are well established in 
the literature: In basal cell carcinoma, tumor thickness is measured from the stratum 
granulosum of the epidermis to the deepest point of the tumor in millimeters, similar to the 
determination of the Breslow index in melanoma, while tumor subtype classification is based 
on the WHO guidelines38. 

HistoGPT can predict both tumor thickness and tumor subtypes out-of-the-box and does 
not require additional reconfiguration or specification of tumor-specific parameters at any 
stage of training. By entering the prompt "The tumor thickness is" into HistoGPT, it will 
produce a prediction of the depth of tumor invasion without any fine-tuning. For the 94 
samples in the internal Munich test set where tumor thickness was included in the original 
report, we measure a root mean square error (RMSE) of 1.8 mm and a significant Pearson 
correlation coefficient ρ of 0.52 (p = 9.7·10-8, two-sided test) for the predicted tumor thickness 
given by HistoGPT-M (see Fig. 5A). Binning the values to an interval with step sizes of 2 mm, 1 
mm, and 0.5 mm yields accuracies of 64%, 38%, and 21%, respectively. In comparison, the 
predictions of the slide-level contrastive baselines (see Methods), HistoCLIP (RMSE = 4.35 mm, 
ρ = 0.006, p = 0.96) and HistoSigLIP (RMSE = 3.84 mm, ρ = 0.38, p = 0.002), correlate poorly 
with the ground truth and are far from HistoGPT in terms of quality (see Supplementary 
Figure 2). The patch-based contrastive baseline PLIP16, which is the state of the art in 
computational pathology, is even worse (RMSE = 2.78 mm, ρ = -0.18, p = 0.08), highlighting the 
importance of a slide-level approach. Accurate position encoding of each image patch seems 
to play an important role, as HistoGPT-L reduces the RMSE to 1.6 mm and increases the 
correlation to 0.67 (p = 9.1·10-24, see Supplementary Figure 4). Although only a fraction (n = 
644) of the training reports contain a tumor thickness measurement, HistoGPT seems to have 
learned how to measure it accurately. This emergent behavior is known in the literature as 
zero-shot learning39. 

 We analyze whether the zero-shot capability generalizes to other cohorts by looking at the 
never-seen BCC subset of the external Münster test set (see Fig. 5B), which was not used for 
training. For the samples with a ground truth tumor thickness measurement, we find a root 
mean square error of 0.98 mm and a significant Pearson correlation coefficient of 0.39 (p = 
5.8·10-5). HistoGPT outperforms HistoCLIP (RMSE = 3.91 mm, ρ = -0.16, p = 0.1), HistoSigLIP 
(RMSE = 1.46 mm, ρ = 0.10, p = 0.3), and PLIP (RMSE = 1.43 mm, ρ = -0.04, p = 0.7), on this 
out-of-domain task (see Supplementary Figure 2). 

Using gradient attention maps, we can gain insight into the reasoning steps behind each 
output. When estimating tumor thickness, HistoGPT correctly focuses on the tumor region 
(see Fig. 4C, left). However, it sometimes struggles to find the correct reference point (e.g., 
when the epidermis is torn or especially when it is ulcerated, see Supplementary Figure 3) or 
spatial orientation to start the measurements, even though it recognizes the tumor mass itself 
(see Fig. 4C, right).
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Figure 5. HistoGPT predicts tumor thickness and tumor subtypes in a zero-shot fashion and provides 
text-to-image visualization. (A) HistoGPT achieves high zero-shot performance in predicting tumor thickness on 
the internal Munich test set. The scatter plot is color-coded according to the classes in Figure 3A. (B) HistoGPT's 
prediction is also highly correlated with the ground truth on the external Münster test set, even though it was 
obtained using a different measurement protocol. (C) Since HistoGPT is an interpretable AI system, we can fully 
understand its results. Here we show the two examples marked with a red arrow in Figure 5B. (D) On the basal cell 
carcinoma subset of the external validation set Münster, HistoGPT is the only slide-level model that correctly 
predicts infiltrative BCC in most cases. The patch-level model PLIP fails in this task, predicting all samples as 
superficial. (E) Given whole slide images of superficial, solid, and infiltrating BCC, HistoGPT correctly identifies their 
morphological structures as shown in the high attention regions for the respective text strings.
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We continue to explore the broader scope of zero-shot learning. Basal cell carcinoma is the 
most common type of malignant skin cancer. Although it is the majority class in the training 
set, the training set does not contain BCC subtypes as critical diagnoses. Therefore, BCC 
subtypes could not be used as labels during supervised pre-training. This information is only 
implicitly available as free text hidden in the report. Interestingly, HistoGPT is still able to 
extract the hidden information from the internal training set from Munich and apply the 
acquired knowledge in the external test set from Münster to discriminate between three 
major BCC subtypes ("superficial", "solid/nodular", and "infiltrating") with a weighted F1 score 
of 63%, quantified by extracting the associated wordings from the generated reports (see Fig. 
5D). As shown in the gradient attention maps (see Fig. 5E), HistoGPT correctly attends to the 
relevant architectural patterns within the histology slides that are the hallmarks of each BCC 
subtype.

This zero-shot capability highlights the adaptability of HistoGPT as a generative AI model, 
especially when compared to more traditional classifiers such as TransMIL, which are limited 
to predefined classes and thus cannot predict subtypes without re-training. We also compare 
its zero-shot performance to more advanced slide-level models such as HistoCLIP and 
HistoSigLIP. As contrastive methods, they overcome the inflexible structure of multiple 
instance learning approaches. Both achieve weighted F1 scores of 54% and 50%, respectively, 
but perform worse than HistoGPT, particularly in identifying infiltrating BCC (see Fig. 5D). 
Notably, infiltrating BCC is extremely important to identify in routine diagnostics, as this 
subtype tends to have a biologically much more aggressive growth pattern and a higher 
relapse rate. The patch-based vision language foundation model for pathology image analysis 
PLIP does not provide useful predictions for this zero-shot classification task. Surprisingly, 
PLIP is constant over the test set and predicts all specimens as either superficial or solid 
depending on the resolution. That is, at 5x and 10x magnification, PLIP predicts all cases as 
superficial; at 20x and 40x magnification, it predicts all images as infiltrating (see 
Supplementary Figure 5).
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HistoGPT generalizes to an independent real-world clinical evaluation

How does HistoGPT perform in a real-world dermatopathology setting? To answer this 
question, a subset of 52 cases consisting of 84 specimens was randomly selected from a 
one-week period at a tertiary medical center dermatology clinic (Mayo Clinic, USA, see Fig. 6). 
Cases were previously diagnosed by board-certified dermatopathologists with more than ten 
years of independent practice in academic centers with a digital pathology environment. 
Slides were scanned using a standard whole slide image scanner, and WSIs were viewed on a 
digital pathology image viewing platform in widespread use at the contributing authors' 
institution. The 52 selected cases included 50 neoplastic epithelial lesions (including basal cell 
carcinoma, squamous cell carcinoma, actinic keratosis, verrucous keratosis, seborrheic 
keratosis, inverted follicular keratosis), four cases of nevus, four cases of dermatitis, two cysts, 
eight re-excisions (cases with "no residual" findings), two melanomas, one case of drug 
reaction (with generalized pustulosis), and 13 miscellaneous/other cases, for a total of 84 
specimens (see Fig. 6B).

The pathology reports generated by HistoGPT were unguided, i.e. neither "Expert 
Guidance" nor "Classifier Guidance" was used. They were analyzed by two independent 
board-certified dermatopathologists, ignoring differences in report format due to German vs. 
American standards. The quality of reports were scored as follows: (5) beyond expectation, (4) 
highly accurate, (3) generally accurate with minor variations without clinical impact, (2) 
partially accurate with variations that could have a clinical impact, (1) minimally accurate, (0) 
completely inaccurate (see Fig. 6A). A score of 3 or higher indicates a diagnosis that is 
considered correct or within an acceptable range of subjectivity.

 According to the expert evaluation (see Fig. 6C), HistoGPT performed particularly well in 
diagnosing basal cell carcinoma (achieving a score of 5 in 24 of 25 cases)  and melanocytic nevi 
(achieving a score of 4 in all four cases reported as "nevus cell nevus"). There was some 
variation in squamous cell carcinoma and actinic keratosis cases, with scores of 3 and 4 in 15 
of 21 cases. However, non-tumor/inflammatory conditions and re-excision cases without 
residual tumor showed low consistency and accuracy scores, with 15 out of 25 cases scoring 
between 0 and 1. Notably, the two melanoma cases received a score of 0. We suspect that the 
poor performance in melanoma cases is due to the fact that HistoGPT was not trained on 
enough melanoma examples of different stages (n = 167, see Fig. 3A).

The independent clinical evaluations confirm our previous findings that HistoGPT performs 
well in common diseases and worse in rare diseases (see Fig. 3A, 3E, and Fig. 4D, 4E). Thus, as 
with all machine learning algorithms, the quality of the output is limited by the quality of the 
training data rather than the model architecture. In other words, HistoGPT will most likely 
benefit from training on larger and more diverse datasets.
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Figure 6. HistoGPT produces highly consistent and accurate pathology reports, as confirmed in a real-world 
clinical evaluation. (A) Skin biopsies were collected over the course of one week at the Mayo Clinic in the United 
States. A random subset (n = 52) was selected, and 84 digitized pathology images were processed by HistoGPT and 
scored by two independent board-certified pathologists in consultation with each other. Consistency and accuracy 
with respect to the underlying case were scored as follows: (5) beyond expectation, (4) highly accurate, (3) generally 
accurate with minor variations without clinical impact, (2) partially accurate with variations that could have a clinical 
impact, (1) minimally accurate, (0) completely inaccurate. In general, a score of 3 or higher indicates a diagnosis 
that is considered correct or within an acceptable range of subjectivity. (B) The class distribution represents cases 
from a one-week clinical period. (C) HistoGPT produces consistent and accurate reports for neoplastic epithelial 
lesions (mean score of 3.9) and struggles with classes with little training data.
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Discussion
With HistoGPT, we present a vision language model that generates pathology reports from 
multiple full-resolution, gigapixel whole slide images. The generated reports are of high 
quality for common diseases, consistent with both ground truth and independent expert 
review. HistoGPT surpasses the state-of-the-art foundation model GPT-4V, which is 
considered a powerful tool in many medical applications18,40,41. In addition, HistoGPT robustly 
predicts disease subtypes, as validated in geographically diverse cohorts. Using different 
prompts (e.g., "The tumor thickness is"), the model output can be tailored to specific needs. 
This zero-shot capability rivals existing zero-shot learning approaches based on CLIP and 
SigLIP. Advanced methods such as Ensemble Refinement allow us to explore the probability 
space of possible medical outcomes. In particular, HistoGPT's output text is fully interpretable 
using attention maps that project each word in the generated report to the corresponding 
regions in the image. 

HistoGPT was trained on 6,705 clinical cases, which is about the number of cases a 
pathologist in Germany must have seen to qualify for the dermatopathology examination42. 
However, this number is small by LLM standards, where models are typically trained on 
billions of image-text pairs from the Internet. This means that HistoGPT has probably not seen 
enough training signals to generate detailed reports for all scenarios. Thus, it performs worse 
on inflammatory diseases, which make up all minority classes, than on common classes like 
basal cell carcinoma, where even subtyping works in a zero-shot fashion.

Nevertheless, our work provides evidence that vision language models can be trained with 
significantly less data and still perform well. Although current neural networks can already 
predict tumor thickness or tumor subtypes with good accuracy, as has been shown in 
particular for basal cell carcinoma43–49, they require a large amount of high-quality, precisely 
annotated data for training and are not flexible enough to be used for tasks other than those 
for which they were trained. That is, these models are fully supervised and do not operate in a 
zero-shot fashion. Specifically for tumor thickness prediction, the above approaches are not 
end-to-end deep learning systems. Users must first train a segmentation model to segment 
the tumor region, and then use a hand-crafted mathematical algorithm to calculate tumor 
thickness43–49. HistoGPT does not require this multi-step approach because it has already 
learned to understand the concept of tumor thickness and more by looking at a sufficient 
number of image-text pairs.

So far, our model has only been trained and tested on dermatological samples. Thus, it 
cannot yet be generalized to pan-cancer diagnosis. In addition, our training dataset suffers 
from severe class imbalance, which limits its usefulness for minority classes. This problem can 
be partially mitigated by either "Expert Guidance" or "Classifier Guidance". However, guidance 
also has its limitations, as the generated reports tend to be of higher quality when the model's 
diagnostic prediction is also correct (see Supplementary Figure 1). While we have evaluated 
HistoGPT in real-world medical cohorts and clinical evaluations, only a large-scale clinical trial 
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can confidently quantify the impact of HistoGPT on patients. This is beyond the scope of our 
current work as we are pioneering the first tool in this direction.

An interesting research direction is to fine-tune HistoGPT as a conversational chatbot using 
Reinforcement Learning with Human Feedback (RLHF). This will be challenging in practice, as 
there are currently no slide-level question-answer pairs for the model to learn from. A 
clinically relevant question is whether a tumor has been removed as a whole or whether there 
is still a tumor mass at the margins, a task that should be addressed in follow-up studies. 
Another clinically important question is whether and how to differentiate between primary 
tumors and metastases. Admittedly, indications such as tumor cell growth emanating from 
the epidermis can be detected with current AI. However, there will still be cases where the AI – 
just like human pathologists – will have difficulty making the final decision. Incorporating 
multimodal data, such as clinical, radiological, and sequencing data, which are often used as 
complementary tests in cases where pathology alone is inconclusive, is a key challenge for 
follow-up models.
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Methods

Datasets

Munich cohort: All 15,129 histology specimens from the Munich cohort were processed and 
stained (with hematoxylin and eosin) at the Department of Dermatology, Technical University 
of Munich. They were scanned with a 20x objective at 0.173 micrometers per pixel at the Core 
Facility Imaging at Helmholtz Munich. All slides were fully anonymized. 100 random cases are 
provided in the Supplementary Material along with the reports. An example report (translated 
from German to English using a machine translation model) reads: "Final diagnosis: Scar. 
Microscopic findings: A wedge-shaped excidate with compact massive orthohyperkeratosis, 
focally regular acanthosis of the epidermis with hypergranulose, focally clearly flattened 
epidermis with elapsed reticles is presented. Underneath densely packed, partly 
hypereosinophilic cell-poor collagen fiber bundles, vertically placed capillary vessels. In the 
depth more homogenised hypereosinophilic proliferating collagen fiber bundles. Critical 
findings: Hypertrophic, keloid-like scar. Partial excision."

Münster cohort: All 1,300 histologic samples of the Münster cohort were processed and 
stained (with hematoxylin and eosin) at the Department of Dermatology, University Hospital 
Münster. They were scanned with a 20x objective at 0.46 micrometers per pixel using a 
Hamamatsu NanoZoomer S360 MD at the Department of Dermatology, University Hospital 
Münster. The cohort includes 300 cases of three BCC subtypes (superficial, solid/nodular, 
infiltrating) with 100 samples each and 1000 cases from daily routine without special 
selection. All slides were fully anonymized. An example report (AI-translated from German to 
English) reads: "Lichen planus-like keratosis (regressive solar lentigo/flat seborrheic keratosis), 
no evidence of basal cell carcinoma in the present biopsy."

Mayo cohort: A random subset of skin biopsies from a one-week period at a tertiary medical 
center dermatology clinic that is part of the Mayo Clinic system was blindly selected for this 
study. The selection included 52 retrospective dermatopathology cases consisting of 84 
specimens. These cases were previously diagnosed in a digital pathology environment by 
board-certified dermatopathologists with more than ten years of independent practice in 
academic centers. Slides were scanned using a standard whole slide scanner, and whole slide 
images were viewed on a digital pathology image viewing platform in widespread use at the 
contributing authors' institution. An example report reads: "Skin, right melolabial fold, punch 
biopsy: Infiltrating basal cell carcinoma with variably clear cell features, lateral biopsy edge 
involved, see comment COMMENT:  The carcinoma is confirmed by positivity to CK903."

Image preprocessing

We treat all whole slide images (WSIs) belonging to a patient as one input. In other words, we 
have patient-level samples instead of slide-level or even patch-level data points. For 
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CTransPath, the WSIs were downsampled 4 times, tessellated into non-overlapping patches of 
256 x 256 pixels, and resized to 224 x 224 pixels using the Python library SlideIO. UNI was 
trained at higher resolutions and larger patch sizes. Thus, we downsampled the WSIs 3 times 
and used image patches of 512 x 512 pixels. Background images were detected and excluded 
using RGB thresholding and Canny edge detection. The inputs were then converted to 
PyTorch tensor objects and normalized with a mean of (0.485, 0.456, 0.406) and a standard 
deviation of (0.229, 0.224, 0.225). We used this specific image size and normalization 
parameter according to the configurations of these pre-trained vision models.

Model architectures

We use CTransPath22 as our pre-trained vision encoder for HistoGPT-S and HistoGPT-M to 
extract 768-dimensional feature vectors for each image patch and concatenate them along 
the sequence dimension to obtain a matrix of size n x 768, where n is the number of image 
patches. The inputs are then fed into the Perceiver Resampler32, which is borrowed from the 
vision language model Flamingo33 with randomly initialized weights. We change the default 
number of latents from 64 to 640 because WSIs are much larger than natural images and 
require a larger dimensional latent space to store the additional information. We keep the 
output size of 1536 because this has been shown to work well33. The fixed-size outputs of 
dimension 640 x 1536 are then used as keys and values in the tanh gated cross-attention 
block (XATTN). The query vectors come from the pre-trained language model BioGPT20. In 
particular, we use one XATTN block after each language layer according to the 
high-performance configuration of Flamingo. The output layer of HistoGPT is a linear classifier 
over the vocabulary. For HistoGPT-L, we use UNI23 as our pre-trained vision encoder, which 
returns feature vectors of dimension 1024 instead of 768. We use a graph convolutional 
network (GCN)34 to encode the relative position information of each patch (given by the local 
neighborhood) and add it to the original feature vectors. In addition, we skip the Perceiver 
Resampler and replace it with the identity function. This way, we do not lose any information 
due to compression, as is the case with resampling.

We compare HistoGPT with HistoCLIP and HistoSigLIP. They use the feature mean of the 
pre-trained Perceiver Resampler as the image representation and the EOS token of the 
pre-trained BioGPT as the text representation. A contrastive loss then aligns both feature 
vectors in the common embedding space. For HistoCLIP we use the same loss as for CLIP50. 
For HistoSigLIP we use the loss proposed in SigLIP51. To improve performance and avoid 
training instabilities, we freeze the vision encoder during training. This technique is called 
locked-image text tuning52). We also compare HistoGPT with the patch-based foundation 
model PLIP using the contrastive pre-trained model via the provided API. To aggregate the 
patch-level results to the slide-level, we evaluate PLIP16 using the majority voting system of the 
related model MI-Zero15. 

Since BioGPT and many other popular LLMs are all pre-trained on mostly English text, we 
need to translate the German reports into English to take advantage of their capabilities. For 
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the translator, we choose a standard machine translation model based on the Transformer 
encoder-decoder architecture30 with the checkpoint "Helsinki-NLP/opus-mt-de-en" available 
on Hugging Face.

Model training

We pre-train the Perceiver Resampler in a fully supervised manner by predicting the final 
diagnosis using a linear classifier on top of the slide encoder. Since the labels are provided at 
the patient level, this approach is also known as multiple instance learning (MIL). The 
classification head is then discarded and the resampler is plugged into the vision language 
model. We freeze all layers of HistoGPT except the cross-attention blocks. Our generative 
training is based on causal language modeling: Given an input, we mask the next tokens and 
let the model predict them. This is done in parallel over all input tokens using an upper 
triangular causal attention mask. Since HistoGPT-L does not need the Perceiver Resampler, we 
skip the pre-training step. Instead, we apply causal language modeling directly to HistoGPT-L, 
first to predict the diagnosis as a text string, and then to predict the full report.

For training, we use the AdamW optimizer with betas of (0.9, 0.95), a weight decay of 0.1, 
and an epsilon of 1e-8. The learning rate starts at zero and warms up linearly over 10 epochs 
to 1e-4 before decaying tenfold according to a cosine annealing scheduler. We use a gradient 
accumulation of 32 to simulate a larger batch size. Each training stage consists of 100 epochs 
using mixed precision training and gradient clipping to a Euclidean norm of 1.0. For 
contrastive learning, we use standard hyperparameters50,51. 

During training, we randomly augment the text inputs to avoid overfitting common words 
and phrases. This is done beforehand using GPT-4 to sample 9 paraphrased texts with a 
temperature of 1.0 and nucleus sampling of 1.0. The prompt used is: "Rewrite the following 
text but be as accurate and faithful as possible to the original. Do not add or remove any 
information! Also, do not change the phrases 'Microscopic findings:' and 'Critical findings:', but 
leave them as they are."

Classifier guidance

We enable class imbalance awareness in HistoGPT by using a lightweight and specialized 
classification model. The classifier predicts one-hot encoded class indices, which are 
converted to text strings using a lookup table and inserted into HistoGPT. Suppose the 
training set contains C classes. Assume that at inference time we face a classification problem 
with c classes, where c ⊂ C. We extract features from each training sample with a pre-trained 
Perceiver Resampler and fit a classifier (either a linear layer or a full-sized model) that predicts 
these c classes. With this approach, we reduce the 167-class classification problem to a more 
tractable subset of classes. For BCC vs. ¬BCC, we consider all samples that are not BCC to be 
¬BCC and fit an MLP with 100 neurons. For Melanoma vs. ¬Melanoma, we follow the same 
procedure. For all other classification tasks, we only train on the specific subset. For example, 
if we want to classify BCC vs. SCC vs. AK vs. SK, we train a classifier only on the BCC, SCC, AK, 
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and SK training features and ignore the remaining classes. Some datasets (Queensland and 
Linköping) provide only annotation masks as labels. They may contain different disease labels 
for different regions in the same slide. In this case, we consider the prediction of one of the 
ground truth classes as accurate.

Simple "Classifier Guidance" does not work for HistoGPT-L because it does not use a slider 
encoder to which we can apply a linear classifier. However, the model can be prompted with 
another separate/dedicated classification model, such as TransMIL or TransformerMIL. 
Alternatively, we can restrict the output dictionary of the language head to the classes we are 
interested in and get a similar performance as with "Classifier Guidance").

Interpretability maps

For the HistoGPT saliency maps, we use partial derivatives and associate the output latents of 
the Perceiver Resampler with the corresponding input vectors. We then weight the image 
features with the text features using the cross-attention scores. This gives us a gradient 
attention map. It shows which word in the generated report corresponds to which region in a 
WSI. For example, we can highlight where the model sees basal cell carcinoma, how it detects 
tumor-infiltrating lymphocytes, and which regions it considers when measuring tumor 
thickness. In this way, we provide a novel approach to explainable AI by aligning visual and 
linguistic information.

The output of the Perceiver Resampler consists of 640 latent vectors. We compute the 
gradients of these latents with respect to the input patches with backpropagation. Thus, the 
gradient G has the form num_patches x num_latents. It tells us which image tokens have the 
most influence on which latent feature. The mean along the latent sequence thus gives us the 
most important image regions according to the vision resampler. How can we use this 
information to determine which of these regions corresponds to which word? One idea is to 
give higher weights to the latents corresponding to the words we are interested in. We get 
these weights by looking at the cross-attention scores of the last XATTN layer. The attention 
matrix A has a dimension of num_tokens x num_latents. Thus, given a target word, we can 
identify the corresponding target tokens and use the corresponding rows in the attention 
matrix as weights. Overall, the proposed Gradient x Attention map is given by the weighted 
mean 

(GT ⚬ A[target_tokens, :].mean(dim=0)T)T.mean(dim=1).

Evaluation metrics

We introduce two other non-trivial baselines: given the ground truth, compare two random 
reports with two arbitrary diagnoses (lower baseline), and compare two random reports with 
the same diagnosis (upper baseline). The logic behind this approach is straightforward. 
Medical texts often follow a structured format with a similar writing style, typically including a 
general description of the specimen and frequent use of common technical terms. In addition, 
certain diseases manifest homogeneously across patients, resulting in nearly identical report 
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descriptions within a patient group. In such cases, the few unique terms in the reports 
become critical in distinguishing between different diagnoses. Therefore, these two baseline 
comparisons provide reference points for measuring the overall performance of our models.

Evaluating the reports generated by HistoGPT is a non-trivial task. Popular evaluation 
methods for natural language generation such as BLEU-453, ROUGE-L54, and METEOR55 
primarily compare n-grams between two documents and may not effectively capture 
semantic similarities. In fact, two texts may describe the same phenomena in two different 
ways, making a word-by-word comparison unfair. Therefore, we focus on two different 
quantitative performance measures: keyword overlap and sentence similarity. For the former, 
we use a comprehensive glossary of human-curated dermatological vocabularies56 to extract 
important medical keywords from the ground truth notes. In addition, we use ScispaCy36, a 
biomedical named entity recognition (NER) tool, to capture a broader range of technical 
terms. We then determine how many keywords from the ground truth text can be found in 
the generated text. The Jaccard index is used to quantify their overlap. To find a match in the 
generated report, we use an advanced version of Gestalt pattern matching (Ratcliff and 
Obershelp, 1988) available in the Python library difflib. We use the default cutoff threshold of 
0.6. This value strikes a balance between matching every word as a target and matching only 
exact overlaps. The latter is undesirable because it ignores different grammatical forms of a 
word. As a result, some unrelated words will inevitably be matched. In this case, the Jaccard 
index can be considered a relative measure, since the same approach is applied to each 
model.

The above measures still miss some semantic nuances because certain concepts or 
observations (e.g., disease characteristics, tissue subtypes, cellular characteristics) may be 
expressed in complex phrases, possibly even involving negations. To remedy this, we use 
BioBERT37 fine-tuned57 for natural language inference (NLI) and semantic textual similarity 
(STS) assessments. This embedding model provides the feature vectors of the generated 
report and the ground truth, allowing us to compute their cosine similarity as a measure of 
semantic understanding. To go beyond the domain-specific use of language, we apply a 
general large-scale embedding model, GPT-3-ADA31, to capture a broader range of linguistic 
information. Similarly, we use BERTScore58 to compute the syntactic relationship between 
generated and ground truth reports at the subword level.

For Ensemble Refinement, we summarize the bootstrapped reports by prompting 
GPT-4-Turbo with the instruction "Summarize the following text:". Since sampling for 
Ensemble Refinement is massively time-consuming and relies on an expensive API call, we 
only compute the scores on a random subset of the test set (10%). However, the standard 
deviation among the samples remains similar to the models on the full test set, indicating that 
the final score would not change much.
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Data availability
The datasets are either publicly available at the link provided or can be requested from the 
original investigators: 

● CPTAC (https://www.cancerimagingarchive.net/collection/cptac-cm/)
● Linköping (https://datahub.aida.scilifelab.se/10.23698/aida/drsk)
● Queensland (https://espace.library.uq.edu.au/view/UQ:8be4bd0)
● TCGA (https://portal.gdc.cancer.gov/projects/TCGA-SKCM)

Code availability
The code for the model can be found at https://github.com/marrlab/HistoGPT. The weights for 
the model are available at https://huggingface.co/marr-peng-lab/histogpt.
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Supplementary Figures

Supplementary Figure 1. Results for the blinded study where two pathologists evaluate the performance of the 
AI-generated reports against the human reports. We filter the results for the five largest classes and for cases 
where the model's prediction matches the ground truth.

Supplementary Figure 2. Zero-shot prediction of tumor thickness by HistoGPT-M, HistoCLIP, HistoSigLIP, and 
PLIP. (A) Results are summarized in a scatter plot with a regression line for the Munich cohort. All data points are 
color-coded according to Figure 3A. (B) A similar plot is generated for the Münster cohort.
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Supplementary Figure 3. This basal cell carcinoma specimen is missing large portions of the epidermis. Thus, the 
model did not find a reference point to orient the slide, which likely caused the overestimation of thickness. The 
ground truth measurement is 1.8 mm and the model prediction is 4.8 mm.

Supplementary Figure 4. Zero-shot prediction of tumor thickness by HistoGPT-L on the internal Munich test split.
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Supplementary Figure 5. Zero-shot tumor subtype prediction results summarized as a confusion matrix for 
HistoGPT-M, HistoCLIP, HistoSigLIP, and PLIP.

Supplementary Figure 6. Since the BioGPT language model is frozen during training, HistoGPT can be easily 
converted to a language-only model by taking only text as input, while retaining all the capabilities of the 
pre-trained BioGPT. Above we see the Ensemble Refinement output for the definition of basal cell carcinoma (BCC).
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Supplementary Tables

Disease classification

Munich     precision     recall    f1-score

----------------------------------------------

HistoGPT-L    0.45  0.45  0.45

HistoGPT-M    0.45  0.47  0.45

HistoGPT-S    0.43  0.45  0.44

PerceiverMIL   0.42  0.46  0.44

CLSGuidance         -        -        -

Queensland   precision     recall    f1-score

----------------------------------------------

HistoGPT-M    0.92  0.56  0.64

HistoGPT-S    0.92  0.57  0.65

PerceiverMIL   0.94  0.64  0.72

CLSGuidance    0.85  0.83  0.83

Linköping  precision     recall    f1-score

----------------------------------------------

HistoGPT-M    0.71  0.44  0.52

HistoGPT-S    0.58  0.46  0.51

PerceiverMIL   0.76  0.51  0.59

CLSGuidance    0.70  0.64  0.66

Münster       accuracy

----------------------

HistoGPT-M    0.88

HistoGPT-S    0.88

PerceiverMIL   0.90

CLSGuidance         - 

TCGA-SKCM     accuracy

----------------------

HistoGPT-M    0.30

HistoGPT-S    0.29

PerceiverMIL   0.27

CLSGuidance    0.80

CPTAC-CM      accuracy

----------------------

HistoGPT-M    0.11

HistoGPT-S    0.14

PerceiverMIL   0.14

CLSGuidance    0.90
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Binary classification problems (HistoGPT-M with restricted dictionary)

Munich        precision    recall  f1-score

-------------------------------------------

BCC vs NRM         0.96      0.94      0.95

BCC vs ALL         0.97      0.96      0.97

AKK vs SCC         0.83      0.82      0.83

NVC vs SCM         0.92      0.86      0.89

BCC vs NRM    precision    recall  f1-score

-------------------------------------------

accuracy                               0.94

macro avg          0.94      0.82      0.87

weighted avg       0.96      0.94      0.95

BCC vs ALL    precision    recall  f1-score

-------------------------------------------

accuracy                               0.96

macro avg          0.91      0.95      0.93

weighted avg       0.97      0.96      0.97

AKK vs SCC    precision    recall  f1-score

-------------------------------------------

accuracy                               0.82

macro avg          0.82      0.83      0.82

weighted avg       0.83      0.82      0.83

BMN vs SCM    precision    recall  f1-score

-------------------------------------------

accuracy                               0.86

macro avg          0.86      0.79      0.82

weighted avg       0.92      0.86      0.89

Binary classification problems (HistoGPT-M with classifier guidance)

BCC vs ALL    precision    recall  f1-score

-------------------------------------------

accuracy                               0.98

macro avg          0.94      0.96      0.95

weighted avg       0.98      0.98      0.98

AKK vs SCC    precision    recall  f1-score

-------------------------------------------
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accuracy                               0.88

macro avg          0.87      0.87      0.87

weighted avg       0.87      0.88      0.87

BMN vs SCM    precision    recall  f1-score

-------------------------------------------

accuracy                               0.89

macro avg          0.81      0.89      0.84

weighted avg       0.91      0.89      0.89

Basal cell carcinoma subtyping

Münster       precision     recall  f1-score

--------------------------------------------

HistoGPT-M         0.68  0.59      0.63

HistoCLIP          0.63  0.57      0.54

HistoSigLIP        0.53  0.53      0.50

Tumor thickness prediction

Munich         rmse      pearson         p-value

------------------------------------------------

HistoGPT-L   1.5505      +0.6729      9.1261e-24

HistoGPT-M   1.7965      +0.5167      9.6945e-08

HistoCLIP    4.3549      +0.0057      0.95619369

HistoSigLIP  3.8409      +0.3786      0.00016752

PLIP         2.7834      -0.1787      0.08468900

Munich        beta0        beta1         p-value

------------------------------------------------

HistoGPT-L   0.4942      +0.7126      9.1261e-24

HistoGPT-M   0.7930      +0.6357      9.6945e-08

HistoCLIP    1.9850      +0.0042      0.95619369

HistoSigLIP  1.1020      +0.2205      0.00016752

PLIP         2.2663      -0.2594      0.08468900

Münster        rmse      pearson         p-value

------------------------------------------------

HistoGPT-M   0.9772      +0.3870      5.8530e-05

HistoCLIP    3.9079      -0.1637      0.10009248

HistoSigLIP  1.4632      +0.1014      0.31048499

PLIP         1.4326      -0.0371      0.71066124

Münster       beta0        beta1         p-value
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------------------------------------------------

HistoGPT-M   0.4220      +0.4625      5.8530e-05

HistoCLIP    1.2530      -0.0666      0.10009248

HistoSigLIP  0.9001      +0.0770      0.31048499

PLIP         1.0199      -0.0325      0.71066124

Automatic report evaluation

Munich        dictionary      scispacy       biobert     gpt-3-ada

------------------------------------------------------------------

HistoGPT-L-ER       0.73          0.65          0.75          0.93

Guided              0.75          0.69          0.79          0.94

HistoGPT-M-ER       0.73          0.68          0.75          0.92

Guided              0.77          0.70          0.76          0.94

HistoGPT-L          0.66          0.58          0.75          0.93

Guided              0.69          0.60          0.79          0.94

HistoGPT-M          0.64          0.56          0.75          0.92

Guided              0.67          0.59          0.80          0.94

HistoGPT-S          0.63          0.56          0.75          0.92

Guided              0.66          0.58          0.79          0.94

GPT-4-Vision        0.54          0.55          0.50          0.86

Guided              0.62          0.61          0.67          0.91

BioGPT-1B(F)        0.44          0.41          0.64          0.89

Guided              0.61          0.53          0.77          0.93

BioGPT-1B(P)        0.12          0.10          0.41          0.82

Guided              0.12          0.14          0.55          0.88

Lower bound         0.44          0.41          0.62          0.88

Upper bound         0.66          0.58          0.77          0.93

Munich            bleu-4        meteor       rouge-l     bertscore

------------------------------------------------------------------

HistoGPT-L          0.07          0.22          0.23          0.70

Guided              0.10          0.23          0.24          0.70

HistoGPT-M          0.07          0.21          0.23          0.71

Guided              0.11          0.22          0.24          0.72
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HistoGPT-S          0.08          0.22          0.23          0.71

Guided              0.11          0.23          0.25          0.72

BioGPT-1B(F)        0.01          0.16          0.17          0.65

Guided              0.10          0.23          0.24          0.71

BioGPT-1B(P)        0.02          0.10          0.11          0.54

Guided              0.04          0.22          0.15          0.60

Lower bound         0.01          0.15          0.16          0.65

Upper bound         0.13          0.24          0.27          0.73

Münster       dictionary      scispacy       biobert     gpt-3-ada

------------------------------------------------------------------

HistoGPT-M-ER       0.59          0.60          0.50          0.86

HistoGPT-M          0.46          0.49          0.51          0.86

HistoGPT-S          0.46          0.49          0.51          0.86

GPT-4-Vision        0.16          0.51          0.31          0.79

BioGPT-1B(F)        0.29          0.39          0.44          0.83

BioGPT-1B(P)        0.06          0.04          0.25          0.78

Lower bound         0.17          0.32          0.40          0.83

Pathologist 1 report evaluation

original assessment

true_report_preferred, generated_report_preferred, ties

(42, 14, 44)

adjusted for close ties

true_report_preferred, generated_report_preferred, ties

(35, 9, 56)

correct predictions only

true_report_preferred, generated_report_preferred, ties

(17, 7, 33)

adjusted for ties and correct predictions only

true_report_preferred, generated_report_preferred, ties

(11, 3, 43)

5 largest classes

true_report_preferred, generated_report_preferred, ties

(17, 7, 24)
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Pathologist 2 report evaluation

original assessment

true_report_preferred, generated_report_preferred, ties

(45, 10, 45)

adjusted for close ties

...

correct predictions only

true_report_preferred, generated_report_preferred, ties

(18, 5, 34)

adjusted for ties and correct predictions only

...

5 largest classes

true_report_preferred, generated_report_preferred, ties

(18, 6, 24)

Pathologist 1 and 2 report evaluation per class

true_report_preferred, generated_report_preferred, ties

BCC: (5, 6, 5), (9, 1, 6)

BMN: (6, 0, 7), (3, 1, 9)

SKK: (1, 0, 6), (1, 2, 4)

AKK: (2, 1, 4), (3, 1, 3)

SCC: (3, 0, 2), (2, 1, 2)

Dataset overview

Munich: num_slides = 13,967 + 1,162, storage_size = 9T + 1T

Cohorts Patients Reports Classes Split

COBRA 4,066 NO BCC & others Test

CPTAC-CM 92 NO Melanoma Test
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Linköping 99 NO BCC & others Test

Mayo 52 YES BCC & others Test

Munich 6,705 YES BCC & others Train

Münster 1,300 YES BCC & others Test

Queensland 290 NO BCC & others Test

TCGA-SKCM 292 NO Melanoma Test
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