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Highlights

e Alarge vision language model is trained to generate dermatopathology reports
e |t takes as input multiple whole slide images and outputs tissue descriptions

e Generated reports match human-written reports as confirmed by pathologists
e |t predicts tumor subtypes and thickness zero-shot better than current methods

Summary

Histopathology is considered the gold standard for determining the presence and nature of
disease, particularly cancer. However, the process of analyzing tissue samples and producing
a final pathology report is time-consuming, labor-intensive, and non-standardized. Therefore,
new technological solutions are being sought to reduce the workload of pathologists. In this
work, we present HistoGPT, a vision language model that takes digitized slides as input and
generates reports that match the quality of human-written reports, as confirmed by natural
language processing metrics and domain expert evaluations. We show that HistoGPT
generalizes to five international cohorts and can predict tumor subtypes and tumor thickness
in a zero-shot fashion. Our work represents an important step toward integrating Al into the
medical workflow. We publish both model code and weights so that the scientific community
can apply and improve HistoGPT to advance the field of computational pathology.
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Introduction

Histopathology is the study of diseased tissues and cells under the microscope. It plays a
critical role in the diagnosis of many diseases, including malignant cancers, viral infections,
and inflammatory responses '. In many cases, the detailed analysis provided by
histopathological examinations remains the diagnostic gold standard . It involves the analysis
of slides by pathologists, the dictation of findings, and the writing of the report. However, this
process is time-consuming and labor-intensive °. The turnaround time for patients is likely to
worsen in the future as the number of pathologists is decreasing at an alarming rate.
Combined with an increase in tumor cases in an aging society, the workload for pathologists is
unsustainable .

Artificial Intelligence (Al) offers a potential solution to handle frequent and uncomplicated
diagnoses and effectively assist medical professionals in their daily routines by using
advanced tools such as deep neural networks (DNNs) °. These brain-inspired systems are
typically applied to digitized microscope slides, also known as whole slide images (WSIs).
Modern deep learning (DL) techniques allow to effectively automate several tasks, including
cancer classification °, tissue segmentation ’, survival prediction 8 and biomarker detection °.
These approaches have already shown promising results and could reduce the burden on
pathologists in today's medical landscape .

A major drawback of current methods is that they are typically limited to a narrow task,
providing only a single scalar output for each input. Consider, for example, an image
classification model for benign versus malignant tissue. Beyond predicting these two labels,
the model cannot do anything else: neither solve new unseen problems (called zero-shot
prediction) nor provide its reasoning steps for better explainability. Vision language
foundation models offer an exciting alternative to these rigid approaches by processing both
images and text simultaneously. However, due to methodological limitations, current
multimodal Al algorithms "'"'® can only process small image patches of 224 x 224 pixels, or
regions of interest (ROIs) of 1024 x 1024 pixels. These so-called patch-based approaches are
suboptimal because they are limited to a tiny fraction of the WSI, ignoring potentially relevant
areas in the remaining tissue sample.

Here, we present HistoGPT, a vision language model (VLM) that can generate
histopathology reports from gigapixel WSIs (see Figure 1) with impressive quality. Given a
slide, the model uses a vision foundation model (VFM) to extract meaningful visual features
from the tissue sample and combines them with a large language model (LLM) via
cross-attention mechanisms to generate the final report. The generated report describes the
WSI with high fidelity, explaining tissue composition, cellular subtypes, and potential
diagnoses. In an unprecedented way, users can interact with the model through various
prompts ("Expert guidance") to extract additional information such as tumor subtypes and
tumor thickness. To make the output text interpretable, HistoGPT provides saliency maps that
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highlight the corresponding image regions that led to the specific findings in the generated
text - providing an insightful and detailed understanding not possible before.

In our experiments, HistoGPT outperforms a state-of-the-art biomedical language model
for text generation ', a general-purpose multimodal Al system for image understanding ',
various multiple instance learning (MIL) approaches for image classification *'*%*, and different
contrastive methods '*"*'° for zero-shot prediction. We demonstrate that a slide-level model is
necessary for high accuracy by training two novel contrastive pre-trained baselines we call
HistoCLIP and HistoSigLIP. Both outperform the patch-level foundation model PLIP " on
slide-level tasks and are only surpassed by the generative pre-trained HistoGPT.

To train HistoGPT, we collect a large multimodal skin histology dataset from the
Department of Dermatology at the Technical University of Munich with 6,000 paired WSIs and
pathology reports written by board-certified pathologists for each patient case. To validate
HistoGPT, we are using one internal and five external publicly available test sets that cover
different data distributions in different countries. To democratize the use of Al, we are
releasing HistoGPT as an end-to-end deep learning pipeline that can be deployed on local
machines. As a result, users can select and fine-tune a copy of our machine learning algorithm
according to their needs.
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Figure 1: HistoGPT, a vision language foundation model for dermatopathology. (A) Traditionally, pathologists
analyze tissue samples from patients under a microscope and summarize their findings in a comprehensive
pathology report. This manual process is time-consuming, labor-intensive, and non-standardized. (B) In our
proposed Al-powered workflow, pathologists work alongside HistoGPT, our foundation model for vision and
language. It generates human-level written reports, provides accurate disease classification, discriminates between
tumor subtypes, predicts tumor thickness, and returns text-to-image interpretability maps that provide model
explainability. All of this serves as a second opinion to the pathologists, who can query the model for additional
information or tailor its output to the task at hand.
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Results

HistoGPT simultaneously learns from vision and language

HistoGPT consists of two components (see Figure 2A): a vision foundation model module and
a large language model module. The vision module is based on CTransPath ?'. It is a Swin
Transformer ** trained on over 32,000 WSIs from TCGA * and PAIP ** using a semantically
guided contrastive learning algorithm. Our language model module repurposes BioGPT ", an
auto-regressive generative model based on the Transformer * decoder architecture of GPT-3
*® trained on 15 million biomedical articles from PubMed. We sample image features from the
vision module using a custom pre-trained (see Figure 2B) Perceiver Resampler *” and integrate
it into the LLM via interleaved gated cross-attention (XATTN) blocks %. Only these new XATTN
blocks are trained from scratch. In this way, we endow HistoGPT with visual and linguistic
domain knowledge, which is critical for tackling the challenging problem of generating
histopathology reports from entire WSIs. Similar to Flamingo %, we freeze the parameters of
all pre-trained modules during optimization to further reduce the computational cost and to
avoid catastrophic forgetting of the inductive biases encoded in the learned weights.

A language model predicts a probability distribution over a vocabulary. The next word in a
text is randomly selected based on a combination of top-p and top-k sampling. Once the first
few words have been chosen, the outline of the report is roughly pre-determined. To avoid
being locked into a fixed report, we use an advanced inference method called Ensemble
refinement, introduced in Med-PaLM 2 *, to randomly sample multiple reports - each
focusing on slightly different aspects of the WSI (see Figure 2C). This extensive sampling allows
us to thoroughly search the model distribution and generate a wide variety of medical
reports, maximizing the likelihood of including all important observations. The
general-purpose LLM GPT-4 '®is then used to summarize all the bootstrapped reports.
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Figure 2: HistoGPT learns simultaneously from vision and language to generate highly accurate histology
reports from whole slide images. (A) HistoGPT consists of a vision encoder, a vision resampler, a language
model, and cross-attention blocks. Specifically, HistoGPT takes as a whole slide image and outputs written text.
Optionally, users can query the model for additional details using prompts such as "tumor thickness". (B) We train
HistoGPT in two phases. In the first phase, we pre-train the vision module of HistoGPT using multiple instance
learning (MIL). In the second phase, we freeze the pre-trained layers and fine-tune the language module on the
image-text pairs. To prevent the model from overfitting on the same sentences, we apply text augmentation. This
is done using GPT-4, a general-purpose large language model that faithfully paraphrases the medical notes. (C)
During deployment, we propose to optionally use an advanced inference method called Ensemble refinement.
Here, the model stochastically generates multiple possible pathology reports via temperature sampling to capture
different aspects of the input image. An aggregation module (GPT-4) then combines the results to obtain a more
complete description of the underlying case.
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HistoGPT generates human-level pathology reports

We train HistoGPT on over 13,000 whole slide images from 6,000 patients with corresponding
pathology reports from a real-world cohort provided by the Department of Dermatology at
the Technical University of Munich (see Figure 3A). This internal dataset contains 162 different
disease classes of varying frequency and has a total size of 10 terabytes. To assess the impact
of model architecture and size, we train and evaluate three models: HistoGPT with 1 billion
parameters (HistoGPT-1B), HistoGPT with 3 billion parameters (HistoGPT-3B), and
HistoGPT-3B with Ensemble Refinement (HistoGPT-3B-ER). In the following experiments, we
use HistoGPT in "Expert guidance" mode, where the model is prompted with the correct
diagnosis, simulating a pathologist who is confident in the WSI assessment but wants to leave
the work of textual tissue description to an Al assistant (see Figure 3B).

Currently, no model can generate a histopathology report from an entire WSI, let alone a
series of WSIs (one patient might have multiple tissue samples). Therefore, we compare the
reports generated by HistoGPT-1B, HistoGPT-3B, and HistoGPT-3B-ER with those of text-only
and patch-only architectures. For the former, we choose the domain-specific language model
BioGPT-1B, fine-tuned on our Munich cohort. For the latter, we rely on the multimodal
foundation model GPT-4V(ision) '8, which takes low-resolution images of size 2000 x 768 as
input. We introduce two other non-trivial baselines: A lower baseline, where we select two
random reports with arbitrary diagnoses; and an upper baseline, where we compare two
random reports with the same diagnosis (see Methods for more details).

We evaluate the models' output using four semantic-based machine learning metrics: (i)
match critical medical terms extracted from the original text with the generated text using a
dermatology dictionary; (ii) use the same technique but with ScispaCy, a scientific name entity
recognition tool, as the keyword extractor *°; (iii) compare the semantic meaning of the
original and generated reports by measuring the cosine similarity of their text embeddings
generated by the biomedical language model BioBERT *'; (iv) use the same technique but with
the general purpose large language model GPT-3-ADA *® for text embedding (see
Supplementary Figure 2 for an illustration).

In "Expert guidance", HistoGPT-1B and HistoGPT-3B capture an average of 64% and 63% of
all dermatological keywords from the original pathology reports, respectively (see Figure 3C),
outperforming alternative language models such as BioGPT-1B and GPT-4V by at least 5%.
HistoGPT-3B-ER further improves the Jaccard index to 77%. This is 10% above the upper
baseline. A similar trend is observed when ScispaCy is used as a keyword extractor (see Figure
3C). HistoGPT also produces text with a high cosine similarity with the ground truth, as
indicated by the embeddings provided by BioBERT and GPT-3-ADA (see Figure 3C). We also
evaluate all models using traditional syntax-based measures (BLEU-4, ROUGE-L, METEOR, and
BERTscore). Here, HistoGPT receives relatively low scores (see Supplementary Table:
Automatic report evaluation). Combined with the high semantic-based scores (see Figure 3C),
this suggests that HistoGPT is not overfitting the training set by simply repeating common
phrases and medical terms.
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Figure 3. HistoGPT generates human-level pathology reports of skin diseases. (A) Our Munich dataset is a
real-world cohort of 6,000 patients with 162 skin diseases from the Department of Dermatology at the Technical
University of Munich. It includes malignant cases such as basal cell carcinoma (BCC, n = 870) and squamous cell
carcinoma (SCC, n = 297); precursor lesions such as actinic keratosis (AK, n = 396) as well as benign cases such as
benign melanocytic nevus (BMN, n = 770) and seborrheic keratosis (SK, n = 412). We divide the patient-level data
set into a training set and a test set using a stratified 85/15 split. (B) Through years of experience, pathologists are
often able to make a diagnosis at first glance. Instead of writing a pathology report themselves, they can now use
HistoGPT in "Expert guidance™ by giving the model the correct diagnosis to complete the report. (C) In "Expert
guidance" mode, HistoGPT-3B-ER (HistoGPT-3B with Ensemble Refinement) outperforms BioGPT-1B and GPT-4V on
the two text accuracy metrics Dictionary and ScispaCY; and is equal to or better on the two text similarity metrics
BioBERT and GPT-3-ADA (see Methods for details). (D) Two independent external pathologists (P1 left and P2 right)
evaluated 100 generated and original reports together with the corresponding WSI in a randomized, blinded study.
For BCC, P1 found that 38% of the generated reports described the WSI better than the original report. In 31% of
cases, both reports performed equally well, while in 31% of cases, the original report was preferred. In 58% (P1)
and 55% (P2) of all cases, the pathologists did not prefer the original report to the generated one.
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To evaluate the content of the generated reports from an expert perspective, we conduct a
blinded study in which we randomly select 100 cases from our Munich test dataset, generate
a report for each patient in "Expert guidance" mode, and pair it with the original
human-written report. The two reports are then randomly shuffled and anonymized. Two
independent expert pathologists (P.S. and S.B.), neither involved in the construction nor
annotation of the Munich cohort, were given the original WSIs and asked to identify the report
that best describes each case, with the option of selecting "no difference" if both are deemed
equally accurate. Ensemble refinement is not used in this study to avoid easy identification of
the GPT-4 summarized text. For the five largest diagnostic classes (basal cell carcinoma (BCC),
benign melanocytic nevus (BMN), seborrheic keratosis (SK), actinic keratosis (AK), squamous
cell carcinoma (SCC), see Figure 3A), we find moderate agreement between the two
pathologists. Analyzing the results for each class separately, we find that Pathologist 1
overwhelmingly prefers the Al or finds the Al and human report similarly good in about 70%
of the BCC cases. Pathologist 2, on the other hand, prefers the Al-generated report for BMN
80% of the time. The Al-generated report for SK is preferred by both pathologists 90% of the
time. Across all 100 report pairs, both pathologists find no difference between the generated
and human reports about 45% of the time and prefer the Al-generated reports about 15% of
the time (see Figure 3D).

According to a post-analysis provided by the two pathologists, after about 20 cases, they
were able to tell which report was likely generated by the Al and which was likely generated by
a human pathologist. The Al-generated text tends to be more structured and comprehensive.
It includes more observations that are informative but not always necessary for the final
diagnosis. Notably, there are only a few cases (< 5) where HistoGPT generated confusing text.
In one case, the model incorrectly identified red collagen bundles as blood. In another case, it
failed to describe a cyst, which was the key diagnostic feature. In one interesting case where
there was a disagreement between the ground truth diagnosis and Pathologist 1 - resulting in
both Al and human reports being disputed. Interestingly, one slide was incorrectly annotated
by the human, but the Al still provided the correct report. There are two cases where the Al
failed to detect small or unusual objects such as mitotic figures and a scabies mite. In one
slide, the model mistook erythrocytes for eosinophils. However, these two cell types were
difficult to distinguish in the image. Pathologist 1 mentioned that about 10 human reports
were favored simply because the tumor thickness was more accurate than in the generated
report, but the text itself was equally good. After adjusting for this, and including only reports
where "Expert guidance" and model prediction agreed, the pathologist preferred the Al report
or was indifferent 80% of the time (see Supplementary Figure 3). Overall, the model was
described as having the skill level of a novice pathologist. Notably, this was achieved with only
5K training points, which is small for LLM standards.
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HistoGPT accurately predicts diseases across many cohorts

There is another quantitative way to demonstrate that HistoGPT has effectively learned to
encode medical knowledge. We extract the predicted diagnosis from the generated reports,
calculate the classification accuracy, and compare the results (Figure 4) with state-of-the-art
multiple-instance learning (MIL) approaches for image classification. For this purpose, we run
HistoGPT without "Expert guidance" mode, i.e. we prompt the model with the phrase "Final
diagnosis" instead of "Final diagnosis: [expert label]" and let it make a diagnostic decision on
its own (see Figure 4A). MIL methods such as AttentionMIL "°, TransMIL *°, and TransfomerMIL
® achieve weighted F1 scores between 0.34 and 0.48 on the Munich test set. These results are
not unexpected. A major challenge for all these methods is that the training dataset is highly
unbalanced, ranging from a handful of samples in the minority classes to several hundred
samples in the majority classes. Nevertheless, our PerceiverMIL achieves a weighted F1 score
of 44% on the internal test set (see Figure 4B). The much larger HistoGPT-1B does not overfit
and retains the performance of its vision module. Surprisingly, the even larger HistoGPT-3B
improves the weighted F1 score to 45%. Compared to the highly specialized models
AttentionMIL, TransMIL, and TransfomerMIL, both PerceiverMIL and HistoGPT are slightly
better or at least competitive in terms of classification performance. It is important to note
that, unlike MIL approaches, the output of HistoGPT is pure text and not integer class indices,
highlighting the flexibility of a vision language model.

A challenging clinical question with a high therapeutic impact in dermatology is the
differentiation of cancer from non-cancer. In routine diagnosis, for example, it is important to
distinguish basal cell carcinoma (BCC) from other conditions; cancer, such as squamous cell
carcinoma (SCC) from precancerous actinic keratosis (AK), and malignant from benign
conditions, such as melanoma from benign melanocytic nevus (BMN). Unlike the previous
classification task with over 100 classes, we now face a classification problem with only two
classes. In this case, HistoGPT automatically calls a lightweight binary classifier to solve the
task at hand (see Methods), overcoming the class imbalance problem from before. This mode
is called "Classifier guidance" and makes the model aware of the unbalanced label distribution
by limiting the number of output classes. We achieve remarkable classification performance
for the three clinical tasks with weighted F1 scores of 98%, 87%, and 89%, respectively (see
Figure 4C).
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Figure 4. HistoGPT accurately predicts diseases in-domain and out-of-domain without human guidance. (A)
In the absence of a human-in-the-loop, HistoGPT independently predicts the patient's diagnosis on its own and
generates the corresponding pathology report. (B) On the internal Munich test set, HistoGPT is comparable to
state-of-the-art classification models in predicting over 100 dermatological diseases, even though the model's
output is pure text. (C) HistoGPT answers clinically challenging and important questions by discriminating
malignant from benign conditions with high accuracy on the Munich dataset: basal cell carcinoma (BCC, n = 107) vs.
other conditions (n = 621) with an accuracy of 0.98 and a weighted F1 score of 0.98; actinic keratosis (AK, n = 47) vs.
squamous cell carcinoma (SCC, n = 33) with an accuracy of 0.88 and a weighted F1 score of 0.87; benign
melanocytic nevus (BMN, n = 86) vs. melanoma (n = 21) with an accuracy of 0.89 and a weighted F1 score of 0.89.
(D) We also evaluate HistoGPT on five independent external cohorts covering different countries, scanner types,
staining techniques, and biopsy methods. (E) Both PerceiverMIL and HistoGPT perform well on external datasets by
conditioning them on the class distribution. (F) HistoGPT is able to produce highly accurate pathology reports, as
indicated by the high keyword and cosine-based similarity scores on Minster. As in Figure 3C, the lower baseline
compares two randomly selected reports.
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HistoGPT in "Classifier guidance" mode also generalizes to previously unseen datasets and
problems. We demonstrate this by evaluating HistoGPT on five external, publicly available
cohorts from different countries, scanner types, staining protocols, and medical procedures
such as shave biopsies, punch biopsies, and excisional biopsies (see Figure 4D). While some of
the cohorts include a variety of dermatological diseases (Queensland or Linkdping), some
cohorts (TCGA and CPTAC) include only melanoma cases, but can still be used to assess the
accuracy of HistoGPT. We retrain PerceiverMIL as a state-of-the-art classifier and HistoGPT-1B
as well as HistoGPT-3B on the entire Munich cohort and compare their classification
performance on the external datasets. On the BCC subset of Munster, both PerceiverMIL and
HistoGPT correctly identify BCC in 88% of cases (see Figure 4E). In the multi-class setting
(Queensland with 3 classes and Linkdping with 14 classes), we achieve accuracies of 85% and
70%, respectively. The models also reliably discriminate melanoma from other types with
accuracies of 80% and 90% in TCGA and CPTAC, respectively. For comparison, we also report
the results of HistoGPT without class imbalance awareness (see Figure 4E, light color bars).
"Classifier guidance" significantly improves the effectiveness and generalizability of the model
across different external cohorts.

Of the five cohorts, only Munster (without the BCC subset) includes unstructured pathology
reports. In contrast to the Munich reports, these reports contain only the critical findings and
the final assessment (e.g., "Lichen planus-like keratosis (regressive solar lentigo/flat seborrheic
keratosis), no evidence of basal cell carcinoma in the present biopsy.") and thus lack the detailed
microscopic description of the Munich training set. Since the critical findings include different
classes not seen in Munich and are not available separately from the written text, it was not
possible to extract individual class labels. Nevertheless, we can calculate how diagnostic
information HistoGPT encodes by comparing the extracted keywords and measuring the
cosine similarity (see Figure 4F). Remarkably, HistoGPT captures nearly 60% of all biomedical
keywords using our dermatology dictionary and the ScispaCy model, even though the ground
truth was written in a completely different style and structure. HistoGPT also achieves high
cosine similarity under BioBERT and GPT-3-ADA. Compared to a random report generated by
BioGPT-1B and a grounded report given by GPT-4V, the text quality of these models is much
lower compared to HistoGPT with or without Ensemble refinement.
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HistoGPT predicts tumor thickness and tumor subtypes zero-shot

In the diagnosis of (skin) tumors, it is important to include information about tumor thickness
or assignment to a specific tumor subtype in the final report. These parameters are well
defined in dermatopathology: In basal cell carcinoma, tumor thickness is measured from the
stratum granulosum in the epidermis to the deepest point of the tumor in millimeters, similar
to the determination of the Breslow index in melanoma, while tumor subtype classification is
based on the WHO guidelines **. HistoGPT can predict both tumor thickness and tumor
subtypes out-of-the-box and does not require additional reconfiguration or explanation of
tumor-specific parameters at any stage of training. We can design prompts and instruct
HistoGPT to produce the desired text output. For example, typing the prompt "tumor
thickness" will produce a prediction of the depth of tumor invasion without fine-tuning.
Although only a fraction (n = 644) of the training dataset has this value recorded as ground
truth, HistoGPT can still predict the tumor thickness with considerable accuracy and include it
directly in the final report. This emergent behavior is referred to in the literature as zero-shot
learning “°. For the 94 samples in the internal Munich test set with such a ground truth, we
measure a root mean square error (RMSE) of 1.8 mm and a significant correlation coefficient
of p = 0.52 (p = 9.7:10%®) for the predicted tumor thickness versus the reported ground truth
(see Figure 5A). Binning the values to an interval with step sizes of 2 mm, 1 mm, and 0.5 mm
gives us accuracies of 64%, 38%, and 21%, respectively. Again, we emphasize that this is
zero-shot prediction on a task where the ground truth is typically obtained with a dedicated
measurement procedure. In comparison, the predictions of the slide-based contrastive
baselines, HistoCLIP (RMSE = 4.35 mm, p = 0.006, p = 0.96) and HistoSigLIP (RMSE = 3.84 mm,
p = 0.38, p =0.002), correlate poorly with the ground truth and are far from HistoGPT in terms
of quality (see Supplementary Figure 4A). The patch-based contrastive baseline PLIP ', which
is the state of the art in computational pathology, is even worse (RMSE =2.78 mm, p =-0.18, p
= 0.08), highlighting the importance of a slide-level approach.

We analyze whether the zero-shot capability generalizes to other cohorts by looking at the
never seen BCC subset of the external Munster