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Abstract 

 

Introduction: Type 2 diabetes (T2D) is a heterogeneous disorder for which disease-causing 

pathways are incompletely understood. Here, we mapped genetic risk for T2D and its 

comorbidities to proteins, mechanistic pathways and clinical outcomes using proteogenomic 

data from a population-scale biobank and two randomized controlled trials. 

 

Methods: We tested polygenic scores (PGS) for T2D and its cardiometabolic comorbidities, 

plus five partitioned T2D PGS (beta cell, lipodystrophy, liver lipid, obesity, and liver lipid), for 

association with 2,922 circulating proteins in 54,306 multi-ancestry participants (of which 

42,452 were unrelated and without prevalent cardiometabolic disease) from the UK Biobank 

(UKB). Then, we tested the PGS-associated proteins for association with incident 

cardiometabolic complications in two cardiovascular outcome trials among T2D patients 

with proteogenomic data: EXSCEL (N=2,823) and DECLARE-TIMI 58 (N=915). We assessed 

causality using two-sample Mendelian randomization and mediation.  
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Results: We identified 839 unique proteins significantly associated with any T2D PGS and 

1,005 proteins that were associated with at least one cardiometabolic PGS. Some PGS-

associated proteins such as TFF3, EFEMP1, and MMP12 were in turn associated with renal 

and cardiovascular trial outcomes. PGS association patterns revealed shared pathways, e.g., 

complement cascade, cholesterol metabolism, IGF signaling. The proteins underlying these 

pathways, such as LPA, C1S, and IGFBP2, were consistently associated with clinical trial 

outcomes or identified via causal inference. 

 

Conclusions: This proteogenomic study revealed proteins and mechanistic pathways 

underlying T2D and related comorbidities, advancing our understanding of T2D pathobiology 

and identifying putative biomarkers. All our results are available in an online data portal 

(https://public.cgr.astrazeneca.com/t2d-pgs/v1/). 
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Introduction 

 

Diabetes mellitus is a complex, multifactorial metabolic disorder diagnosed via a single 

clinical feature, hyperglycaemia.
1,2

 Among the major diagnoses of diabetes mellitus, type 2 

diabetes (T2D) has the largest worldwide disease burden.
1
 T2D is itself highly heterogenous, 

including individuals with different degrees of insulin resistance and beta-cell dysfunction.
3
 

The vast majority of patients with T2D have at least one additional comorbidity, such as 

hypertension, obesity or hyperlipidaemia.
4
 Genome-wide association studies (GWAS) have 

identified genetic associations that have advanced our understanding of pathophysiological 

pathways underlying T2D,
5,6

 though connecting individual T2D risk variants to specific 

pathways remains challenging. Analytical strategies to understand the heterogenous nature 

of T2D have included performing GWAS within clinically-defined T2D clusters
7
, or performing 

downstream clustering of genetic variants identified in GWAS for a broad T2D patient 

population.
5
  

 

Many genetic variants associated with T2D that have been identified through GWAS have 

small effect sizes and map to non-protein-coding regions where their impact on biological 

pathways is not directly apparent. Polygenic risk scores (PRS), also known as polygenic scores 

(PGS), aggregate the small effects of these variants, and support risk prediction and 

stratification, including for T2D.
8,9

 Partitioned polygenic scores (pPS), derived from the 

genetic clustering of GWAS-identified T2D variants, have also been developed to capture 

biological processes underlying T2D genetic risk.
10–12

 PGS can also improve our 

understanding of disease pathophysiology. For example, Ritchie et al. tested cardiometabolic 

PGS for their association with protein expression levels, uncovering molecular mechanisms 

underlying polygenic risk.
13

 A more recent study by Steffen et al. incorporated T2D 

heterogeneity in their framework by testing the association between T2D pPS and protein 

levels.
14

 Leveraging PGS to identify the proteomic signature of disease can highlight key 

pathways and potentially find novel targets that may be missed by traditional disease-gene 

mapping approaches.  

 

Here, we mapped genetic risk for T2D and its comorbidities to proteins, mechanistic 

pathways, and clinical outcomes. We constructed T2D PGS (a genome-wide PGS and a PGS 

restricted to GWAS-significant variants), five T2D pPS
10

 (beta cell, lipodystrophy, liver lipid, 

obesity, proinsulin), a BMI PGS, and PGS for common T2D cardiometabolic comorbidities 

(chronic kidney disease - CKD, coronary artery disease - CAD, non-alcoholic fatty liver disease 

- NAFLD). Then, we tested these PGS for associations with 2,922 plasma proteins in 54,306 

participants from the UK Biobank Pharma Proteomics Project (UKB-PPP).
15,16

 We used 

pathway enrichment to identify key biological circuits and performed Mendelian 

randomization (MR) and mediation analyses to infer the PGS-associated proteins that might 

play a causal role. Finally, we tested whether the PGS-associated proteins were associated 

with clinical trial outcomes in two randomized controlled trials (RCT) of cardiovascular 

outcomes in T2D patients; Exenatide Study of Cardiovascular Event Lowering (EXSCEL)
17

 and 

Dapagliflozin Effect on Cardiovascular Events (DECLARE)-TIMI 58
18

 (2,823 and 915 

participants with genomic and proteomic data, respectively). Together, our analyses identify 

the proteomic signatures of T2D-related polygenic scores which highlight specific protein 

biomarkers, mechanistic pathways, and putative therapeutic targets.  
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Methods 

 

See Supplementary Figure 1 for a visual representation of the methods.  

 

Cohort description 

 

The UK Biobank (UKB) is a deeply phenotyped population-based cohort comprised of 

approximately 500,000 subjects with array genotyping, exome sequencing, and whole 

genome sequencing data and linkage to electronic health care record data with over 14 

years of follow-up time.
19–21

 The UK Biobank Pharma Proteomics Project (UKB-PPP) is a 

private-public partnership that has assayed 2,923 unique proteins (2,922 after excluding one 

protein without sufficient measurements) in a subset of 54,306 UKB participants using the 

Olink Explore proteomics platform.
15,16

 See Supplementary Figure 2 for proteomic 

intersection between the three cohorts.  

 

EXSCEL examined the cardiovascular effects of once-weekly exenatide, a glucagon-like 

peptide-1 (GLP-1) agonist, in T2D patients with a median follow-up time of 3.2 years.
17

 In a 

subset of trial participants (N=2,823), both genotyping and SomaScan proteomics data were 

generated (see Supplementary Table 1). DECLARE-TIMI 58 was a phase 3 RCT that examined 

the cardiovascular effect of dapagliflozin, an inhibitor of sodium-glucose co-transporter-2 

(SGLT2), in patients with T2D with multiple risk factors for or established atherosclerotic 

cardiovascular disease with a median follow-up time of 4.2 years.
18

 Similar to EXSCEL, for a 

subset of participants both genotyping and Olink proteomics data were available (N=915). 

See Extended Methods in Supplementary Information for a description of genotyping and 

proteomics quality control.  

 

UK Biobank phenotype definitions 

 

For the UKB, we used ICD10 codes and clinically meaningful “Union” phenotypes 

constructed by merging relevant ICD10 codes (release from Feb 2022), as described 

previously.
22

 For identifying prevalent cardiometabolic conditions that needed to be 

excluded from analyses, we used the following ICD10 codes: E10-E14 (any diabetes 

diagnosis), K76.0 (NAFLD), N18 (CKD), and I20-I25 (ischaemic heart disease). We also 

excluded UKB participants with elevated (> 40 U/L) alanine aminotransferase (ALT) and 

aspartate aminotransferase (AST) at baseline
23

, defined in supplementary tables as 

NAFLD_AST_ALT. Incident cases were defined using ICD10 codes (E11 for T2D, K76.0 for 

NAFLD, N18 for CKD, I25 for CAD) when the earliest date of diagnosis (determined by fields 

41270, 40001, 40002) occurred after baseline (when a sample was donated for proteomics). 

Note that relatively few cases were diagnosed within 30 days of sample collection 

(Supplementary Table 2).  

 

For the generation of summary statistics for Mendelian randomization, we used the 

NAFLD_AST_ALT definition of NAFLD to maximize sample size, E11 for T2D, N18 for CKD, the 

union term of 120-I25 for ischaemic heart disease, and body mass index measured at 

baseline. For traits in diabetic UKB participants, we used obesity, defined as having a 

baseline BMI >= 30 kg/m
2
, and the ICD10 codes in Supplementary Table 2, which contains a 

complete description of UKB phenotype definitions and cohort sample size. 
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Randomized controlled trials (RCTs) phenotype definitions 

 

We used four outcomes that were available in both trials, i.e., time to insulin initiation, time 

to the composite cardiovascular outcome (major cardiovascular events or MACE, comprising 

of cardiovascular death, non-fatal myocardial infarction, or non-fatal ischemic stroke), time 

to hospitalization for heart failure, time to the renal outcome (for EXSCEL, two consecutive 

measurements of eGFR < 30 ml/min/1.73m
2
 and for DECLARE-TIMI 58, a composite renal 

outcome comprising of a sustained decrease of 40% or more in eGFR to < 60 

ml/min/1.73m
2
, new end-stage renal disease, or death from renal causes). Note that 

competing risk of death was addressed through censoring and the use of cox regression.
24

 

DECLARE-TIMI 58 cardiovascular endpoints were adjudicated by independent adjudication 

committees. For insulin initiation, we excluded participants already on insulin therapy. See 

supplementary table 3 for a description of phenotypes. 

 

Polygenic score estimation 

 

To avoid overfitting when estimating the PGS in the UKB, we retrieved genome-wide 

association study (GWAS) summary statistics from external studies that did not contain UKB 

participants (Supplementary Table 4), maximizing both sample size and diversity. We trained 

genome-wide T2D, CAD, BMI, and CKD PGS using PRS-CS
25

 (when only one GWAS per trait 

was available) or PRS-CSx
26

 with these GWAS summary statistics. We ran PRS-CSx and PRS-CS 

with phi set to ‘auto’. For NAFLD, we used a 77-variant score comprising of only GWAS-

significant variants from a GWAS of unexplained chronic ALT elevation
27

 as a complete set of 

publicly-available well-powered NAFLD GWAS summary statistics were not readily available. 

For the partitioned T2D polygenic scores (pPS), we obtained the variants and cluster weights 

generated by Udler et al. corresponding to five distinct genetic clusters, i.e., beta cell, 

lipodystrophy, liver lipids, obesity, and proinsulin.
10

 To enable comparisons between 

genome-wide and GWAS-significant PGS, we also generated a set of GWAS-significant T2D 

summary statistics using the clump procedure implemented in PLINK v1.9 (p-value < 5x10
-8

, 

R
2
 < 0.1, 250 kilobase window around each index variant). All PGS for UKB, UKB-PPP, EXSCEL, 

and DECLARE-TIMI 58 were estimated using post-QC imputed data and PLINK v2.00a4LM.
28

 

See Supplementary Tables 5-6, Supplementary Figures 3-8, and Supplementary 

Information for a complete description and PGS validation.   

 

PGS and protein associations in UK Biobank 

 

For testing PGS for association with protein expression levels, we modelled our analysis on 

the same internal replication structure as used in the UKB-PPP consortium pQTL GWAS. First, 

we restricted the analysis to unrelated participants (resolved to the 2
nd

 degree) without a 

baseline diagnosis of diabetes or a major cardiometabolic condition at data collection (UKB’s 

baseline timepoint; N= 42,452) to reduce confounding due to reverse causality as previously 

suggested by Ritchie et al.
13

 Then, we stratified the cohort into the consortium-identified 

discovery subset consisting of European-ancestry participants (N= 28,105) and the 

replication subset of remaining pan-ancestry participants (N= 14,347).  We tested each PGS 

for association with protein expression levels in the discovery subset using linear regression 

in R, using the same covariates (age, age
2
, sex, age*sex, age

2
*sex, batch, UKB centre, array, 
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time to analysis, genetic PCs 1-20) as the UKB-PPP consortium pQTL GWAS
15

. Significant 

PGS-protein associations after a Bonferroni correction accounting for 10 scores and 2,922 

proteins (p-value < 1.7x10
-6

) were then moved forward to be tested in the replication subset. 

To account for the difference in sample sizes in the two subsets, we applied an FDR 

correction to our replication analysis separately to each PGS.
13

 Associations were considered 

internally replicated with an FDR-adjusted p-value < 0.05.  

 

To assess whether a PGS-protein association was driven by a single locus, we repeated the 

PGS-protein association analyses after adjusting for independent cis and trans pQTLs 

obtained from the UKB-PPP consortium’s pQTL GWAS. Similarly, we repeated PGS-protein 

association analyses after adjusting for BMI to describe the influence of BMI on the PGS 

associations. Finally, to explore the impact of genetic ancestry on the transferability of PGS-

protein associations, we tested PGS-protein associations after stratifying the UKB-PPP cohort 

by predicted ancestry. We then compared the effect sizes (beta coefficients) of the PGS on 

circulating protein levels between ancestry groups using Pearson’s r and the slope of the 

regression line fitted to the beta coefficients.  

 

Mediation analyses in UKB 

For mediation analyses, we utilised incident cases (prevalent cases were excluded) and the 

medflex R package
13,29

 (version 0.6-10) to perform mediation analysis with natural effects 

models. In this framework, we set the PGS as the exposure and the protein as the mediator. 

We considered a mediation model to be significant if the mediation (indirect) p-value and 

the total p-value were both significant after a Bonferroni correction (p-value < 1x10
-6

); the 

direct effect p-value was allowed to be not significant as it is possible that the PGS’s effect is 

primarily mediated through the tested protein. As a sensitivity analysis, we performed 

mediation in both all participants and only European ancestry; we filtered out proteins that 

were not significant in both scenarios.   

 

2-sample Mendelian randomization (MR) 

 

We performed two-sample Mendelian randomization (MR) analysis to conduct a proteome-

wide scan for proteins suspected to play a potential causal role in the development of T2D, a 

T2D comorbidity, or a T2D complication. To identify weak instruments, we calculated the F- 

statistic
30

 for each instrument (F-statistic = �� ���⁄ ). We performed MR on all proteins with 

3 or more cis pQTLs using the MendelianRandomization
31

 R package (version 0.7.0) and 

applying the simple and weighted median, IVW, and MR-Egger methods, finding the 

consensus effect by taking the median of the estimate, standard error, 95% confidence 

interval, and p-value across all methods. We addressed violations of the pleiotropy 

assumption by excluding results with an MR-Egger intercept p-value < 0.05.
13,32

 For traits 

available in the entire UKB cohort, we applied a Bonferroni correction, while for traits in type 

2 diabetics (ICD10 code E11) we applied an FDR correction due to the smaller sample sizes. 

See Supplementary Information for a description of MR sensitivity analyses including 

statistical colocalization and the GWAS summary statistics used in MR.  

 

Reverse Mendelian randomization  
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We obtained MR instruments for reverse MR from the T2D, CKD, NAFLD, BMI, and ischemic 

heart disease GWAS data that we utilized in our forward MR analysis. We performed LD 

pruning using PLINK v1.90b6.18’s clumping procedure with a 500 KB window size, a 

minimum p-value threshold of 5x10
-8

, and R
2
 < 0.001 using UKB-PPP as the LD reference. We 

matched each instrument with variants from the pQTL GWAS data. We then performed 

reverse MR using the MendelianRandomization R package in the same manner as described 

above.  

 

Association and mediation of proteins with trial outcomes in EXSCEL and DECLARE-TIMI 58 

 

We tested proteins for their association with the time to EXSCEL outcomes with the survival 

package in R 3.6.1 (https://github.com/therneau/survival) and replicated significant 

associations in DECLARE-TIMI 58. We used Cox proportional hazards regression and adjusted 

for age, sex, age*sex, genetic PCs 1-10, trial arm, and (+/-) BMI. As in the case of the UKB, 

analyses were repeated with a BMI adjustment to identify associations likely mediated by 

BMI/obesity. For both EXSCEL and DECLARE-TIMI 58, two timepoints were available for 

proteomics: baseline plus 12 months for EXSCEL, and baseline plus 6 months for DECLARE. In 

both studies, we performed the proportional hazards regression analysis three times, using 

the baseline measurements, the repeat measurement, and the difference (delta) between 

the two measurements, respectively, as exposures. For EXSCEL, each SomaLogic aptamer 

was tested separately and reported. In the case of statistically significant associations in the 

clinical trial time-to-event analyses, (Bonferroni threshold of p-value < 1.3x10
-5

), we assessed 

the proteins using more comprehensive models that included clinical risk factors to evaluate 

their suitability as a biomarker. See Supplementary Information for a description of the 

clinical risk factors.  

 

In the scenarios where a PGS is associated with both an outcome and a protein (see 

Supplementary Information), and the protein is in turn also associated with the same 

outcome, we performed mediation analysis using the medflex R package (version 0.6-10) in 

the same manner as above, with the indirect p-value adjusted using the FDR approach.  

 

Pathway Enrichment 

 

For all sets of proteins identified by the PGS-protein analyses, we used the gProfiler
33

 tool 

(https://biit.cs.ut.ee/gprofiler/gost) to test if these sets of encoded genes were enriched for 

KEGG, WikiPathways, or REACTOME pathways. Note that we restricted the statistical domain 

to the genes whose protein products are captured by the Olink panels.     
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Results 

 

Associations of PGS with protein expression levels 

 

Identifying circulating proteins that associate with PGS for T2D and its cardiometabolic 

comorbidities can shed light on proteins important in the development of T2D and related 

comorbidities. Also, this analysis can help define mechanisms through which a PGS exerts its 

effect and describe the overall proteomic signature of a PGS. The genome-wide T2D PGS 

(PGST2D_gw) was associated with 713 proteins in the UKB discovery set (Table 1); of these, 686 

replicated in the UKB replication set (FDR < 5%). The proteins that were among the top 1% in 

terms of variance (R
2
) explained by the PGST2D_gw include PON3, CKB, APOF, and IGFBP2 

(Figure 1A). Out of the 713 proteins significantly associated with the PGST2D_gw in the 

discovery set, 341 remained significant after adjustment for BMI (Figure 1B), demonstrating 

the close interplay between T2D genetic risk, BMI, and circulating protein levels.  

 

The partitioned T2D scores and the PGST2D_gwas (i.e., the PGS derived from GWAS-significant 

variants) were associated with fewer proteins compared to the genome-wide T2D score 

(PGST2D_gw) (Supplementary Figures 9-13, Supplementary Table 7). Despite comprising of 

fewer variants than PGST2D_gw, the PGST2D_beta_cell, PGST2D_liver_lipid, and PGST2D_gwas were 

significantly associated with proteins that were not associated with any other PGS (see Table 

1). When comparing the effect sizes of the different T2D PGS for the circulating proteins, the 

PGST2D_gw beta coefficients were negatively correlated with the PGST2D_liver_lipid (r = -0.15, p = 

6.9x10
-12

) and not correlated with PGST2D_proinsulin (p > 0.05, Figure 1C). Overall, this suggests 

that the partitioned T2D scores capture protein associations representing perturbations in 

specific biological pathways that may be obscured when variant effects are aggregated in a 

genome-wide score (PGST2D_gw).  

 

We also tested a selection of cardiometabolic PGS representing common T2D comorbidities 

(CAD, CKD, BMI, and NAFLD) for their association with protein expression levels (Panel A 

from Supplementary Figures 10-17) to determine their proteomic signatures and compare 

them with that of the T2D scores. The proteins associated with the PGST2D_gw were 

frequently associated with one or more cardiometabolic PGS (see Figure 1D). Overall, 66% 

were also significantly associated with the PGSBMI, 36% were associated with the PGSCKD, 

22% were associated with the PGSNAFLD, and 16% were also associated with the PGSCAD. The 

effect sizes of these scores on the circulating protein levels were all positively correlated 

with that of the PGST2D_gw (p-value < 0.05, Figure 1C), supporting the epidemiological 

observation that cardiometabolic diseases are highly interconnected.
34,35

 However, for select 

proteins, the directions of effect of the T2DT2D_gw on circulating levels were in fact opposite 

when compared to the effects of another PGS (e.g., the effect of PGST2D_gw and PGSBMI on 

TIMP4 levels, see Supplementary Information, supplementary figure 18, and 

Supplementary Table 8), likely reflecting more complicated relationships such as 

compensatory responses.
36–38

 In the case of the partitioned scores, the correlation patterns 

seem to point to proteomic mechanisms that explain their differential associations with T2D 

comorbidities. Notably, the protein effect sizes of the PGST2D_liver_lipid were negatively 

correlated with those of the PGSCAD (r = -0.39, p=1.7x10
-125

), but were positively correlated 

with the PGSCKD (r= 0.31, p = 9.7x10
-87

), mirroring the decreased risk of CAD and increased 

risk of CKD that have been described for this score in previous studies.
10,11
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The correlations of PGS effect sizes on circulating proteins between genetically predicted 

European and predicted non-European ancestries were less than 1, reflecting the fact that 

PGS translatability across ancestries is a potential concern
39

 (see Supplementary Figures 19-

23, Supplementary Table 9). However, this correlation was substantially improved when 

only comparing statistically significant PGS-protein associations. See Supplementary 

Information for further discussion of cross-ancestry PGS-protein associations. We also 

tested all PGS for their association with circulating proteins in patients with prevalent T2D 

from the UKB, EXSCEL, and DECLARE-TIMI 58, results of which are available in the 

Supplementary Information, Supplementary Figures 24-25, and Supplementary Tables 10-

14). 

 

Polygenicity of PGS-protein associations and widespread effects of GCKR  

 

An important consideration regarding PGS-protein associations is whether they are driven by 

a single pQTL tagged by the PGS or represent the cumulative, polygenic effect of the PGS. To 

this end, we included pQTLs in our PGS-protein regression models. After adjusting for both 

cis and trans pQTLs (see Methods), the vast majority of protein-PGST2D associations 

remained significant (648 out of 686; see Figure 1E, Table 1, Supplementary Table 7), 

demonstrating that these associations were indeed polygenic in nature. This was largely true 

for all evaluated PGS. However, for the PGST2D_liver_lipid and the PGST2D_beta_cell, most protein 

associations were not significant after pQTL adjustment (Supplementary Figure 9C and 11C). 

In the case of the PGST2D_liver_lipid, the index variant at the GCKR locus (rs1260326) explained 

the bulk of its association signature (256 out of 268 proteins), highlighting the pleiotropic 

effect of this variant on circulating proteins. In contrast, most PGST2D_beta_cell associations 

were explained by 9 different pQTLs, with two from the ABO locus, one from the ANPEP 

locus, one from the FGFBP3 locus, and the remainder from intergenic regions.  

 

Causal inference using Mendelian randomization 

 

To determine if a PGS-protein association is due to forward causality (i.e., the PGS perturbs a 

protein’s expression level which leads to disease), we utilized two-sample Mendelian 

randomization (MR) with cis pQTLs as instruments. We evaluated five traits cohort-wide 

(ischemic heart disease, CKD, T2D, NAFLD, and BMI) and comorbidities/complications 

related to T2D, i.e., retinopathy, hypertension. We identified 24 proteins with plausible 

evidence for causality for a trait (adjusted p-value < 0.05 and/or colocalization evidence; 

Figure 2), of which 21 were also significantly associated with at least one PGS 

(Supplementary Tables 15-16) and 13 with one or more T2D PGS in our analysis above. 

Notably, ERBB4, significantly associated with the PGSBMI and the PGST2D_liver_lipid, is thought to 

be a mediator of the development of metabolic disorders (e.g., T2D and NAFLD) in 

individuals with obesity
40–43

 

 

For T2D, we performed three sets of analyses: MR using summary statistics unadjusted for 

BMI, MR using BMI-adjusted summary statistics, and MR using summary statistics expanded 

to include all diabetes-related ICD10 codes (E10-E14). PAM, ABO, and MANSC4 had strong 

MR evidence in all scenarios, though PAM pQTLs only colocalized with T2D risk variants 
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when we included all diabetic codes. The effect of NCR3LG1 on T2D risk was likely mediated 

by BMI as it was no longer significant after BMI adjustment. While we did not detect 

pleiotropy using MR-Egger at the ABO locus, this region is known for its extensive 

pleiotropy.
44

 Notably, the circulating levels of ABO were significantly associated with the 

PGST2D_beta_cell, but not the overall PGST2D_gw, again highlighting the utility of the partitioned 

T2D scores. Colocalization evidence was generally lacking for traits evaluated in T2D 

patients, likely due to limited statistical power (see Supplementary Table 16).  

 

While 1,414 proteins had 3 more independent cis pQTLs, an additional 625 proteins without 

at least 3 cis pQTLs nevertheless had 3 or more trans pQTLs (or a combination of cis and 

trans). We considered the MR results for the proteins meeting this criterion provided there 

was not any statistical evidence of pleiotropy (Egger intercept p-value > 0.05; 

Supplementary Table 15). Notably, FURIN had cis colocalization evidence and a significant 

MR estimate when using 2 cis-pQTLs and 5 trans-pQTLs. FURIN has previously been 

implicated in cardiovascular disease
45–47

. In addition, we found significant MR estimates for 

APOBR with BMI, GREPEL1 and SDHB with NAFLD, and ASS1 with NAFLD in patients with 

T2D. Since MR with trans pQTLs needs to be done with caution, we generated dose-

response curves for these proteins to ensure that MR estimates were not driven by a single 

trans pQTL (see Supplementary Figure 26).  

 
The mediation of PGS effects by circulating proteins in the UKB 

 

An orthogonal approach to MR for inferring the causal pathway is mediation, which tests 

whether a protein mediates the effect of a PGS on incident disease risk. Mediation can be 

used to support MR findings, and it can also provide information on directionality for 

proteins that lack the requisite number of instruments for MR. Among the UKB participants 

with proteomics data, 2,081 were diagnosed with T2D during 14 years of follow-up time. In 

our mediation analysis, 536 of the 686 PGST2D_gw-associated proteins significantly mediated 

the effect of the PGS on incident T2D risk. After adjusting for BMI, this is reduced to 236 

proteins (Supplementary Figure 27A, Supplementary Table 18). We also performed 

mediation using the partitioned scores (Supplementary Figure 27B): 81 proteins mediated 

the PGST2D_lipodystrophy score (82 after BMI adjustment) and 5 mediated PGST2D_beta_cell score (3 

after BMI adjustment). Of particular note, FAM3D, the top mediating protein for 

PGST2D_beta_cell is thought to be involved in glucagon and glucose regulation.
48–50

 We also 

performed mediation of the PGSCKD with incident CKD, the PGSNAFLD with incident NAFLD, 

and the PGSCAD with incident CAD, finding 513 (472 after BMI adjustment), 190 (171 after 

BMI adjustment), and 84 (31 after BMI adjustment) mediating proteins, respectively 

(Supplementary Figure 27A). In our cis-pQTL MR results for the four traits evaluated via 

mediation, 3 out of 8 proteins were also significant in mediation when using a Bonferroni 

adjustment, which increased to 14 out of 16 when employing a FDR correction. Since the 

PGS used in mediation are not restrained to cis variants, we also compared it to our MR 

results when using both cis and trans pQTLs. In this case, 8 out of 13 Bonferroni-adjusted 

proteins and 22 out of 28 FDR-adjusted proteins overlapped.  

 

Reverse Mendelian Randomization with cardiometabolic traits  
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Next, we employed reverse MR to identify instances of reverse causation, where the 

cardiometabolic trait (T2D, ischemic heart disease, NAFLD, CKD, BMI) alters the protein 

expression levels (Methods). We found that circulating levels of 40 proteins were influenced 

by T2D (37 in European-ancestry analysis), including GDF15 (Supplementary Table 17) and 

several proteins strongly associated with the PGST2D_gw (e.g., APOF, PON3, PRCP). In the case 

of GDF15, elevated serum levels have been reported in T2D and it is known to play a role in 

regulating food intake and metabolism.
51,52

 However, proteins identified in the forward MR 

analysis for T2D (ABO, PAM, and MANSC4) were not implicated in our reverse MR. It is worth 

noting that proteins identified via reverse MR could be causal for other comorbidities or 

could still influence T2D risk via feedback mechanisms.  

 

For the other cardiometabolic disorders, we found 4 proteins influenced by CAD risk 

(MMP12, CNTN4, PAMR1, PCOLICE), 19 for CKD, 79 for NAFLD, and 513 for BMI 

(Supplementary Table 17). The high number of proteins influenced by BMI genetic risk 

indicate that the levels of many circulating proteins are impacted by adiposity levels. None 

of the proteins we identified in our forward MR were associated with the trait in reverse MR, 

including the proteins that showed an association with BMI. However, when we overlaid our 

mediation results with the reverse MR results, a proportion of mediating proteins had 

evidence for reverse causality, ranging from 3.7% of proteins for CKD and PGSCKD to 39% for 

NAFLD and the PGSNAFLD. Such proteins could either indicate confounding or the presence of 

feedback mechanisms and require further investigation.  

 

Time-to-event analyses of PGS-associated proteins in EXSCEL and DECLARE 

 

To further explore the clinical relevance of PGS-associated proteins, we tested them for their 

association with clinical trial endpoints in two trials with available proteomics data (assayed 

at baseline): EXSCEL and DECLARE-TIMI 58. Both were cardiovascular outcome trials with 

similar indications: patients with T2D and either established cardiovascular disease or 

multiple risk factors (Methods). We first tested a model including only basic covariates 

(demographics and treatment arm) to find proteins associated with the outcome, followed 

by models that included additional risk factors to identify potential protein biomarkers 

(Supplementary Figure 28, Supplementary Tables 19-20).  

 

In EXSCEL, the baseline levels of 281 PGS-associated proteins were significantly associated 

with the renal outcome, 157 proteins were associated with the MACE outcome, 55 with the 

HHF outcome, and 5 with the insulin initiation outcome. After adjusting for relevant clinical 

risk factors, these lists were reduced to 79 (renal), 127 (MACE), 12 (HHF), and 2 for insulin 

initiation (C2 and PLXNB2), respectively. For the MACE outcome, 35 were also independent 

of NT-proBNP, while for HHF, 5 were independent of NT-proBNP. In DECLARE, 81 proteins of 

the proteins associated with any EXSCEL outcome (without clinical risk factors) were 

available for replication, of which 28 significantly replicated using the corresponding 

outcome in DECLARE. When adjusting for clinical risk factors, TFF3 significantly replicated for 

the renal outcome (Figure 6), 6 proteins for the MACE endpoint (Supplementary Figure 29), 

and 3 for the HHF endpoint (Supplementary Figure 30). Notably, EFEMP1 remained 

significantly associated with the HHF endpoint after adjusting for NT-proBNP.  
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Both trials featured repeat measurements with proteins assayed at baseline and at a second 

timepoint (12 months for EXSCEL, 6 months for DECLARE). For both trials, hazard ratios for 

all four outcomes were highly correlated (r = 0.96 in EXSCEL and 0.89 in DECLARE, p-values < 

< 2x10
-16

), though hazard ratios were on average larger at the second time point 

(Supplementary Figure 31). In total, 42 proteins significantly replicated using either 

timepoint; of these proteins, 59% significantly replicated at both timepoints, 7% only 

replicated at baseline, and 33% replicated only at the second timepoint. Using the second 

timepoint for protein measurement increased the number of proteins associated with a trial 

endpoint, particularly for the renal outcome (Figure 3C and D) where EPHB4, TNFRSF1A, 

HAVCR1, and CD93, in addition to the already described TFF3, significantly replicated after 

adjusting for clinical risk factors in DECLARE.  

 

PGS mediation in EXSCEL and DECLARE 

 

Since MACE was significantly associated with the CAD PGS in EXSCEL (see Supplementary 

Information, Supplementary Figures 32-33, Supplementary Tables 21-22 for PGS 

associations with clinical outcomes), we utilized a mediation framework to evaluate CAD 

PGS-associated proteins to determine how the PGS and the protein relate to each other in 

the causal pathway. We found evidence that the CAD PGS mediates its effect through the 

circulating protein levels of C9, LBP, ITIH4, APOM, and HS6ST2 (Supplementary Figure 34 A, 

Supplementary Table 23). In DECLARE, the BMI PGS was significantly associated with HHF 

and the CAD PGS was significantly associated with MACE. In our DECLARE mediation 

analysis, we did not identify any proteins that mediated the CAD PGS’s effect. However, for 

the BMI PGS and HHF, we found evidence for 63 proteins mediating its effect (13 after 

employing a Bonferroni correction instead of FDR; see Supplementary Figure 34 B, 

Supplementary Table 24). When including BMI in the models, 17 proteins still appeared to 

mediate the BMI PGS’s effect, though at a nominal significance level (p < 0.05; 

Supplementary Figure 34 C, Supplementary Table 25).   

 

Pathway Enrichment reveals shared mechanisms across cardiometabolic disorders 

 

Enrichment analyses can identify critical pathways for the etiology of cardiometabolic 

pathways beyond individual protein associations. The PGST2D_gw was significantly enriched 

for 20 pathways after p-value adjustment (Methods). Notably, 15 of the pathways were also 

enriched for another PGS, 11 of which were enriched for three PGS (Supplementary Figure 

35). Shared pathways are of a particular interest due to their potential involvement across 

cardiometabolic disorders.  

 

The insulin-like growth factor binding proteins (IGFBPs) pathway was enriched in the 

PGST2D_gw, PGSBMI, and the PGST2D_liver_lipid protein association sets. IGFBP2 was among the 

top protein associations with the PGST2D, while IGFBP4 and IGFBP6 were strongly associated 

with the PGSCKD (Figure 4A). This pathway also includes notable cardiovascular risk proteins, 

including PCSK9 and FGF23, which interact with IGF and IGFBPs via FAM20C.
53

 While causal 

effects for IGFBPs on the tested diseases were not supported in our MR analysis, IGFBP2 and 

IGFBP6 were implicated with T2D and CKD, respectively, in our mediation framework. In the 

RCTs, many IGF-related proteins were significantly associated with outcomes (Figure 4B and 
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D). IGFBP2 was a robust biomarker of reduced kidney function in EXSCEL and nominally 

significant in DECLARE (Figure 3A and B). In contrast, lower levels of circulating IGFBP2 were 

associated with incident T2D risk (Figure 4A), corroborating previous observations regarding 

the apparent inverse relationship between incident diabetes and diabetic kidney disease.
54

 

Higher levels of IGFBP2 also increased the probability of experiencing one of the events 

comprising the MACE outcome (Figure 4C and E).  

 

Pathways involving the complement system were enriched in the sets of proteins associated 

with the PGST2D_gw and PGSCAD (Supplementary Figure 35, Supplementary Figure 36). 

Proteins in the complement and coagulation cascades pathway were identified as causal for 

cardiovascular disease in MR (C1R and C1S) and mediation (14 proteins mediated the effect 

of PGST2D_gw and the protein F9 mediated the effect of the PGSCAD, Supplementary Table 18). 

In the RCTs, C2 was associated with time to insulin initiation in EXSCEL. In addition, C2 and 

CD59 from the complement cascade and PLAUR from the coagulation cascade were 

associated with the time to MACE and HHF in both EXSCEL and DECLARE. (Supplementary 

Figure 36 D and E).  
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Discussion 

 

The complex biological basis of T2D (e.g., numerous GWAS risk variants, gene targets, and 

pathways) is reflected in its diverse clinical consequences (e.g., differences in disease 

progression and comorbidity development). Identifying additional genes and pathways and 

mapping our existing knowledge to clinical outcomes remains a major challenge. Large-scale 

proteogenomic analyses present an opportunity to implicate specific, potentially causal, 

proteins with T2D and its comorbidities. We tested several different T2D polygenic scores 

(PGS), including five partitioned scores capturing pathophysiological pathways underlying 

T2D 
10

, and a number of PGSs for T2D co-morbidities (BMI, CKD, CAD, NAFLD), for their 

association with circulating proteins in healthy, unrelated individuals in the UK Biobank.
15

  

 

Our findings yielded insights into the proteomic consequences of T2D polygenic risk. 

Notably, the partitioned T2D PGS seemed to capture unique aspects of T2D biology (189 

proteins were associated with the partitioned scores but not the PGST2D_gw), thus, serving as 

proof of concept for the development of such scores. For example, the PGST2D_beta_cell was 

strongly associated with ABO, which, in turn, was associated with T2D in our MR analysis, 

and was mediated by FAM3D, two causal relationships not detected by the overall PGST2D_gw. 

Further, we found the effect sizes of PGST2D_liver_lipid and the PGST2D_gw were negatively 

correlated (Figure 1). It seems plausible that the GCKR locus (index variant: rs1260236), 

captured by PGST2D_liver_lipid, drives a specific subtype of T2D with unique phenotypic 

consequences.
10,11

        

 

Pathway enrichment of PGS-associated proteins can help guide target identification for 

therapeutics (Supplementary Figure 33). Pathways shared across multiple cardiometabolic 

disorders could be particularly attractive in this regard. We have highlighted the regulation 

of IGF by IGFBPs pathway and the complement and coagulation cascades pathway. Therapies 

targeting the complement system have been developed or proposed for a wide range of 

diseases, including inflammatory kidney disorders and cardiovascular disease.
55–58

 Other 

notable pathways enriched in the PGS associations with strong causal evidence include the 

plasma lipoprotein assembly, remodelling, and clearance pathway (PCSK9, LPA, APOE, and 

FURIN with cardiovascular disease; APOE with both BMI and NAFLD). The influence of PCSK9 

and LPA on cardiovascular disease is well-known.
59–61

  

 

We found several proteins with an inverse relationship between T2D and CKD risk. For 

example, low levels of IGFBP2 were strongly associated with T2D risk, while higher levels 

were associated with CKD risk. IGFBP2’s link with T2D has been previously described, but its 

functional role in obesity, insulin resistance, and ultimately diabetes remains incompletely 

understood.
62

  In total, the PGST2D_gw and the PGSCKD had opposing directions of effect for 65 

proteins, more than any other T2D-cardiometabolic disease combination we tested 

(Supplementary Figure 18). Overall, the directions of effect for the PGST2D_gw and the PGSCKD 

were positively correlated, so investigating the complexities in the interface of T2D-CKD is an 

area of further exploration.  

 

To explore the chain of causality underlying PGS-protein associations, we utilized a 

mediation framework and MR (see Figure 2, Supplementary Figure 26). We then leveraged 

two randomized controlled T2D trials (RCTs), EXSCEL and DECLARE-TIMI 58, to examine how 
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predictive PGS-associated proteins were of clinical trial outcomes (Supplementary Tables 19 

and 20). Several proteins implicated in this analysis, such as TFF3 and EFEMP1, could 

potentially explain mechanisms behind the development of diabetic comorbidities.
63–65

 We 

also described 6 proteins that mediated the CAD PGS’s effect on MACE in EXSCEL (C9, LBP, 

ITIH4, APOM, CES1, and HS6ST2), providing supporting evidence that they might serve as 

biomarkers for cardiovascular disease in diabetic patients.
66–68

   

 

We developed an interactive portal that permits users to interrogate the results of our 

analyses (https://public.cgr.astrazeneca.com/t2d-pgs/v1/ ; Supplementary Figure 37). Our 

portal enables querying by protein, pathway, or PGS. The underlying data is then available 

for download. Our portal allows researchers to validate their findings and gather evidence 

for target identification. Furthermore, the portal puts decision-making power into the hands 

of the user. For example, we elected to employ strict p-value thresholds and emphasize cis 

analyses. This resulted in the exclusion of NUCB2 (narrowly missed p-value threshold), plus 

FAM3D and LGALS4 (only significant in cis + trans MR), from our T2D MR results, all of which 

either play a role in glucose regulation 
50,69

 or have been previously linked to diabetes.
70,71

  

  

Our study has its limitations. First, the trans-ancestry portability problem is commonly 

observed in biomedical research, including with PGS (see Supplementary Information), 

though we sought to mitigate this by employing multi-ancestry PGS and trans-ancestry 

analyses. Second, since our study included UKB data, we selected scores that did not make 

use of the UKB (e.g., relatively older and smaller GWAS) to avoid overfitting, which may 

attenuate our theoretical statistical power. Third, despite excluding subjects with prevalent 

cardiometabolic diagnoses, the PGS-related analyses were not immune to reverse causality 

as several proteins strongly associated with the PGST2D_gw were implicated in our reverse MR 

analysis. It is also possible that we are capturing instances of feedback mechanisms or 

simple Michaelis-Menten kinetics. Fourth, defining phenotypes in the UKB via electronic 

health records could have an impact on analyses. Notably, we used a biomarker-based 

definition of NAFLD for performing the GWAS for our MR analysis to boost statistical power 

but used the ICD10 definition to identify incident cases for mediation analysis. While the 

biomarker-based definition might not be as robust as a biopsy-based diagnosis, the three 

most significantly associated loci identified in our NAFLD GWAS (PNPLA3, HSD17B13, 

TM6SF2) have all been previously associated with NAFLD.
72

 Finally, the PGS, and by 

extension the mediation analyses using the PGS, could be impacted by horizontal pleiotropy. 

The same limitation applies to MR analyses using trans pQTLs, though we did include a test 

for pleiotropy in our analytical framework. 

 

Overall, our study elucidated the proteomic signatures of polygenic risk for T2D and 

comorbidities in both a population-based setting and clinical trials, highlighted the 

intersections and distinctiveness of the corresponding biological pathways, provided 

evidence for existing therapeutic and potentially new targets, and constructed an interactive 

web portal for the broader research community to access our results. 
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PGS Category PGS Top protein 

assoc. 

N significant 

Proteins 

N significant 

after 

pqtl/BMI 

adjustment 

% 

Unique 

Assoc. 

T2D (Genome-

wide) 

PGST2D_gw PON3 (-) 686 (713) 325 (331) 15 

T2D (GWAS-

significant only) 

PGST2D_gwas PAM (-) 67 (84) 50 (58) 1 

Partitioned T2D 

polygenic scores 

PGST2D_beta_cell ABO (+) 17 (26) 1 (2) 24 

PGST2D_lipodystrophy LPL (-) 102 (131) 95 (110) 0 

PGST2D_liver_lipid MAMDC4 (-) 268 (322) 7 (7) 18 

PGST2D_obesity LEP (+) 6 (12) 4 (9) 0 

PGST2D_proinsulin FOLR3 (-) 0 (0) 0 (0) - 

Other 

cardiometabolic 

scores 

PGSCAD GRN (+) 136 (175) 74 (85) 5 

PGSCKD BTN2A1 (+) 559 (582) 499 (511) 27 

PGSBMI LEP (+) 645 (693) 625 (667) 9 

PGSNAFLD ASS1 (+) 222 (267) 164 (183) 16 

Table 1: Summary of PGS associations. PGS Category: descriptive information for the PGS. 

PGS: Name of tested polygenic scores. Top Protein Association: protein with the lowest p-

value in the combined UKB-PPP cohort (discovery + replication) for each PGS. N significant 

proteins: number of significant proteins after replication. The brackets specify the total 

number of proteins that were significant in discovery the subset. N significant after pqtl/BMI 

adjustment: number of replicated proteins remaining significant after pQTL and BMI 

adjustments. The brackets specify the total number of proteins that were significant after 

adjustment in the discovery subset. For the BMI PGS and the obesity pPS, we did not also 

adjust for BMI. % Unique Assoc.: percentage of significant PGS-associated proteins that were 

only associated with that PGS.   
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Figure 1: PGS associations with circulating proteins. A: Volcano plot of PGST2D_gw-protein -

log10 p-values and beta coefficients with the colour indicating -log10 p-values. Labelled 

proteins are among the top 1% in terms of variance (R
2
) explained by the PGST2D_gw. B: Beta-

beta plot of PGST2D_gw effect sizes on circulating proteins with (y-axis) and without (x-axis) 

BMI adjustment. The diagonal is dashed grey while regression line is solid grey. Each point 

represents a protein; light blue points indicate replicated proteins that remained significant 

with the adjustment, red points indicate replicated proteins that were no longer significant 

after the adjustment, and dark blue points indicate proteins that did not significantly 

replicate prior to adjusting for BMI or pQTLs. C: Correlations of PGS effect sizes from the 
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regression on circulating protein levels. Red indicates pairs of PGS with positively correlated 

effect sizes; blue indicates negatively correlated effect sizes. D. Bar plot indicating the 

overlap between proteins significantly associated with the T2D PGS and the other 

cardiometabolic PGS. The x-axis is the PGS and the y-axis is the percentage of T2D PGS-

associated proteins that are also associated with another PGS (e.g., over 60% of proteins 

were also associated with the BMI PGS). E: Beta-beta plot of PGST2D_gw effect sizes on 

circulating proteins with (y-axis) and without (x-axis) pQTL adjustment, with the same 

definitions as panel B, albeit for a pQTL adjustment.  
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Figure 2: Two-sample Mendelian Randomization analysis in UKB. A: Manhattan plot of MR 

results. Labels refer to the protein and trait combination (e.g., UMOD + CKD). Traits 

appended with “_T2Dcases” refer to comorbidities analysed in T2D cases only.  Note that 

CKD includes the ICD10 codes N18.1-N18.5. CAD referrers to ischaemic heart disease ICD10 

codes (I20-I25). See Supplementary Table 2 for phenotype definitions.  P-values were 

calculated from the median of all MR methods. The dashed line indicates Bonferroni 

significance. B: Forrest plot of MR estimates for phenotypes assessed in all UKB participants 

and proteins with strong causal evidence. C. Forrest plot of MR estimates for proteins with 

strong causal evidence for phenotypes assessed only UKB diabetic patients.  
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Figure 3: Renal outcome biomarkers in randomized controlled trials discovered in EXSCEL and 

replicated in DECLARE-TIMI 58. All proteins displayed here were significantly associated with 

the renal outcome in EXSCEL after adjusting for clinical factors, were available in DECLARE, 

and were nominally associated using the demographics-only model. A. Hazard ratios of the 

proteins associated with EXSCEL’s renal outcome after adjusting for clinical risk factors, with 

yellow indicating the proteins were measured at baseline and blue indicating the proteins 

were measured as 12 months. Proteins with a “**” were significant at both timepoints, while 

proteins with a “*” were significant at only one timepoint.  B. Hazard ratios of the proteins 

associated with DECLARE’s composite renal outcome after adjusting for clinical risk factors, 

ADM_APT1*
VASN*

ADM_APT2*
MB*

CXCL16*
IL18BP*

LGALS9*
PLAUR*
TIMP4*
CD93*

MMP7*
PI3*

IGFBP6*
IL16**

REG1A**
EPHB4**

CD59**
IGFBP2**
GDF15**
FABP4**
CCL14**
AMBP**

RARRES2**
TNFRSF1B_APT1**

TFF3_APT2**
TNFRSF1B_APT2**

LCN2**
TFF3_APT1**
TNFRSF1A**

HAVCR1**
COL18A1**

CST3**

2 4 6 8
Hazards Ratio

P
ro

te
in

Timepoint 12 Months Baseline

A

LCN2
PLAUR
IL18BP

PI3
TIMP4
VASN
CD59

AMBP
REG1A
GDF15

ADM
IL16

LGALS9
MB

CCL14
TNFRSF1B

MMP7
RARRES2

FABP4
CXCL16

COL18A1
IGFBP6

CST3
IGFBP2
EPHB4*

CD93*
TNFRSF1A*

HAVCR1*
TFF3**

1.0 1.5 2.0 2.5 3.0 3.5
Hazards Ratio

P
ro

te
in

Timepoint 6 Months Baseline

B

0.0

2.5

5.0

7.5

1 2 3 4 5
HR for Baseline Collection

H
R

 fo
r 

12
 M

on
th

 C
ol

le
ct

io
n

Higher at 12 Mo. FALSE TRUE

C

1.0

1.5

2.0

1.0 1.5 2.0
HR for Baseline Collection

H
R

 fo
r 

6 
M

on
th

 C
ol

le
ct

io
n

Higher at 6 Mo. FALSE TRUE

D

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.15.24304200doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.15.24304200
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29

with yellow indicating the proteins were measured at baseline and blue indicating the 

proteins were measured as 6 months. Proteins with a “**” significantly replicated at both 

time points and proteins with a “*” significantly replicated at one timepoint. C. Scatterplot of 

hazards ratios (unadjusted for clinical risk factors) at baseline (x-axis) and 12 months (y-axis) 

for EXSCEL. The regression line is in red, while the dashed black line indicates where the 

hazard ratios would be in complete concordance. D. Scatterplot of hazards ratios (unadjusted 

for clinical risk factors) at baseline (x-axis) and 6 months (y-axis) for DECLARE. The regression 

line is in red, while the dashed black line indicates where the hazard ratios would be in 

complete concordance.    
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Figure 4: IGF regulation by IGFBPs pathway. A: PGS associations with IGF binding proteins. A 

single asterisk (*) indicates the association was nominally significant, while two (**) 

indicates significance using FDR and three (***) indicates significance using a Bonferroni 

correction. B: Associations of proteins in this pathway with clinical trial outcomes in DECLARE 
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using cox regression. C. Kaplan Meier curve demonstrating the impact of IGFBP2 levels on 

the MACE endpoint in DECLARE. D: Associations of proteins in this pathway with clinical trial 

outcomes in EXSCEL using cox regression E. Kaplan Meier curve demonstrating the impact of 

IGFBP2 levels on the MACE endpoint in EXSCEL.  
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