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ABSTRACT: 

Background: An unprecedented amount of personal health data, with the potential to 

revolutionise precision medicine, is generated at healthcare institutions worldwide. The 

exploitation of such data using artificial intelligence relies on the ability to combine 

heterogeneous, multicentric, multimodal and multiparametric data, as well as thoughtful 

representation of knowledge and data availability. Despite these possibilities, significant 

methodological challenges and ethico-legal constraints still impede the real-world 

implementation of data models. Technical details: The EuCanImage is an international 

consortium aimed at developing AI algorithms for precision medicine in oncology and 

enabling secondary use of the data based on necessary ethical approvals. The use of well-

defined clinical data standards to allow interoperability was a central element within the 

initiative. The consortium is focused on three different cancer types and addresses seven 

unmet clinical needs. We have conceived and implemented an innovative process to capture 

clinical data from hospitals, transform it into the newly developed EuCanImage data models 

and then store the standardised data in permanent repositories. This new workflow 

combines recognized software (REDCap for data capture), data standards (FHIR for data 

structuring) and an existing repository (EGA for permanent data storage and sharing), with 

newly developed custom tools for data transformation and quality control purposes (ETL 

pipeline, QC scripts) to complement the gaps. Conclusion: This article synthesises our 

experience and procedures for healthcare data interoperability, standardisation and 

reproducibility.  
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BACKGROUND 

Artificial intelligence (AI) for oncology is an exponentially growing field[1] built over large 

amounts of patient-related data. The volume and depth of personal health data necessary to 

support precision medicine is unprecedented, and the integration and analysis of such 

heterogeneous data types require a thoughtfully structured representation of knowledge[2,3]. 

Besides, data needs to be shared across diverse institutions and even across multiple 

nations, increasing the complexity of data integration and flows. FAIR principles (Findability, 

Accessibility, Interoperability and Reusability) are the international reference that defines the 

best practices for data sharing. ‘Findability’ entails the automatic discovery of datasets and 

services. ‘Accessibility’ references the retrieval of the data, possibly including an approval 

process. ’Interoperability’ refers to the use of standards for data integration. Finally, 

‘Reusability’ implies an adequate description of the data (metadata) to optimise their use[4]. 

Adherence to the FAIR principles is imperative, and its application in health science and 

oncology is crucial for developing data sharing platforms[5].   

Personal health data includes a wide range of different data types, among others, 

demographic characteristics, patient’s symptoms, diagnoses, laboratory results, 

medications, imaging data and genomics. Generating and collecting these data types 

involves a multitude of different technological platforms (e.g. different vendors) and their 

storage in a wide range of data formats and information systems used by the different 

healthcare facilities, contributing to increased data diversity[6]. In fact, healthcare data has 

been shown to be more heterogeneous than other types of research data[7]. This high data 

complexity makes interoperability of healthcare information a significant hurdle in the 

development of AI models[8,9]. The barrier is even more prominent in oncological 

observational research since cancer diagnoses require a set of attributes usually registered 

separately (imaging, histology, topology, grade, stage, and biomarkers), and the complex 

patient trajectory involves personalised treatment regimens[9].  

Data needs to be harmonised at three levels to address the interoperability challenge: 

technical, syntactic and semantic. On one hand, requirements in technical interoperability 

facilitate basic data exchange conventions (file formats), and on the other hand, syntactic 

and semantic interoperability define data structure and the use of ontologies for 

unambiguous representation of medical concepts, respectively[10]. Across the different 

healthcare ecosystems, equivalent information can be represented in diverse ways. The use 

of standards that can be universally interpreted, both human and machine-readable, 

facilitates harmonisation efforts. The structured exchange of health-related data is supported 

by international standards, such as the Fast Healthcare Interoperability Resources (FHIR) 

specification developed by Health Level Seven (HL7®) international. FHIR defines the 

structure of medical data in modular components called “Resources”[11]. It is envisioned that 
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the FHIR framework can become critical for implementing AI technologies in the health 

sector, just as Digital Imaging and Communication in Medicine (DICOM) or Picture Archiving 

and Communication System (PACS) for imaging data[6]. 

The EuCanImage initiative is a European Council Research and Innovation Action funded 

research project that comprises multidisciplinary teams with the overall aim of building a data 

sharing platform to be filled with over 20,000 cancer cases and AI models integrating 

imaging, clinical and phenotypic data from five different EU countries to improve cancer 

patients’ outcomes. Briefly, the EuCanImage platform integrates established data 

infrastructures: Collective Minds Radiology (CMRAD) platform for collaborative image 

annotation, the Eurobioimaging for image storage, the European Genome-phenome Archive 

(EGA) for clinical and phenotypic data storage and the Open EBench platform for AI 

algorithm benchmarking[12]. In this report, we synthesise our experiences as an overview of 

the methods and challenges we identified while working towards the standardisation and 

interoperability of health data (clinical data) and implementing a data model for AI in large-

scale oncology research.  
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DATA COLLECTION 
 
Purpose for data collection and data description  

EuCanImage is a complex project centred around addressing seven key unmet clinical 

needs in cancer imaging[12–14]. A multidisciplinary team of different speciality physicians 

(radiologists, oncologists, radiotherapists, surgical oncologists, pathologists), sociologists, 

psychologists, AI developers, data scientists, Small and Medium Enterprises (SMEs), 

imaging and oncology research associations, as well as patients’ organisations, collaborated 

to identify and refine core research questions. The consortium pinpointed the most urgent 

topics in liver, colon and breast cancer and designed seven clinical use cases to respond to 

each specific clinical need. More specifically, we concentrated our efforts on one use case 

on hepatocellular carcinoma addressing the detection of indeterminate small lesions, three 

on colorectal cancer: one aimed to identify liver metastasis from pre and post-operative CT 

in colorectal cancer patients, and two on rectal cancer to a) identify lymph node metastasis 

in contrast-enhanced rectal MRI and b) predict the response to neoadjuvant treatment and 

three on breast cancer to a) identify patients likely to achieve pathological complete 

response to de-escalate neoadjuvant systemic therapy based on the single point, pre-

treatment contrast-enhanced MRI, b) automatically differentiate benign and malignant 

lesions in screening mammograms and c) distinguish molecular subtypes of breast cancer 

based on digital mammograms. Our ambition is to integrate clinical, pathological and genetic 

data (non-imaging data) and radiological images (imaging data) to build algorithms going 

beyond standard practice, allowing personalised approaches informed by the best quality 

data. The initial effort to obtain such high-quality data was dedicated to defining clinical 

consensus and requirements for the use cases with specifications of clinical data variables.  

The mentioned factors necessitate a comprehensive data model incorporating multifactorial 

inputs from multiple data sources. In EuCanImage, data is submitted from six university 

hospitals in Italy, Lithuania, Poland, Spain (two sites), and Sweden, national registries and 

two research institutions from the Netherlands. Each of the centres uses its own imaging 

infrastructure and PACS as well as electronic or paper health records that include 

demographic, clinical, pathological and phenotyping information recorded in Health 

Information Systems.  

Regarding the clinical data defined for each use, some common variables exist for all use 

cases: patient ID, biological sex, age at diagnosis, diagnosis, and pathology (ICD-O-3 

codes). On the other hand, there are use case-specific variables such as the hormone 

receptor status, HER2 mutational status, Ki67 status for breast cancer, or information on 

specific chemotherapy agents with dosing regimens. The dialogue between physicians and 

AI developers on clinically relevant variables that can be meaningfully incorporated in AI 
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algorithms, with the GDPR-compliant data minimisation principle, led to the final set of 

defined variables (Figure 1).  

The selection of the clinical variables was a complex and lengthy procedure starting at the 

beginning of the EuCanImage project with the creation of the Clinical Working Group 

including clinical representatives from all participating clinical centres. Each clinical site 

delegated a broad representation of specialists: radiologists, pathologists, clinical 

oncologists, surgical oncologists, radiotherapy specialists and data managers. In general, 

the Clinical Working Group meetings were attended by 10-20 doctors every two weeks for 

the first year of the project. After general concepts of the use cases were established, the 

Clinical Working Group was divided into organ-related meetings (breast, colorectal and liver 

subgroups) integrating different specialists per use case and centre. These organ-related 

specialised groups met every two weeks for the next six months to develop the final list of 

clinico-pathological variables using the Delphi consensus methodology. The final variables 

are deemed to provide both the ground truth and the clinical data with additional value for 

deep learning (DL) modelling. 

The final number of clinical variables used as ground truth or additional input parameters for 

DL, varies between 8 and 39 variables per use case. This clinical information will be used 

along with the information extracted from radiological images to build next generation deep 

learning models combining both the clinical and the imaging information simultaneously. 

Three levels of data provision were defined: minimal, mandatory and recommended. The 

minimal set contains essential information from the pathology assessment of specimens, 

e.g., cancer vs. other findings and the presence of complete pathological response vs. 

partial or no response. It allows the assembly of standard-level algorithms primarily using 

imaging information as input with pathology information as ground truth. The mandatory set 

contains important enriching information. These are all variables that should be included as 

input together with cancer images for more advanced and complex algorithms. Finally, the 

recommended set addresses additional clinical data points (e.g., risk factors for breast 

cancer) and phenotyping information (PAM50 results) available only from selected centres 

but with adequate numbers of patients for AI research. This recommended set would create 

a very interesting and promising asset in the project repository for future research that is 

otherwise not readily available from other data repositories. 

Next, for each clinical variable, we defined comprehensive and detailed value sets to 

standardise concept representation and link the terms with ontological codes, ensuring 

unequivocal understanding. It allows good description of cohorts and, at the same time, 

prevents very fine-grained stratification of data with limited instances and unbalanced 

distribution in some of the cohorts. This consensus approach represents a compromise 
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between the need for a precise representation of the clinical range of disease presentations 

and the goals of data clarity and homogeneity. 

 
DATA CURATION 
 
Analysis of semantic interoperability and health standards 

Semantic interoperability represents a remarkable challenge for medical research. Data 

captured through health information systems are usually stored in locally-modelled clinical 

repositories, mostly in non-structured ways, thus hindering cross-national data source 

integration and translational research. Health information standards play a crucial role in 

defining the structure and meaning of clinical information so that different systems can 

unequivocally interpret it. However, there is no single standard that solves every need in the 

biomedical field; rather, there are different standards that complement or compete with one 

another. This includes standardised vocabularies and classifications and also health 

information standards. Examples of vocabularies include the Systematized Nomenclature of 

Medicine – Clinical Terms (SNOMED CT)[15] or  International Classification of Diseases 

(ICD)[16], Logical Observation Identifiers Names and Codes (LOINC)[17], OHDSI 

Standardised Vocabularies, and International Cancer Genome Consortium[18] - Accelerating 

Research in Genomic Oncology (ICGC ARGO[19]). Examples of health information 

standards include HL7 FHIR[20] and open Electronic Health Records (openEHR)[21]. 

Vocabularies and classifications represent concepts that pertain to the biomedical domain in 

a standard fashion[22], although they require a common structure that provides the syntactic 

interoperability required to achieve semantic interoperability. Common Data Models (CDMs) 

serve as representations of collected data aimed at facilitating the exchange, pooling, 

sharing, or storing data from multiple sources and can provide this common structure[23]. 

Health information standards also provide a syntactic base to allow the formal representation 

of the structure of clinical information and its meaning.  

FHIR was introduced in 2011 by the standard-developing organisation HL7[20]. The 

information within FHIR is organised in basic building blocks named Resources. Those 

blocks define the structure of the contained information. Although it is widely used in health 

informatics, its uptake in research environments is less prevalent[24]. Most studies using 

FHIR in health research focus on clinical research (including clinical trials), and just about 

12% are oncology-related[25]. In these studies, FHIR has been mainly used for 

standardisation and data capture and, to a lesser extent, for data analysis[25]. 

Observational Medical Outcomes Partnership (OMOP) enables the systematic analysis of 

disparate observational databases through a common data model and a closed dictionary of 

terminologies, vocabularies, and coding schemes. Several authors consider it an adequate 
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data model for sharing data in electronic health record (EHR)-based longitudinal 

studies[23,26].  

ICGC ARGO[19] is an initiative that provides a fixed schema for creating 15 clinical tables 

oriented to genomic oncology research, thus oriented for addressing cancer-specific issues 

in the representation of clinical data. Unlike other CDMs and health information standards, 

its use of standardised vocabularies and classifications is limited. 

 

Data Model Design 

Data standardisation within the project is required to a) support content organisation and 

subsequent development of AI algorithms, b) facilitate interoperability and c) the secondary 

use of the data (ie: data distribution under request in a repository). Both OMOP and FHIR 

are widely adopted standards in clinical settings; however, they were conceived to serve 

different purposes. OMOP is more oriented toward clinical data representation (structure and 

content), and FHIR is more focused on healthcare data exchange. After thoroughly 

evaluating various CDM alternatives, we decided to use FHIR due to its wide adoption, 

flexibility and suitability for real-world data exchange. More importantly, and the key aspect 

we considered in selecting FHIR over OMOP was its appropriateness for permanent data 

storage and long-term data sharing through the repository.  

As previously outlined, clinical elements necessary for each hypothesis were established by 

domain experts and interdisciplinary teams, including clinicians and AI developers, who 

considered different key data aspects. Some key considerations for variable selection were 

characterisation of the target population, clinical endpoints (pathological hallmarks, disease 

behaviour, treatment response and the patient prognosis), type of outcome (binary, 

continuous, time to event), adequate ground truth, minimal amount of data principle and the 

availability of specific variables at data sources. For the project, data to cover the seven use 

cases were arranged in five different data schemas with single schemas used by multiple 

use cases. As a general overview, the highest level components of the FHIR model are the 

Resources, which contain hierarchical sub-layers of descriptive elements for more detailed 

data classification. The content and format of a Resource have controlled properties, 

meaning that the different data elements and data types need to adhere to specific 

requirements. To design the data architecture needed for each EuCanImage use case, the 

following FHIR resources were identified as relevant: Patient, Condition, Observation, 

Procedure, Medication Administration and Diagnostic report (Figure 2A). When choosing the 

most suitable resource for each selected variable, the resource's constraints were 

considered. For example, the classification of patients into case (cancer) or control (benign 

lesion) groups could be interpreted as part of the Condition Resource and information about 

a diagnosis can be stored in an Observation Resource, capturing the results of tests 
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(mammogram). In this example, we considered it within the Condition Resource despite also 

including benign cases to associate it with age at diagnosis.  Once the variables were 

assigned to a Resource, they were mapped to the appropriate FHIR element. In cases 

where the clinical variables could be assigned to more than one suitable profile (ex: 

Histological type), simplicity criteria were applied to minimise the number of Resources used. 

Many data elements within the FHIR Resources require coded values. Some are fixed 

values defined by the FHIR specification, but others require external ontologies. As a 

general rule, HL7/FHIR terminology was used in a few established fields, specifically status 

profiles. SNOMED was the preferred terminology for general clinical concepts, ICD-O3 for 

histology, LOINC for some test observations and RxNORM for medication. We used NCIT 

when the concept did not exist in previous ontologies (Figure 2B). The summary of the 

different stages we followed to conceptualise the data model is described in Figure 3. 

It is essential to point out that the project presented some particular needs that were not fully 

represented by FHIR (and standards ontologies), requiring alternative solutions to overcome 

limitations. The gaps identified relate to the fact that FHIR was designed to support 

interoperability and data exchange in healthcare rather than specifically focusing on 

research needs. The primary limitations we faced were a) the need to represent concepts 

without available standard terminology, b) variables not structured as in healthcare practice, 

c) the representation of dates to comply with the de-identification of personal data, d) the 

representation of not provided (missing) information, e) the implementation of the model 

without a FHIR server.  

For each clinical variable, we defined the limited set of permissible values (value set) that 

this variable can adopt. Some of these value sets needed to include ambiguous concepts for 

simplicity and data harmonisation reasons. An example is the term ‘other’, which is required 

to group less frequent or more irrelevant values. Those terms, isolated from additional 

context, posed a challenge for interoperability. We used SNOMED post-coordinated 

expressions to build more specific clinical ideas by combining relevant terms with 

compositional grammar. Another challenge posed was concepts that are not used in 

healthcare but are essential to contextualise the specific use cases for research purposes 

and which are not captured by standard terminologies. Some examples are the variable 

‘breast cancer subtype-by proxy’ to group breast cancer patients according to hormone 

receptor, Ki67 and HER2 expression levels or ‘time interval between the end of the 

neoadjuvant treatment and surgery’. Additional difficulties include tumour grading systems 

such as the modified Ryan Scheme for Tumor Regression Grade, Miller and Payne's Tumor 

Regression Grade, Residual Cancer Burden class or grading of DCIS. Our approach was 

using the specific grading scales in NCIT, if available, or using generic grading scales in 

SNOMED (ex: grade 1 on a scale of 1 to 5), despite the fact it could affect interoperability. 
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Some variables were characterised under the Medication Administration Resource that 

presented significant difficulties in creating the representations needed for the project. For 

example, to detail the chemotherapy dosage, we required the total number of chemotherapy 

cycles, dose (amount of medication per dose) and the accumulation dose within the same 

‘Medication administration’ entry. However, that Resource is designed to collect only a single 

entry. 

In compliance with GDPR, personal data pseudonymization entails the removal of indirect 

data identifiers, such as dates. The collection of exact dates was replaced by the collection 

time intervals (months, weeks, etc.). Most FHIR Resources allow time periods as valid data 

types, however the Resource: Medication Administration, only allows dates (ddmmyy). To 

fulfil this FHIR restriction we recodified the time periods into arbitrary dates starting on 

January 1st of 1970 to mimic the Epoch Unix system, with the end date calculated based on 

the collected time interval and starting date in mind. 

 

TECHNICAL IMPLEMENTATION OF DATA STANDARDS 

 

Transforming and loading ‘raw’ data from various hospital data systems into the newly 

developed data schema proved to be challenging and labour-intensive. The harmonisation 

efforts required by the different participating institutions and different use cases varied 

significantly depending on the existing resources at the sites. While some centres housed 

structured repositories with variables linked to standard terminologies that required minimal 

mapping and transformation efforts, others mapped local concepts with the project schema 

manually. This effort was performed by trained site personnel who understood the clinical 

concepts in both English and the centre’s local language. Online support was provided by 

the EGA when needed.  

The FHIR implementation format has a hierarchical architecture, that, while having many 

advantages to encode the relationships between the variables and facilitating data storage, 

supposes an additional barrier for data providers given that most of the required information 

was not structured data inside their health records. To minimise the need to re-encode and 

simplify the data capture process, we created electronic case-report forms (eCRF) with 

REDCap. REDCap is a secure web application that supports data capture primarily for 

research studies[27,28]. This software allows the custom design of data entry forms and 

data collection workflows. It features a user-friendly interface for designing the forms, field 

validation, custom logic patterns, calculated fields, data import/export options, data quality 

control and role-based user access. Additionally, it offers a set of APIs for integration with 

other platforms[29]. REDCap was deployed at the European Genome-phenome Archive 

(EGA) to design and manage data entry forms for clinical data collection within the 
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consortium. Different data entry forms were conceived to support each of the five different 

data schemas. 

Data from hospitals can be imported to the EuCanImage REDCap database following two 

paths: 1) by directly filling the online forms or 2) by entering data into CSV files complying 

with specific REDCap format requirements and uploading the files into REDCap.  

Patient IDs were previously pseudo-anonymised at the hospitals, and only hashed patient 

IDs (EuCanImage ID) were introduced in the platform. Consequently, all related clinical data 

from the different institutions merged into a single harmonised database for each use case. 

Once harmonised data was in the database, quality control checks were performed. All data 

was then exported from REDCap as a CSV file for conversion into FHIR-compliant files. 

To implement the FHIR model, we created each Resource using individual persistent 

identifiers with Uniform Resource Names (URN), more specifically with Universally Unique 

Identifiers (UUID). These identifiers were generated for each patient, resource and bundle. 

In FHIR, a bundle is a way to gather all the Resources belonging to a single patient. In our 

case, a bundle is generated from a single row of the exported CSV files.   

For the subsequent data standardisation stage, we built Extract Transform Load (ETL) 

pipelines to transform the output CSV files into JSON files compliant with the FHIR schema. 

To automate this process, we used Python 3.11, and followed a FHIR 4.3 schema. The 

python scripts are available on Github (see ‘Availability of supporting source code and 

requirements’ section), with the additional use of external validators, such as FHIR Validator 

GUI[30] and Simplifier[31]. The methods section provides a more detailed description of the 

steps followed for creating the ETL scripts. While building the Python scripts, the mapping of 

the dictionaries was coded using FHIR-compliant ontologies. The results of the ETL process 

are JSON files containing the patients' information standardised to the CDM, one file per 

patient. These files will serve both as the data source for AI algorithm development, and with 

proper data requests, standardised data available for the scientific community (Figure 4).  

 

Data quality & consistency 

Quality data can be defined as data that is fit for purpose, e.g., the data are sufficient for the 

specified purpose for which it is intended[32,33]. In most cases, data quality for the purpose 

of machine learning cannot be limited to a single focus but must cater to the needs of 

multiple audiences. Data quality issues can be introduced at any point in the data 

management and collection lifecycle. Whether during data acquisition, storage, analysis, or 

publication, diminished quality can inadvertently affect downstream tasks such as AI 

training[32–34]. 

We employ both quality assurance and quality control techniques over the course of the data 

life cycle, including strict conformance to requirements during input and the assessment 
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methods for repeatable feedback and improvement. The overall objective of our quality 

analysis is to rate the individual records based on multiple dimensions of quality and use this 

as a filter for downstream tasks. To achieve the measure of data quality needed for superior 

AI training and results, we defined quality control rules and procedures based on standard 

dimensions of quality and built tools to integrate into our pipelines for data collection and 

storage. 

Since we use REDCap as the intermediary data store where all collection methods funnel 

their data, we found REDCap’s data quality module[27,28] valuable for organising our data 

quality rules. This module allows for the execution of quality checks for all data entered into 

the system, whether by direct entry or by CSV imports. This also enabled the capability to 

export these rules for use in customised tools for data collection. 

Data quality can be evaluated over many different dimensions[33] and we have focused our 

evaluation on three critical dimensions: completeness, conformance and plausibility. For 

completeness, we focused on value requirements. For conformance, we analysed the 

various data types and permissible values to ensure adherence. Plausibility applied to 

ranges, such as age. The types and dimensions are outlined in Table 1. 

Much of the needed data quality assessment functionality was already built into the REDCap 

quality module including pre-established rules handling blank values, data type errors, 

outliers and invalid permissible values. We also included custom rules covering multiple 

levels of requirements: minimal, mandatory and recommended. These rules aligned with the 

required fields outlined for each use case and agreed upon by representatives from each 

clinical centre. 

After assessment of the data based on these organising quality criteria, we generate a score 

for each quality check based on the number of successes and failures. Here, we can also 

apply weights if we deem a particular assessment more important than others. Table 2 

shows an example of a scoring report. 

 

LEGAL ASPECTS  

In EuCanImage, ethico-legal discussions have played an important role from the beginning 

of the project and continue to be a recurring topic in similar consortia and initiatives. In 

addition to the well-known General Data Protection Regulation (GDPR), the last decade has 

witnessed a surge in regulations and norms that are directly or indirectly relevant when trying 

to implement data standards for data interoperability. These include, among others, the 

recently passed Data Governance Act (DGA), the Artificial Intelligence Act (AIA) and the 

proposal for a Regulation on the European Health Data Space (EHDS). Such regulatory 

developments are likely to be of considerable practical relevance to the scope of this paper, 

in particular, for discussions on the personal or non-personal nature of datasets involved, 
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legal barriers for secondary uses of data for AI research and development and cross-border 

data sharing for AI research in oncology.  

Personal data vs non-personal data: 

As anticipated, early discussions within research projects and consortia often concern the 

personal or non-personal nature of the data to be processed. This is mainly due to the fact 

that processing operations involving personal data, namely information relating to an 

identified or identifiable natural person, fall under the scope of the GDPR. Therefore, non-

personal data such as anonymised data (i.e., personal data rendered anonymous in such a 

manner that the data subject is not or no longer identifiable) are not bound by the 

Regulation. Pseudonymised data, which could be attributed to a natural person by the use of 

additional information, would qualify as personal data (see Article 4(5) and Recital 26 of the 

GDPR[35]). Generally, de-identification, understood as the process of removing or 

substituting all personal information and identifiers, is not sufficient to achieve the 

anonymisation threshold required in the EU. As a result, if the raw data is retained at the 

source and any key or additional information can be used to reverse the process and re-

identify the data subject, this information shall be considered pseudonymised data and thus 

subject to the GDPR. 

Within EuCanImage, all direct and indirect personal identifiers have been removed. In 

addition, the data is double-hashed both by the data providers and by the platform. 

Ultimately, all processing operations within the project are aligned with the GDPR and 

supported by a contractual and governance structure enabling compliant data sharing. 

Secondary use of data for AI research in precision medicine 

Further processing of personal data for scientific research purposes, which comprises AI 

research in precision medicine as pursued by EuCanImage, is compatible with the GDPR 

(art. 5(1)(b)). Moreover, under the forthcoming EHDS Regulation, secondary use of 

pseudonymised electronic health data is expressly permitted for “training, testing and 

evaluating of algorithms, including in medical devices, in vitro diagnostic medical devices, AI 

systems and digital health applications (art. 34(1)(e)). It should be noted, nonetheless, that 

these two terms (“further processing” and “secondary use”) are not legally analogous, but 

the latter will be preferred here for the sake of clarity.  

Cross-border data sharing for AI research in precision medicine 

Despite the advent of the GDPR and the harmonisation effort, processing operations 

involving multiple organisations and researchers from several EU Member states still face 

slight differences between national, regional and sectoral regulatory frameworks. Hence, 

although data sharing within Member states of the European Economic Area (EEA) is not 
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hindered by any additional requirements, EuCanImage’s partners and their legal teams still 

must cope with a complex and fragmented scenario not only from a legal interoperability 

perspective but also concerning divergent ethical oversight layers and internal procedures at 

each centre, hospital, institution or country. 

Transfers of personal data to third countries or international organisations (i.e., data sharing 

with researchers or organisations outside the EEA) remain controversial [36,37]. Even 

though EuCanImage members do not plan to store or process data outside the EEA, 

controversies have arisen in relation to the transfer of data to international organisations and 

UK-based institutions after Brexit. Potential routes for transfers remain limited, particularly in 

light of the strict requirements and threshold set by the Court of Justice of the European 

Union[38,39]. 
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DISCUSSION 
In many scientific disciplines, especially in health research, working with large scale datasets 

and engaging in cross-border data sharing is becoming increasingly vital for the adoption 

and development of AI technologies. EuCanImage focuses on leveraging existing healthcare 

data to address various scientific research questions using AI models. Our experience 

uncovers obstacles to data interoperability and reuse, as well as realistic solutions. In this 

report, we outline our procedures to achieve data interoperability, including a thorough 

description of the data model design, the standards used, harmonisation efforts, and 

methodological aspects concerning the practical implementation, along with legal 

interoperability considerations. The successful development and deployment of our data 

models and related standards represent a significant milestone, laying the groundwork for 

future AI applications in cancer healthcare. Furthermore, our work highlights the need for 

improvements in data collection, annotation, and cross-border dissemination. 

We anticipate that our approach and methods will benefit individual institutions and serve as 

a guide for future large-scale consortia requiring harmonisation and interoperability of 

cancer-related clinical data for AI and machine learning advancements. Similar efforts have 

been developed by other consortia[40], including projects within the AI4HI initiative such as 

CHAIMELEON, ProCancer-I, Incisive and Primarge[14]. These collective endeavours involve 

meticulous, collaborative, expert-driven analysis, spanning model design, data curation, 

standards usage, and infrastructure development. The knowledge and experience gained 

from our combined efforts are crucial in laying the groundwork for future healthcare data 

standardisation initiatives for AI research across Europe.  

Achieving interoperability in healthcare data raises complex issues that need to be 

addressed. The development of supervised AI models trained for prediction or classification 

tasks relies on data labelled with ‘ground truth’ classifications. Reaching a consensus on 

data labelling requires common standard definitions for diagnosis and agreements on the 

level of data granularity; these are critical factors that affect the reproducibility and quality of 

the results[41,42]. Cancer diagnosis involves integrating complex criteria based on a variety 

of disparate data components, such as pathology reports, laboratory results, radiology 

findings, and advanced molecular and genetic tests. Close collaboration among different 

medical specialists has enabled the establishment of key principles for data harmonisation: 

1) the selection and definition of essential clinical variables to address medical needs, 2) the 

identification of common data available across all centres and 3) striking a balance between 

the volume and granularity of the data that can be provided by various hospitals and the 

optimal information required for AI models (Figure 3). 

Within the healthcare-research ecosystem, data sharing remains a barrier. Yet, it is a crucial 

mechanism for ensuring that high quality data, obtained through exhaustive and expensive 
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processes like defining data labels, harmonisation tasks, and the use of common standards, 

can be reused by other researchers and, thus, maximise the impact. The FAIR principles 

provide the framework for such data re-use[43]. Despite progress in adopting interoperability 

standards, data from different sources still contain discrepancies. To make data fully 

reusable and reproducible, methods for data cleaning, harmonisation, and standardisation 

must be transparent[44].  

While the presented work demonstrates the feasibility of using HL7 FHIR to achieve 

interoperability, it also has limitations. FHIR resources were employed for structural 

interoperability, while SNOMED, LOINC, NCIT, and RxNorm were mainly used for semantic 

interoperability. By leveraging the comprehensive information model in FHIR, clinical data 

can be organised hierarchically in a manner that captures its context and remains 

unambiguous[45]. However, utilising FHIR to build a model for research oncology presents 

specific constraints and unique requirements for maintaining data interoperability (described 

previously in the data model section). To maximise the potential of FHIR and encourage 

broader adoption in the specialised scientific context of AI for precision medicine, alternative 

FHIR configurations or detailed methodological explanations should be considered to ensure 

reproducibility. Currently, the main limitation is that the suitability of the models for 

developing AI algorithms has not yet been validated.  

In summary, we demonstrated that large-scale, real-world, multicenter clinical data 

harmonisation and curation for AI research is feasible through the use or adaptation of 

common standards. The standardised datasets we will make available at the end of the 

project, including data from over 20,000 cancer patients, will provide an invaluable resource 

for investigators to expand the understanding of these complex diseases and open the door 

for cutting edge translational research beyond the scope of EuCanImage. 
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METHODS 

Data model 

The clinical data necessary to address each use case was established by interdisciplinary 

teams, including clinicians and AI experts, considering different key data aspects. Data was 

arranged following five different data schemas that were compliant with the FHIR (FHIR 

Release 4B) architecture. The FHIR Resources used were Patient, Condition, Observation, 

Procedure, Medication Administration and Diagnostic report.   

Ontologies 

HL7/FHIR terminology was used in status profiles required by FHIR. SNOMED (SNOMED 

version International 2022-12-31) was the preferred terminology for general clinical 

concepts, ICD-O3 (ICD-O3 version 20220429) for histology, LOINC (LOINC version 2.73) for 

some test observations and RxNorm (RxNorm version 03-Jan-2023) for medication. We 

used NCIT (NCIT version 23.8d) when the concept did not exist in previous ontologies.  

Data capture, standardisation and quality control 

Patient IDs were pseudo-anonymised at the hospitals, and only hashed patient IDs 

(EuCanImage ID) were introduced in the platform. Data from hospitals was captured in 

REDCap [REDCap version 13.10.0; PHP 8.1.3 (Linux/Unix OS); MySQL 8.0.30] by filling the 

online forms or uploading CSV files complying with the specific format requirements. As a 

result, all clinical data were merged into a single harmonised database for each data 

schema. At this stage, we performed quality control checks. We focused our evaluation on 

three critical dimensions: completeness, conformance and plausibility, and generated a 

score for each quality check based on the number of successes and failures. We built ETL 

pipelines in python to transform the harmonised output data into JSON files compliant with 

FHIR. We used FHIR Validator GUI[30] and Simplifier[31] as external validators for quality 

control. Code availability: The python scripts to transform harmonised data to the FHIR 

compatible schemas are available on Github (see ‘Availability of supporting source code and 

requirements’ section). 

 

Steps to create the ETL script 

Step 0 - Dictionary: Before processing the data, we set up an environment with the 

necessary resources. This includes the creation of a machine readable data dictionary 

encoding a) the name of the variable, b) the ontological code and c) the RedCap internal 

codification. This mapping served two purposes simultaneously: 1) Data Quality Control and 

2) the Extract Transform Load (ETL) process. 

Step 1 - Parsing: All the data gathered in REDCap was exported into a CSV file per use 

case and clinical centre. These CSV files were parsed into a Python readable form for the 

posterior transformation into the objects required by the libraries. 
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Step 2 - Dictionary import: For the transformations to occur with minimal errors, 

dictionaries from step 0 were imported into the Python script for the consecutive mapping to 

the FHIR Resources. 

 

Step 3 - FHIR Resource mapping: To streamline the transformation of the different types of 

data variables into their respective FHIR Resources, we defined functions to automate the 

process.  

1. First, empty templates were created for each FHIR Resource type. To avoid 

errors, we maintained libraries that followed FHIR structures with internal 

validators. 

2. Then, depending on the input required by each function (such as information 

about medication administrations, quantitative or qualitative observations, 

conditions from the patients or others), the Resource was populated 

accordingly. Additionally, some variables needed extra processing, such as 

date and timestamp parsing, which is also automated by the code. 

3. In the case of an error in the structure, the libraries flag them for correction. 

 

Step 4 - Export and validation: As a final step, the objects that were created in the script 

needed to be exported into JSON files. Since the code included FHIR libraries streamlining 

the process, parsing the generated objects and dictionaries into the JSON file was 

straightforward. The libraries used in the process validate the integrity of the structure but 

not always of the contents. To confirm the correctness of the result, we used external 

validators, such as FHIR Validator GUI[30] and Simplifier[31]. 

 
European Genome-Phenome Archive 

The European Genome-phenome Archive (EGA) is a service for permanent archiving and 

sharing of personally identifiable genetic, phenotypic, and clinical data. The standardised 

clinical data, one JSON file (FHIR compliant) per patient obtained after the previously 

described process, will be encrypted and stored at the EGA repository.  

 

DATA AVAILABILITY 

An archival copy of the code is available via Software Heritage [46] and Workflowhub [47]. 

Since EuCanImage is still ongoing the data is not available yet. The datasets will be 

available at the end of the project under controlled access at the European Genome-

Phenome Archive (clinical data) and EuroBioimaging (images). 
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AVAILABILITY OF SUPPORTING SOURCE CODE AND REQUIREMENTS 

Project name: EuCanImage FHIR implementation 

Project home page: https://github.com/EGA-archive/EuCanImage-FHIR/ 

Operating system(s): Platform independent 

Programming language: Python 

Other requirements: Python 3.11.2 or higher, FHIR Resources 6.5.0 or higher, pandas 2.1.3 

or higher, numpy 1.26.2 or higher 

License: Apache License 2.0 

RRID:  SCR_025824 

Workflowhub - EuCanImage FHIR ETL implementation (DOI): 

Hepatocellular Carcinoma [10.48546/workflowhub.workflow.1112.1] 

Colorectal liver metastasis [10.48546/workflowhub.workflow.1156.1] 

Rectal cancer [10.48546/workflowhub.workflow.1157.1] 

Breast cancer MMG [10.48546/workflowhub.workflow.1158.1] 

Breast cancer MRI [10.48546/workflowhub.workflow.1159.1] 
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FIGURE LEGENDS 

Figure 1. Data minimisation of clinical (non-imaging) parameters 

Figure 2. A) Representation of the proportion of FHIR resources needed for each use-case 

B) Ontologies used in each resource  

Figure 3. Description of the different steps followed to conceptualise the data model  

Figure 4. Clinical data processing workflow from clinical institutions to data analysis/sharing. 

Hospitals import data to REDCap following different paths depending on local resources: 1) 

some centres introduce data manually (filling online forms or CSV files) or 2) develop their 

own ETL scripts to automate the process. As a result, all clinical data from the different 

institutions are merged into a single harmonised database for each use case. Finally, all data 

is exported from REDCap as a CSV file for standardisation and conversion into FHIR-

compliant files (FHIR JSON) and stored at the European Genome-Phenome Archive (EGA).  
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