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Abstract  

Objective 

To identify imaging subtypes of the cortico-basal syndrome (CBS) based solely on a data-

driven assessment of MRI atrophy patterns, and investigate whether these subtypes provide 

information on the underlying pathology.  

Methods 

We applied Subtype and Stage Inference (SuStaIn), a machine learning algorithm that identifies 

groups of individuals with distinct biomarker progression patterns, to a large cohort of 135 

CBS cases (52 had a pathological or biomarker defined diagnosis) and 252 controls. The model 

was fit using volumetric features extracted from baseline T1-weighted MRI scans and validated 

using follow-up MRI. We compared the clinical phenotypes of each subtype and investigated 

whether there were differences in associated pathology between the subtypes.  

Results 

SuStaIn identified two subtypes with distinct sequences of atrophy progression; four-repeat-

tauopathy confirmed cases were most commonly assigned to the Subcortical subtype (83% of 

CBS-PSP and 75% of CBS-CBD), while CBS-AD was most commonly assigned to the Fronto-

parieto-occipital subtype (81% of CBS-AD). Subtype assignment was stable at follow-up 

(98% of cases), and individuals consistently progressed to higher stages (100% stayed at the 

same stage or progressed), supporting the model’s ability to stage progression.  

Interpretation 

By jointly modelling disease stage and subtype, we provide data-driven evidence for at least 

two distinct and longitudinally stable spatiotemporal subtypes of atrophy in CBS that are 

associated with different underlying pathologies. In the absence of sensitive and specific 

biomarkers, accurately subtyping and staging individuals with CBS at baseline has important 

implications for screening on entry into clinical trials, as well as for tracking disease 

progression. 
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Introduction 

The corticobasal syndrome (CBS) is characterised by a progressive asymmetric akinetic-rigid 

syndrome and cortical features including apraxia, cortical sensory loss and cognitive 

dysfunction1. Although CBS was first described in individuals with corticobasal degeneration 

(CBD) pathology at post-mortem2, autopsy studies demonstrate considerable underlying 

pathological heterogeneity in those who present clinically with CBS3. CBD pathology only 

accounts for ~50% of all clinically diagnosed CBS patients4, with the others usually having 

other primary tauopathies (such as progressive supranuclear palsy (PSP), Pick’s disease (PiD), 

and globular glial tauopathy (GGT)), transactive response DNA binding protein 43 (TDP-43) 

proteinopathy, and Alzheimer’s disease (AD) pathology3,5–8.  

The emergence of amyloid and tau PET tracers, alongside CSF and now plasma biomarkers 

for AD9,10, enables identification of CBS associated with versus without AD pathology11. 

Biomarkers that are positive indicators for 4R tau (CBD, PSP, GGT), 3R tau (PiD) and TDP-

43 are less well developed in comparison, and although various tests are currently under 

investigation in the research setting, none are yet validated for routine clinical use. Structural 

MRI studies of CBS cases with post-mortem pathology show that at the group level there are 

differences in the cross-sectional pattern of atrophy between some pathologies (CBD, PSP, 

TDP-43, and AD), and between those with CBS associated with versus without amyloid 

pathology. It is unclear, however, to what extent such findings are driven by differences in 

disease stage at time of MRI versus pathology-specific differences, given that the studies either 

do not correct for underlying disease stage5,12 or use Mini-mental State Examination (MMSE) 

as a proxy for stage13. Grouping individuals based on cross-sectional MRI atrophy patterns 

without fully accounting for disease stage may be suboptimal, as different atrophy patterns may 

occur within the same subgroup due to individuals being at different disease stages 14. 

Predicting the pathology underlying CBS is therefore difficult due to the lack of both clinico-

pathological correlation and specific biomarkers. Developing individualised disease 

progression models of pathological brain changes in CBS that predict this underlying 

heterogeneity will be critical to the success of clinical trials for emerging disease modifying 

therapies15–18. 

In recent years, advances in machine-learning have provided tools to disentangle this 

phenotypic (clinical subtype) and temporal (pathological stage) heterogeneity. One such 
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algorithm, Subtype and Stage Inference (SuStaIn)19, combines disease progression modelling 

with clustering to identify probabilistic data-driven disease subtypes with distinct temporal 

progression patterns, using only cross-sectional data. SuStaIn was originally applied to 

structural MRIs in AD whilst more recent work includes identifying distinct patterns of tau and 

amyloid accumulation in AD using PET data20,21. The clinical, anatomical and pathological 

heterogeneity of CBS makes it ideally suited to modelling using SuStaIn. 

The aim of this study was to uncover imaging subtypes of CBS based solely on a data-driven 

assessment of atrophy patterns, to test the hypothesis that modelling disease subtype and stage 

jointly would provide information on the underlying pathology. To this end we used the 

SuStaIn algorithm with cross-sectional structural MRI data from a large international cohort of 

clinically diagnosed CBS patients. We further compared the clinical phenotypes and associated 

pathology in each SuStaIn subtype to gain insight into the relationship between atrophy, 

underlying pathology and clinical features. 

Methods 

Study cohorts and clinical data  

MRI and clinical data from individuals with a clinical diagnosis of “possible” or “probable” 

CBS per Armstrong’s 2013 criteria22 were collected from seven main cohorts: the 4R 

Tauopathy Imaging Initiative Cycle 1 (4RTNI 1; ClinicalTrials.gov: NCT01804452),23,24 the 

4R Tauopathy Imaging Initiative Cycle 2 (4RTNI 2; ClinicalTrials.gov: NCT02966145), the 

davunetide randomized control trial (DAV; ClinicalTrials.gov: NCT01056965),25 the salsalate 

clinical trial (SAL; ClinicalTrials.gov: NCT02422485),26 the young plasma clinical trial (YP; 

ClinicalTrials.gov: NCT02460731),26 the PROgressive Supranuclear Palsy CorTico-Basal 

Syndrome Multiple System Atrophy Longitudinal Study (PROSPECT; ClinicalTrials.gov: 

NCT02778607),27 and the University College London Dementia Research Centre (UCL DRC) 

FTD cohort. Controls were collected from three cohorts with equivalent available data; 

PROSPECT, the UCL DRC FTD cohort and the Frontotemporal Lobar Degeneration 

Neuroimaging Initiative dataset (FTLDNI; http://4rtni-ftldni.ini.usc.edu/). Information 

pertaining to the recruitment, diagnostic criteria and MRI scanner acquisition protocols has 

been described previously28,29. Appropriate ethical approval was acquired through application 

to each of the individual trial and research ethics committees.  
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For study inclusion all participants needed to have, as a minimum, a baseline T1-weighted 

volumetric MRI on a 1.5 or 3 Tesla scanner, and basic demographic data (sex and age at time 

of scan). Clinical rating scale scores (PSP rating scale, Unified Parkinson Disease Rating Scale 

[UPDRS], Schwab and England Activities of Daily Living scale [SEADL], and Montreal 

Cognitive Assessment [MoCA] or MMSE at baseline and follow-up), pathology at autopsy, 

CSF AD biomarker positivity [Aβ1–42, tau, and ptau], amyloid PET positivity (with 

florbetaben, florbetapir, or Pittsburgh Compound-B), and follow-up scans were also included 

if available. Amyloid PET scans were collected at participating 4RTNI-2 centers and positivity 

was defined by expert visual read by certified staff. 

As detailed in previous work28, original trial analyses failed to show any treatment effect 

(including no change in volumetric MRI measurements) in the SAL, YP and DAV trials, so 

data were combined from each study’s treatment and placebo arms. Longitudinal data were 

used to validate the consistency of SuStaIn’s subtype and stage assignments at follow-up. 

Multiple Imputation via Chained Equations package (mice) was used to impute missing 

observations in individual clinical subscores, when at least 80% of the assessment was 

complete30. Given the PROSPECT and 4RTNI2 trials only assessed cognitive function using 

the MOCA (as opposed to the MMSE for the other trials), raw MOCA scores were converted 

to MMSE scores using the method first introduced by Lawton et al31. 

MRI acquisition and image processing  

The MRI acquisition protocols, and image processing pipeline have been described in detail in 

previous work28,29. To summarise, cortical and subcortical structures were automatically 

parcellated using geodesic information flows algorithm (GIF)32, a multi-atlas segmentation 

propagation approach. Subregions of the cerebellum were parcellated using GIF based on the 

Diedrichsen atlas33, and the brainstem structures were subsequently segmented using a version 

of the brainstem module available in FreeSurfer, customised to accept the GIF parcellation of 

the whole brainstem as input34. Volumes for 24 grey-matter regions were calculated: four 

brainstem (medulla, pons, superior cerebellar peduncle [SCP] and midbrain), three cerebellar 

(cerebellar cortex, dentate nucleus and vermis), eight subcortical (thalamus, globus pallidus 

(GP), caudate, putamen, ventral diencephalon (DC), hippocampus, amygdala and nucleus 

accumbens [NA]) and nine cortical (basal forebrain, cingulate, corpus callosum, frontal 

anterior, frontal posterior, insula, temporal, parietal and occipital) regions. A list of GIF 

subregions included in each cortical region is detailed in Supp. Table 1. Total intracranial 
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volume (TIV) was calculated using SPM12 v6225 (Statistical Parametric Mapping, Wellcome 

Trust Centre for Neuroimaging, London, UK) running in MATLAB R2012b (Math Works, 

Natick, MA, USA)35. All segmentations were visually inspected to ensure accurate 

segmentation. Regional volumes were corrected for scanner magnetic field strength (1.5T or 

3T), scanner manufacturer (General Electric or Siemens), sex, age at baseline scan and TIV, 

by performing a linear regression on the control population and then propagating this model to 

the CBS population, to generate covariate-adjusted regional volumes. 

We carried out pairwise comparisons between healthy controls and cases at baseline visit, and 

selected covariate adjusted regional volumes (from the 24 listed in the previous section) where 

the difference between the two groups was associated with a moderate to large effect size 

(Cohen’s 𝑑 effect size of 0.6 for standardized mean differences between the cases and controls). 

This resulted in the selection of 19 regions of interest (ROI) that were then included in 

downstream analysis (Supp. Table 2); four brainstem (medulla, pons, SCP and midbrain), two 

cerebellar (cerebellar cortex and dentate nucleus), six subcortical (thalamus, GP, caudate, 

putamen, ventral DC, and amygdala) and seven cortical (corpus callosum, frontal anterior, 

frontal posterior, insula, temporal, parietal and occipital) regions. Regions that had a right and 

left label were combined (volumes summed). Covariate adjusted volumes for these 19 ROIs 

were converted into 𝑧 scores relative to the control group (see Supp. Materials for more 

detail).  

Subtype and Stage Inference 

SuStaIn is a probabilistic machine learning algorithm that simultaneously clusters individuals 

into groups (subtypes) and infers a trajectory of change associated with each group; that 

trajectory defines the disease stage (degree of disease progression within a subtype) of each 

individual within the corresponding group. Detailed formalisation of SuStaIn has been 

published previously19, and more detail on the algorithm and how it was applied to the data in 

this study is provided in the Supp. Material.  

The trained model was used to calculate the probability that each individual falls at each stage 

of each subtype, and individuals were assigned to their maximum likelihood subtype and stage 

(as per Young et al.19). Subtype progression patterns identified by SuStaIn were visualized 

using BrainPainter36, that was modified to include brainstem segmentations. 
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Statistical analysis  

Individuals assigned to SuStaIn stage 0 (i.e. no atrophy on imaging compared to controls) were 

labelled as “normal appearing”. All other individuals were labelled as “subtypable” and we 

assigned these to their most probable subtype and stage. In addition, CBS cases were stratified 

by likely underlying pathology into CBS-PSP, CBS-CBD and CBS-AD). While CBS-PSP and 

CBS-CBD were diagnosed by post-mortem pathology, cases were assigned to CBS-AD 

category either by post-mortem pathology, or if they had a positive AD biomarker in life (raised 

CSF Tau/A-Beta 1-42 ratio or positive Amyloid PET noting that amyloid positive biomarker 

status denotes presence of Alzheimer pathology not absence of CBD or PSP-pathology, and 

co-incidental amyloid positivity is expected to rise with age). All other cases without a post-

mortem diagnosis or a positive AD biomarker were assigned as CBS-Indeterminate (CBS-

IDT). Software and packages used to conduct analyses are described in the Supp. Materials. 

All analyses were performed either in R (version 4.0.5) or Python (version 3.7.6). 
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Baseline characteristics 

We performed pairwise comparisons of baseline characteristics between all CBS cases and 

controls, CBS pathological diagnosis (CBS-CBD, CBS-PSP, CBS-AD and CBS-IDT) vs all 

CBS cases, and each CBS pathology grouping against each other, using two-tailed unpaired 𝑡-

tests for continuous variables and 𝜒! tests for categorical variables. Statistical significance was 

reported at a level of 𝑝< 0.05, both uncorrected for and corrected for multiple comparisons 

(Bonferroni correction).  

Association between Subtype assignment and covariates 

We tested for any residual association between covariates (scanner magnetic field strength, 

scanner manufacturer, sex, age at baseline scan and TIV) and SuStaIn subtype, by fitting a 

logistic regression model to the data. 

Subtype characterisation 

First, we assessed the overall differences between subtypes independently of stage, excluding 

individuals classified as normal appearing (stage 0). Two-tailed unpaired 𝑡-tests were 

performed for continuous variables and 𝜒! tests for categorical variables followed by post-hoc 

pairwise comparisons for CBS pathology vs SuStaIn subtype. 

To test for associations between clinical scores (PSP rating scale, UPDRS, SEADL and 

MMSE) and SuStaIn subtype, a linear mixed effects model was fit to the data. Subject Id was 

modelled as a random effect (random intercept) due to some subjects having two MRI scans at 

different time points. SuStaIn subtype and stage, age, and sex were accounted for by fitting a 

linear mixed effects model (Clinical score ~ subtype + stage + (1 | ID) + AAS + sex) for each 

clinical test score. Significance was calculated using the lmerTest package37 which applies 

Satterthwaite’s method to estimate degrees of freedom and generate p-values for mixed models. 

Statistical significance was reported at a level of p < 0.05, and at the Bonferroni corrected level 

of p < 0.005 for demographic variables (11 items) and clinical scores (10 variables), to account 

for multiple comparisons. 

To assess average stage by clinical syndrome by SuStaIn subtype, we performed a one-way 

ANOVA (Mean stage ~ CBS pathology + Sustain baseline subtype) with the aov() function 

from the stats package (version 3.6.2). Tukey post-hoc significant differences were then 

calculated to identify the level of significance.  
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Finally, we tested for differences in all 24 baseline regional volumes of interest between the 

different SuStaIn subtypes using two-tailed unpaired 𝑡 tests, with statistical significance 

reported at a level of p < 0.05, both uncorrected for and corrected for multiple comparisons 

(Bonferroni correction). The rationale for using all regional volumes (24 rather than the 19 

used in model fitting) was to investigate what the overall pattern of atrophy was for each 

subtype at baseline. 

Longitudinal validation 

We used the longitudinal imaging data to validate the stability of subtypes, and to assess stage 

progression, based on the hypothesis that individuals should remain assigned to the same 

subtype but advance to higher stages over time (or at least remain at the same stage). Subtype 

stability was defined as the proportion of individuals that were assigned to the same subtype at 

follow-up(s) or progressed from stage 0 (normal appearing) to a higher stage and subtype (i.e. 

became subtypable). To assess stage progression, SuStaIn stage at baseline and follow-up(s) 

was compared for all individuals and the proportion of individuals that either advanced to a 

higher stage or stayed at the same stage at follow-up was calculated. 

Results 

Demographics 

Table 1 summarises the key baseline demographic and clinical features for CBS cases and 

controls included in this study. In total this study included 500 MRI images from a total of 387 

individuals; 135 had a clinical diagnosis of CBS, with 69 individuals having a total of 113 

follow-up scans, and 252 controls. Of the 69 individuals that had follow-up, 27 (39%) had one 

follow-up scan, 40 (58%) had two follow-up scans and two (3%) had three follow-up scans. 

For each individual, follow-up scan(s) were performed on the same MRI scanner as the original 

baseline scan, and the mean (SD) time interval from baseline to final follow-up scan was 1.04 

years (± 0.46). Of those diagnosed with CBS, 52 (39%) received a pathological or biomarker-

based diagnosis: 12 were CBS-CBD, 6 were CBS-PSP, 34 were CBS-AD and 83 were CBS-

IDT. There were no data available on co-pathologies in those that received a pathological 

diagnosis.  

Overall, the CBS cases had an older average age at time of first scan compared to controls (66.4 

years, SD ± 7.7 vs 62.3 years, SD ± 9.2, 𝑝 < 0.05, corrected for multiple comparisons), though 
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were matched for sex. Disease duration (defined as time from symptom onset to scan) at time 

of first scan was lower in the CBS-CBD group compared to CBS-AD and CBS-IDT (3.4 years, 

SD ± 1.6 vs 4.9 years, SD ± 3.2 vs 5.2 years, SD ± 2.9, 𝑝 < 0.05 for all uncorrected for 

multiple comparisons) though this did not survive Bonferroni correction. 

Regarding clinical scores, the only statistically significant difference between pathology 

groups was in the Bulbar sub-score of the PSP rating scale which was lower in the CBS-CBD 

group compared to CBS-IDT (3.4 years, SD ± 1.6 vs 5.2 years, SD ± 2.9, 𝑝 < 0.05 uncorrected 

for multiple comparisons). There was also no difference between the SEADL and MMSE 

scores between pathological groups. 
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Table 1 – Baseline clinical and demographic data (by pathology) 

 Controls All CBS CBS-CBD CBS-PSP CBS-AD CBS-IDT 

Baseline, n (fu visits) 252 135 (113) 12 (13) 6 (5) 34 (26) 83 (69) 
Sex, % female 57% 51% 50% 83% 38% 54% 
Age first scan, y 62.3 (9.2)c 66.4 (7.7)c 64.8 (6.2) 70.4 (5.7) 66.5 (7.7) 66.3 (8.0) 
Age at first symptom, ya - 61.5 (8.7) 65.2 (7.0) 60 (2.83) 61.5 (8.0) 61.2 (9.4) 
Disease duration, ya, b - 4.9 (2.9) 3.4 (1.6)d,e,f 4.3 (1.6) 4.9 (3.2)e 5.2 (2.9)f 

PSP rating scale score - 26.3 (13.9) 26.7 (15.0) 33.8 (8.7) 24.9 (12.8) 26.5 (14.6) 
- History - 5.6 (3.2) 6.7 (3.9) 6.8 (4.5) 5.0 (2.6) 5.7 (3.3) 
- Mentation - 3.1 (2.8) 2 (1.5) 3.8 (1.3) 3.7 (3.4) 3.0 (2.4) 
- Bulbar - 1.7 (2.1) 0.9 (1.2)f 1.0 (0.8) 1.4 (2.3) 2.0 (2.1) f 
- Ocular motor - 2.3 (3.5) 2.9 (3.8) 3.8 (2.2) 1.7 (2.2) 2.4 (4.0) 
- Limb motor - 7.7 (3.7) 7.7 (3.7) 9.2 (2.1) 7.3 (3.7) 7.7 (3.9) 
- Gait and midline - 5.9 (5.0) 6.6 (5.1) 9.3 (7.2) 5.7 (5.2) 5.7 (4.9) 
SEADL - 57.8 (25.5) 55.7 (20.7) 42.5 (54.4) 53.2 (27.6) 61.0 (24.7) 
UPDRS - 32.0 (17.2) 34.3 (13.0) 47.2 (26.4) 31.2 (20.2) 31.0 (15.7) 
MMSE - 23.8 (5.9) 23.3 (7.5) 19.2 (8.6) 22.0 (7.4) 25.0 (4.3) 

Values are mean (SD), apart from Sex % female, Baseline n (n follow-up visits), Pathology n (% PSP). Pairwise comparisons between groups were performed using t tests for continuous variables 
and χ2 tests for categorical variables. a note incomplete data for disease duration / age at first symptom. b time from first symptom to first scan. c CBS all vs Controls. Statistically significant at p < 
0.05, corrected for multiple comparisons. d CBS [pathology group] vs All CBS. Statistically significant at p < 0.05, corrected for multiple comparisons. e CBS-CBD vs CBS-AD. Statistically 
significant at p < 0.05, uncorrected for multiple comparisons. f CBS-CBD vs CBS-IDT. Statistically significant at p < 0.05, uncorrected for multiple comparisons. Abbreviations: PSP = progressive 
supranuclear palsy, CBD = corticobasal degeneration, AD = Alzheimer’s disease, IDT – indeterminate pathology, SEADL = Schwab and England Activities of Daily Living, UPDRS = Unified 
Parkinson’s Disease Rating Scale, MMSE = Mini–Mental State Examination
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Spatiotemporal subtypes of CBS 

Given CBS is such a rare disease (3 / 100,000 estimated prevalence38,39) we trained SuStaIn 

using CBS cases only, based on the rationale that it is very unlikely any of our controls had 

asymptomatic CBS. Indeed, it is more likely that the controls would have a more common 

neurodegenerative disorder such as AD, which may confound subtype and stage inference, 

further supporting the exclusion. 

We started with the hypothesis that there would be three distinct subtypes of atrophy in the 

CBS cohort. Comparing the out-of-sample log likelihoods and CVIC for the three-subtype 

model and the two-subtype model demonstrated that the two-subtype model (Supp. Figure 

1A) best described the data with the lowest CVIC (Supp. Figure 1B). Given that the study was 

likely to be underpowered with only 135 cases, we decided to investigate both the two-subtype 

and the three-subtype models to compare the disease progression patterns and clinical 

phenotypes.  

Two-subtype model  

Based on the earliest MRI abnormalities seen in the SuStaIn defined trajectories, we named the 

first the Subcortical subtype and the second the Fronto-parieto-occipital subtype (Figure 1A 

and Supp. Figure 2 for positional variance diagrams [PVD]). The Subcortical subtype (62/135, 

46% of cases) starts with atrophy in the SCP of the cerebellum and the midbrain, followed by 

the pons, medulla, ventral DC, dentate nucleus, and thalamus. The atrophy then progresses to 

the posterior frontal cortex and the insula, posteriorly to the parietal and occipital cortices and 

anteriorly to the anterior frontal cortices, before finally affecting the temporal cortices. In 

contrast, in the Fronto-parieto-occipital subtype (73/135, 54% of cases) the earliest atrophy 

starts in the parietal cortex and posterior frontal cortex, followed by the insula, occipital and 

then temporal cortex.  Atrophy in the basal ganglia (putamen and GP) also occurs earlier on in 

this subtype than the Subcortical subtype, while the brainstem, thalamus and ventral DC 

become atrophic later in sequence.  
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Figure 1 - Two-subtype model of atrophy progression in CBS identified by Subtype and Stage Inference 
(SuStaIn). (A) Spatial distribution and severity of atrophy at each SuStaIn stage by Subtype. Each row 
(Subcortical top, Fronto-parieto-occipital bottom) represents a subtype progression pattern identified by SuStaIn 
consisting of a set of stages at which brain volumes in CBS cases reach different z-scores relative to controls. (B) 
Assignment of CBS pathology to each SuStaIn subtype. Size of bar (x-axis) represents percentage of cases labelled 
with that PSP syndrome assigned to that SuStaIn subtype (y-axis). PSP = PSP pathology at post-mortem, CBD = 
at post-mortem, AD = AD pathology at post-mortem or a positive AD biomarker (CSF or Amyloid PET) during 
life. 
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Overall, 12 of the 135 individuals (9%) in the two-subtype model were  normal appearing at 

baseline, and so were excluded from subtype post-hoc analysis. Three of these individuals had 

a pathological diagnosis of AD (CBS-AD) and nine were CBS-IDT. Interestingly of the nine 

CBS-IDT, six had negative AD biomarkers and were therefore a pathology other than AD.  

A logistic regression model was fitted to assess for any residual association between SuStaIn 

subtype, SuStaIn stage, and regressed covariates (SuStaIn subtype ~ SuStaIn stage + TIV + age 

at first scan + sex + scanner field strength + scanner manufacturer + cohort). Apart from age at 

first scan (younger in Fronto-parietal-occipital subtype [𝑧 = 2.2, 𝑝 = 0.03]) there was no 

dependency of subtype on any of the other covariates including SuStaIn stage which showed a 

similar distribution of stages across each subtype (Supp. Figure 3). 

Three-subtype model  

In the three-subtype model (Figure 2A and Supp. Figure 4 for the PVDs) the Subcortical 

subtype (43/135, 32% of cases) was also present with a very similar trajectory of atrophy to 

the Subcortical subtype in the two-subtype model. Of these 43 cases, 39 of them (91%) were 

also assigned to the Subcortical subtype in the two-subtype model. The second subtype we 

named the Fronto-parietal subtype (62/135, 46% of cases) which had earliest atrophy in the 

posterior frontal and basal ganglia regions, followed closely by the insula and parietal regions. 

The midbrain and thalamus were affected next followed by the temporal and occipital cortices. 

The third, Parieto-occipital (30/135, 22%) subtype, showed the most posterior atrophy with 

the parietal and occipital cortices affected first followed by the posterior frontal cortex and 

putamen, then the insula amygdala and temporal cortex.  

13 of the cases (9.6% of all cases) in the three-subtype model were normal appearing (stage 0) 

at baseline; 12 of these were also normal appearing in the two-subtype model. Three of these 

had a pathological diagnosis of CBS-AD, and the other ten were CBS-IDT. Six of the ten CBS-

IDT cases were negative for AD biomarkers. There was similar distribution of stages across 

each subtype (Supp. Figure 5).
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Figure 2 - Three-subtype model of atrophy progression in CBS identified by Subtype and Stage Inference 
(SuStaIn). (A) Spatial distribution and severity of atrophy at each SuStaIn stage by Subtype. Each row 
(Subcortical top, Fronto-parietal middle and Parieto-occipital bottom) represents a subtype progression pattern 
identified by SuStaIn consisting of a set of stages at which brain volumes in CBS cases reach different z-scores 
relative to controls (B) Assignment of CBS pathology to each SuStaIn subtype. Size of bar (x-axis) represents 
percentage of cases labelled with that PSP syndrome assigned to that SuStaIn subtype (y-axis). PSP = PSP 
pathology at post-mortem, CBD = at post-mortem, AD = AD pathology at post-mortem or a positive AD biomarker 
(CSF or Amyloid PET) during life. 
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Longitudinal consistency of models 

To validate the models’ inference of subtype longitudinal trajectories from the baseline MRI 

data, we tested the trained SuStaIn model’s ability to subtype and stage the follow-up MRI 

data. A total of 103 follow-up (103/113) scans were subtypable for both the two- and three-

subtype models from a total of 63 CBS cases (47% of all CBS cases in cohort; 23 cases had 

one follow-up scan, 37 had two follow-up scans and two had three follow-up scans). The ten 

normal appearing scans at follow-up were also normal appearing at baseline scan. The mean 

(SD) time interval from baseline to final follow-up scan was 1.06 years (± 0.47). 

SuStaIn subtype assignments were stable at follow-up 

Overall, the two-subtype model showed the highest subtype assignment stability with 98% of 

those with subtypable follow-up scans (101/103) remaining in the same subtype at follow-up 

or progressing to a subtype from being non-subtypable at baseline (one case) (Supp. Table 4). 

Two cases assigned to the Fronto-parieto-occipital subtype switched to the Subcortical 

subtype at follow-up (both CBS-AD). The average probability with which SuStaIn assigned 

individuals to the subtypes at baseline was high; 0.92 (SD ± 0.1) for the Subcortical subtype 

and 0.94 (SD ± 0.1) for the Fronto-parieto-occipital subtype. 

For the three-subtype model, 93% (96/103) of cases showed subtype assignment stability 

(Supp. Table 5); five cases switched from the Subcortical subtype to the Fronto-parietal 

subtype (all CBS-IDT and negative for AD biomarkers) at follow-up, and two switched from 

the Fronto-parietal to the Parieto-occipital subtype (one was CBS-AD, and the other CBS-

IDT). The average probability of subtype assignment at baseline was slightly lower than the 

two-subtype model; 0.87 (SD ± 0.2) for the Subcortical subtype, 0.81 (SD ± 0.1) for the 

Fronto-parietal subtype and 0.79 (SD ± 0.2) for the Parieto-occipital subtype.
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Individuals consistently progressed to higher stages at follow-up 

In the two-subtype model 100% of subtypable individuals either stayed at the same stage (15%, 

15/103) or progressed to a higher stage (85%, 88/103) (Figure 3A). The Fronto-parieto-

occipital subtype had a slightly higher percentage progressing to a higher stage at follow-up 

(88%, 59/67) compared to the Subcortical subtype (81%, 29/36). 

In the three-subtype model 98% stayed at the same stage or progressed (11%, 11/103 and 87%, 

90/103 respectively) (Figure 3B). 2 individuals (2%) (both CBS-CBD, one assigned to the 

Fronto-parietal and one assigned to the Subcortical subtype) dropped one stage at follow-up.  

 

Figure 3 - Stage progression at follow-up visits by SuStaIn subtype. Scatter plots of each subtype for (A) the 
two-subtype model (B) the three-subtype model showing predicted stage at baseline (x-axis) versus predicted 
stage at follow-up scan (y-axis) for those subtypable CBS cases with a follow-up scan (n = 103). The area of the 
circle is weighted by the number of scans at each point, and the colour of the circle represents the time (years) 
between visits. 
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Subtypes were differentially enriched for underlying CBS 

pathologies  

In the two-subtype model the Subcortical subtype is associated with four-repeat Tau (4RT) 

pathology and the Fronto-parieto-occipital subtype with AD pathology (Figure 1B). 83.4% of 

CBS-PSP cases (5/6) and 75% of the CBS-CBD cases (9/12) were assigned to the Subcortical 

subtype, whereas 80.6% of CBS-AD cases (25/35) were assigned to the Fronto-parieto-

occipital subtype (Table 2). There was little difference in baseline demographic and clinical 

scores between the two subtypes. When looking at regional unadjusted baseline volumes in the 

two-subtype model (Supp. Table 6) those assigned to the Fronto-parieto-occipital subtype 

had significantly lower mean volumes in the temporal, parietal, occipital cortices compared to 

the Subcortical subtype at baseline scan. In contrast the Subcortical subtype had significantly 

lower volumes in the midbrain, pons, SCP, dentate and the ventral DC. 

In the three-subtype model, the addition of a third subtype separates CBS-CBD from CBS-PSP 

pathology with CBS-AD pathology predominantly assigned to a Parieto-occipital subtype 

(Figure 2B). In those with CBS-CBD, 83% (10/12) were assigned to the Fronto-parietal 

subtype with the remainder assigned to the Subcortical subtype, whilst in CBS-PSP 83% 

(5/6)are assigned to the Subcortical subtype and 17% (1/6) to the Fronto-parietal subtype. 

Neither of the CBS-4RT pathologies (PSP and CBD) were assigned to the Parieto-occipital 

subtype. In contrast, the majority of CBS-AD cases were assigned to the Parieto-occipital 

subtype (68%, 21/31) with 22% (7/31) assigned to the Fronto-parietal subtype and 10% (3/31) 

assigned to the Subcortical subtype (Table 3). Comparing all regional unadjusted baseline 

volumes in the three-subtype model (Supp. Table 7) the Subcortical subtype has the lowest 

volumes of the three subtypes in the midbrain, SCP, pons, dentate and the ventral diencephalon, 

whilst the Parieto-occipital subtype had the lowest volumes in the temporal, parietal, occipital 

cortices and the hippocampus. The Fronto-parietal subtype had the lowest volumes in the 

amygdala, posterior frontal cortex and the basal ganglia of the 3 subtypes.
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Table 2 - Comparison of demographics, pathological diagnosis, and clinical test scores between subtypes 
(two-subtype model). 

 Subcortical Fronto-parieto-occipital  P value 

All scans, n 62 (45.9) 73 (54.8) - 
Subtypable scans, n 56 (45.5) 67 (54.5) 0.77a 

Average subtype probabilityb 0.92 (0.1) 0.94 (0.1) 0.33 

Sex, % female 50% 55% 0.56 
Age first scan, y 68.3 (7.9) 65.4 (7.2) 0.03c 

Age at first symptom, yd 64.0 (9.3) 60.3 (7.7) 0.06 

Disease duration, yd, e 4.4 (2.7) 5.1 (2.8) 0.18 
CBS pathology, n   - 

- CBS-CBD 9 (75%) 3 (25%)  
- CBS-PSP 5 (83%) 1 (17%)  
- CBS-AD 6 (19%) 25 (81%)  

- CBS-IDT 36 (49%) 38 (51%) <0.001f 

PSP rating scale 27.8 (13.6) 24.8 (14.6) 0.31 
SEADL 58.5 (22.7) 55.9 (28.5) 0.62 
UPDRS 33.2 (17.7) 31.1 (17.5) 0.55 
MMSE 23.8 (4.9) 23.5 (7.0) 0.82 

Values are mean (SD) or n (%), apart from Sex = % female. Pairwise comparisons between groups were performed using t 
tests for continuous variables and χ2 tests for categorical variables. a all scans vs. subtypable scans .b subtype probability = the 
probability of assignment for an individual case to given subtype. c statistically significant at p < 0.05, uncorrected for multiple 
comparisons. d note incomplete data for disease duration / age at first symptom. e time from first symptom to first scan. f 

statistically significant at p < 0.05, corrected for multiple comparisons. Abbreviations: CBS = corticobasal syndrome, CBD = 
corticobasal degeneration, PSP = progressive supranuclear palsy, AD = Alzheimer’s disease, IDT = pathology indeterminate, 
SEADL = Schwab and England Activities of Daily Living, UPDRS = Unified Parkinson’s Disease Rating Scale, MMSE = 
Mini-Mental State Examination
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Table 3 - Comparison of demographics, pathological diagnosis and clinical test scores between subtypes 
(three-subtype model) 

 Subcortical Fronto-parietal Parieto-occipital  𝒑 value 

All scans, n 43 (32%) 62 (46%) 30 (22%) - 
Subtypable scans, n 38 (31%) 56 (46%) 28 (23%) 0.77a 

Average subtype probabilityb 0.87 (0.2) 0.81 (0.1) 0.79 (0.2) 0.07 

Sex, % female 58% 48% 47% 0.36 
Age first scan, y 68.5 (6.6) 66.3 (8.4) 64.9 (7.2) 0.15 

Age at first symptom, yd 63.3 (7.2) 62.8 (10.1) 58.6 (7.2) 0.15 
Disease duration, yd, e 5.0 (3.1) 4.5 (2.7) 4.9 (2.5) 0.71 
CBS pathology, n    - 

- CBS-CBD 2 (17%) 10 (83%) 0 (0%)  
- CBS-PSP 5 (83%) 1 (17%) 0 (0%)  
- CBS-AD 3 (10%) 7 (22%) 21 (68%)  

- CBS-IDT 28 (38%) 38 (52%) 7 (10%) <0.05f 

PSP rating scale 28.5 (13.7) 26.0 15.3) 24.3 (12.6) 0.55 

SEADL 57.8 (22.2) 59.8 (25.7) 51.2 (31.1) 0.43 
UPDRS 35.0 (18.5) 30.6 (15.8) 31.5 (20.1) 0.58 
MMSE 23.9 (4.6) 25.3 (4.5) 20.1 (8.8) <0.05f 

Values are mean (SD) or n (%), apart from Sex = % female. Group comparisons were performed using a linear model for 
continuous variables (continuous variable ~ SuStaIn subtype) and χ2 tests for categorical variables. a all scans vs. subtypable 
scans. b subtype probability = the probability of assignment for an individual case to given subtype. c statistically significant at 
p < 0.05, uncorrected for multiple comparisons. d note incomplete data for disease duration / age at first symptom. e time from 
first symptom to first scan. f statistically significant at p < 0.05, corrected for multiple comparisons. Abbreviations: CBS = 
corticobasal syndrome, CBD = corticobasal degeneration, PSP = progressive supranuclear palsy, AD = Alzheimer’s disease, 
IDT = pathology indeterminate, SEADL = Schwab and England Activities of Daily Living, UPDRS = Unified Parkinson’s 
Disease Rating Scale, MMSE = Mini-Mental State Examination 
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Association between stage, subtype, and clinical disease severity  

We went on to assess the association between stage, subtype, and clinical disease severity in 

the both the two- and three- subtype model, controlling for age and sex.  

In the two-subtype model (Table 4) only the Gait and Midline PSP rating scale subscore was 

different between the Subcortical and Fronto-parieto-occipital subtype (worse in the 

Subcortical subtype: 𝑡 = -2.04, 𝑝 = 0.04, uncorrected) those this did not survive Bonferroni 

correction. Worsening Total PSP rating scale score (and History, Bulbar and Oculomotor 

subscores), and MMSE score were associated with increasing SuStaIn stage, suggesting these 

scores decline with disease progression in both subtypes. 

In the three-subtype model (Table 5) the main difference to the two-subtype model was that 

there was no-longer a significant difference in Limb motor subscores between the subtypes, 

while significant differences between performance on the MMSE became apparent in the 

Parieto-occipital subtype (𝑡 = -3.11, 𝑝 = 2.4 x 10-3). 
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Table 4 – Comparison of adjusted clinical scores between subtypes in the two-subtype model 

 SuStaIn subtype  SuStaIn stage    

 t value p value  t value p value  Subtype with worse score Change with Sustain stage 
PSP rating scale score         

- Total -0.63 0.27  2.32 0.02a   Worsens 

- History -1.11 0.78  1.99 0.04a   Worsens 

- Mentation 0.61 0.55  1.38 0.17    

- Bulbar -0.35 0.72  4.00 1 x 10-4b   Worsens 

- Ocular motor -0.62 0.54  2.46 0.02a   Worsens 

- Limb motor 0.13 0.89  -0.25 0.80    

- Gait and midline -2.04 0.04a  0.34 0.73  Subcortical subtype  

SEADL -0.31 0.75  -0.94 0.34    

UPDRS -0.01 0.99  0.88 0.38    

MMSE -0.19 0.85  -4.20 5 x 10-5b   Worsens 

Linear mixed model of Clinical score ~ subtype + stage + (1 | ID) + AAS + sex. Significance was calculated using Satterthwaite’s method to estimate degrees of freedom and generate p-values. 
Includes 226 scans (123 baseline and 103 follow-up scans and varying timepoints). a. statistically significant at p < 0.05, uncorrected for multiple comparisons (10 items, p < 0.005). b. statistically 
significant at p < 0.05, corrected for multiple comparisons (10 items, p < 0.005). Abbreviations: FPO = fronto-parieto-occipital, SEADL = Schwab and England Activities of Daily Living, UPDRS 
= Unified Parkinson’s Disease Rating Scale, MMSE = Mini–Mental State Examination.
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Table 5 – Comparison of adjusted clinical scores between subtypes in the three-subtype model 

 
SuStaIn subtype 

(Fronto-Parietal*) 
 

SuStaIn subtype 
(Parieto-Occipital*) 

 
SuStaIn stage 

   

 t value p value  t value p value  t value p value  Subtype with worse 
score 

Change with 
Sustain stage 

PSP rating scale score            
- Total -1.24 0.22  -0.83 0.41  2.46 0.01a   Worsens 
- History -0.97 0.34  -0.91 0.37  2.02 0.05b   Worsens 

- Mentation -0.57 0.57  1.42 0.16  1.44 0.15    
- Bulbar -0.05 0.96  -1.14 0.25  3.68 3.7 x 10-4a   Worsens 

- Ocular motor -1.39 0.17  -1.58 0.12  2.72 7.6 x 10-3a   Worsens 
- Limb motor -0.03 0.98  -0.51 0.61  0.22 0.83    
- Gait and midline -1.58 0.11  -1.07 0.29  1.72 0.09    

SEADL 0.44 0.66  -1.16 0.25  -1.13 0.26    
UPDRS -0.75 0.46  -0.24 0.81  1.05 0.30    
MMSE 1.35 0.18  -3.11 2.4 x 10-3a  -3.79 2.4 x 10-4a  Parieto-occipital Worsens 

Linear mixed model of Clinical score ~ subtype + stage + (1 | ID) + AAS + sex. Significance was calculated using Satterthwaite’s method to estimate degrees of freedom and generate p-values. 
Includes 226 scans (123 baseline and 103 follow-up scans at varying timepoints). *Named SuStaIn subtype compared to Subcortical subtype. a. Statistically significant at p < 0.05, corrected for 
multiple comparisons (10 items, p < 0.005). b. Statistically significant at p < 0.05, uncorrected for multiple comparisons (10 items, p < 0.005). Abbreviations: SEADL = Schwab and England 
Activities of Daily Living, UPDRS = Unified Parkinson’s Disease Rating Scale, MMSE = Mini–Mental State Examination
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Discussion  

We applied an unsupervised machine learning algorithm (SuStaIn) to a large cohort of 

clinically diagnosed CBS cases, uncovering imaging subtypes based solely on a data-driven 

assessment of cross-sectional atrophy patterns. Prior studies have retrospectively assessed both 

structural5,12,13 and FDG-PET imaging40 at a group level, as correlates of CBS pathology. Three 

of these studies5,12,40 took no account of disease stage in their analysis and so are limited by the 

inherent assumption that all subjects are at a common disease stage (no temporal 

heterogeneity). The study by Whitwell et al.13 uses the MMSE score as a proxy for disease 

stage, although MMSE may not be similarly affected across the different pathologies or for a 

given stage of disease. In addition, none of these clinico-pathological studies include 

longitudinal imaging follow-up and provide little information on the earliest regions in the 

brain affected by disease within the different pathological subtypes. By using SuStaIn to jointly 

model both disease stage and subtype simultaneously, we were able to better account for this 

temporal heterogeneity, highlighting the regions that are affected earliest in the disease course 

for each imaging subtype, whilst also providing a fine-grained staging model within each 

subtype that allowed staging of individual patients. 

It is important to note that the model was agnostic to underlying pathology, and we only used 

the pathology information post-hoc, to test the hypothesis that these imaging subtypes would 

provide information on the underlying pathology. In support of this hypothesis, the subtypes 

were differentially associated with underlying pathology; the data best supported a two-subtype 

model, with 4RT (PSP or CBD) confirmed cases being most commonly assigned to the 

Subcortical subtype (83% of PSP and 75% of CBD respectively), and AD cases being most 

commonly assigned to the Fronto-parieto-occipital subtype (81% of CBS-AD cases). The 

Subcortical subtype (46% of cases) was characterised by early atrophy of the SCP, midbrain 

and dentate nucleus, followed by the basal ganglia, remaining brainstem structures and the 

thalamus, with the posterior frontal cortex being the first cortical structure to become abnormal. 

This early involvement of the brainstem and subcortical structures in CBS-4RT is in keeping 

with previous work that shows that more severe atrophy is found in these regions in CBS-PSP 

and CBS-CBD compared to controls and CBS-AD41. In contrast, the Fronto-parieto-occipital 

subtype demonstrates earliest atrophy in the parietal region closely followed by the posterior 

frontal, insular and occipital cortices. The basal ganglia, similar to the Subcortical subtype, are 

involved early in the sequence, as one might expect given these individuals have presented 
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with a cortico-basal syndrome. The fact that AD pathology is strongly assigned to this subtype 

is also in keeping with published clinico-pathological imaging studies, where CBS-AD 

demonstrates the most severe atrophy in the parietal and posterior frontal regions5,12,13.  

The two-subtype model best explained the data in this cohort, as evidenced by the cross-

validation log likelihoods and CVIC in Supp. Figure 1. The three-subtype model was 

underpowered with several of the different subtype stages only having a single individual 

assigned. Despite these caveats, further analysis of the three-subtype model showed that adding 

a third subtype allowed differentiation of PSP from CBD pathology, albeit at a loss of 

specificity for AD pathology. Given the availability of sensitive and specific AD biomarkers, 

this may allow for identification of these cases that do not map to the most “AD-like” subtype, 

thus enriching the other subtypes for 4RT pathology. PSP pathology was still strongly assigned 

to the Subcortical subtype (83.3% of cases), though 75% of CBD cases were now assigned to 

the new Fronto-parietal subtype. Neither CBS or PSP pathology were assigned to the Parieto-

occipital subtype, which had a very similar sequence of atrophy to the Fronto-parieto-occipital 

subtype from the two-subtype model. 68% of AD pathology was assigned to this Parieto-

occipital subtype, with 23% assigned to the new Fronto-parietal subtype. The sequence of 

atrophy on the Fronto-parietal subtype demonstrates earliest involvement of the posterior 

frontal cortex and the basal ganglia with early involvement of the parietal and insula, which is 

consistent with imaging in autopsy confirmed CBD cases5,12,13. Interestingly this subtype also 

showed later involvement of the temporal cortex compared to the Parieto-occipital subtype, 

another feature that has been shown to differentiate CBS-CBD from CBS-AD13. In keeping 

with the Parieto-occipital subtype being more strongly associated with AD pathology, analysis 

of regional volumes at baseline demonstrated that the hippocampal and temporal (as well as 

parietal and occipital) regions were more atrophic compared to the Fronto-parietal subtype at 

presentation. Further support for this is that the MMSE was significantly lower in the Parieto-

occipital subtype (20.1, SD ± 8.8, 𝑡 = -2.3, Bonferroni corrected 𝑝 = 0.02) compared to the 

other subtypes (23.9 SD ± 4.6, 25.3 SD ± 4.9 for the Subcortical and Fronto-parietal subtypes 

respectively). 

When comparing clinical scores between subtypes there was minimal difference; in the two-

subtype model only the Limb-motor PSP rating scale sub-score was different (lower in the 

Subcortical subtype), whilst as mentioned above only the MMSE showed a difference between 

subtypes in the three-subtype model (lowest in the Parieto-occipital subtype). This is consistent 

with the lack of clinical difference between the different pathology groups at baseline, and in 
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previous studies comparing CBD with CBS-AD8,12 and other CBS related pathologies13. 

However the association of these pathologies with different imaging subtypes that have 

different spatiotemporal patterns of atrophy (as identified by the model) could, at least in theory 

give rise to phenotypic differences. The lack of distinctive clinical features according to 

underlying pathologies in CBS could previously have been attributed to similar spatial patterns 

of underlying pathology (whatever that pathology may be). However, as shown by Figures 1 

and 2, the pathologies are associated with different SuStain subtypes and thereby different 

distributions of disease burden. The lack of clinical differences might therefore reflect 

insufficient power, asymmetry of disease, or insensitivity of the current clinical ratings scales 

to the discriminating features. 

Overall, the trained SuStaIn models showed strong subtyping and staging capabilities. In the 

two-subtype model, assignments were longitudinally consistent at 101 out of 103 (98%) of 

follow-up visits. The two individuals who changed from the Fronto-parietal-occipital subtype 

to Subcortical at follow-up were only weakly assigned at baseline (0.43 and 0.58). From a 

staging perspective, individuals consistently moved to higher stages over time in both subtypes, 

with no cases dropping to a lower stage at follow-up scan. As expected, in the three-subtype 

model the subtypes were slightly less stable, which likely reflects the increased uncertainty in 

assignment due to lower sample sizes in each cohort.  

An important limitation of this study is that, although we built a large imaging cohort from the 

perspective of CBS (135 cases with 113 follow-up visits), this is still small for a SuStaIn 

analysis. We decided to combine regions from the right and left hemispheres to try and reduce 

the number of features included in the model and so maximise power to detect subtypes with 

the available sample size. It is known that CBS-CBD, in particular, is characterised by 

asymmetric atrophy, at least later in the disease course13,42, although this is not universal, and 

a lack of asymmetry does not exclude an diagnosis of underlying CBD pathology43. By 

combining the right and left cortical regions we are likely to have reduced the sensitivity for 

detecting a “CBD” like subtype in particular, as the effect size for a given region affected by 

CBD pathology would be diluted by the less severe atrophy in the contralateral hemisphere.  

A related, but separate issue is the lack of pathology or amyloid biomarker data for 74 of the 

cases (categorised as CBS-IDT). Although the focus of this study was to identify CBS imaging 

subtypes and stages a priori, we wanted to test post-hoc the assignment of the different 

pathologies to the these identified subtypes to test the hypothesis that joint modelling of disease 

stage and subtype would provide additional information on underlying pathology. The 
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difficulty of interpreting these results is compounded by the fact that we had no data on TDP-

43 pathology, which is known to account for ~15% of cases of CBS43. It is an interesting 

observation that of the 12 cases that were normal appearing at baseline, nine were CBS-IDT. 

One might speculate that given all of the cases with known 4RT pathology were subtypable 

that these un-subtypable cases could have a different underlying pathology such as TDP-43, or 

indeed multiple co-pathologies. A good test of the pathology association with subtype will be 

testing whether those that come to post-mortem in the future match the expected pathology 

based on their subtype assignment. 

In conclusion, in this study we provide data-driven evidence for the existence of at least two 

distinct and longitudinally stable spatiotemporal subtypes of atrophy in clinically diagnosed 

CBS, by jointly modelling disease stage and subtype using cross-sectional structural MRI. 

Underlying CBS pathology is differentially associated with these subtypes giving insights into 

the relationship between pathology and the topographical distribution of atrophy. In addition, 

our model provides an intrinsic staging and subtyping mechanism by which individual patients 

can be more accurately stratified according to disease stage within each subtype. In the absence 

of sensitive and specific biomarkers for the range of different pathologies in CBS, being able 

to accurately subtype and stage CBS patients at baseline has important implications for 

screening patients on entry into clinical trials, as well as for tracking disease progression. 
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Supplementary Materials 

Methods 

Z-scoring of data 

Covariate adjusted regional volumes for these 19 ROIs were converted into z scores relative to 

the control group by subtracting the mean of the control group from each patient’s ROI volume 

and dividing by the standard deviation of the control group. Given regional brain volumes 

decrease with disease progression, the z scores become negative as the disease progresses; we 

therefore multiplied the z scores by -1, to give positive z scores that increase with disease 

progression. This z scored data was then used as input to SuStaIn. 

Subtype and Stage Inference 

In summary, each subtypes’ progression pattern is described using a piecewise linear z score 

model, expressing a trajectory with a series of stages, that each correspond to a single 

biomarker (regional brain volume in this case) reaching a new z score. The number of SuStaIn 

stages is determined by the number of biomarkers (the product of the number of ROIs and 

number of z score thresholds per ROI) provided as input. SuStaIn optimises both the subtype 

membership and the ordering in which different biomarkers reach different z-scores in each 

subtype (for example one, two or three standard deviations away from the control mean for that 

ROI) using a data likelihood function. 

We fitted the SuStaIn model on the baseline imaging data for CBS cases; model uncertainty 

was estimated using 100,000 Markov Chain Monte Carlo (MCMC) iterations and in the single-

cluster expectation maximisation procedure the single-cluster sequence was optimised from 24 

different random starting sequences to find the maximum likelihood solution. Supp. Table 3 

provides a summary of the Z-score settings, MCMC iterations and number of random starting 

sequences used for the SuStaIn algorithm The optimal number of subtypes was determined 

using information criteria calculated through ten-fold cross-validation (cross-validation 

information criteria; CVIC), to balance internal model accuracy with model complexity. In 

cases where the evidence for a more complex model (more subtypes) was not strong (defined 

as per Young et al.22 as a difference of less than 6 between CVIC and the minimum CVIC 

across models, or equivalently a difference of less than 3 between the out-of-sample log-
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likelihood and the minimum out-of-sample log-likelihood across models), we selected the less 

complex model (fewer subtypes) to avoid overfitting1. 

Software - Packages and Functions 

Logistic regression models were fit to the data using the lm() function, while t tests were 

performed using the t.test() function: both from the R stats package (version 3.6.2). Chi square 

tests were performed using the CrossTable() function from gmodels package (version 

2.18.1.1). Linear mixed effect models were fit using the data using the lme4 package2 (version 

1.1-34). Post hoc pairwise comparisons for CBS pathology vs SuStaIn subtype were carried 

out using the chisq.multicomp() function from the RVAideMemoire R package version 

0.9.83.7). 
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Supplementary Figures 

 

Supplementary Figure 1 - Selecting optimal SuStaIn subtype model given data. The plots on the left of the 
figure show the test set log-likelihood across ten cross validation folds for (A) the two-subtype model and (B) the 
three-subtype model. The plots on the right show the cross-validation information criterion (CVIC) for each of 
the models as detailed above. The fact that the test set log-likelihoods drop and the CVIC increased with the 
addition of a third subtype (B) suggests that the two-subtype model is the most parsimonious and best for the data. 
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Supplementary Figure 2 – Positional variance diagrams for SuStaIn subtypes in the 2-subtype model. These 
represent the uncertainty in the subtype progression patterns for each region. Each region (y-axis) is shaded based 
on the probability a particular z score is reached at a particular SuStaIn stage (x-axis). Z scores range from zero 
(white), one (red), two (pink) to three (blue) as shown in the bar on the right hand side of figure. 
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Supplementary Figure 3 – Stage distribution by Subtype for the 2-subtype model. 
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Supplementary Figure 4 – Positional variance diagrams for SuStaIn subtypes in the 3-subtype model. These 
represent the uncertainty in the subtype progression patterns for each region. Each region (y-axis) is shaded based 
on the probability a particular z score is reached at a particular SuStaIn stage (x-axis). Z scores range from zero 
(white), one (red), two (pink) to three (blue) as shown in the bar on the right hand side of figure. 
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Supplementary Figure 5 – Stage distribution by Subtype for the 3-subtype model. 
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Tables 

Supplementary Table 1 - GIF subregions included in each cortical and cerebellar region used as SuStaIn 
input. 

Regions included in SuStaIn GIF Subregions 

Frontal Anterior 

Frontal operculum, central operculum, frontal pole, 
gyrus rectus, middle frontal cortex, subcallosal area, 
superior frontal gyrus medial segment, superior 
frontal gyrus, middle frontal gyrus, opercular part of 
the inferior frontal gyrus, orbital part of the inferior 
frontal gyrus, triangular part of the inferior frontal 
gyrus, anterior orbital gyrus, medial orbital gyrus, 
lateral orbital gyrus, posterior orbital gyrus 

Frontal Posterior Precentral gyrus, precentral gyrus medial segment, 
supplementary motor cortex 

Temporal 

Entorhinal area, fusiform gyrus, parahippocampal 
gyrus, inferior temporal gyrus, middle temporal gyrus, 
superior temporal gyrus,  temporal pole, planum 
polare, planum temporale, transverse temporal gyrus 

Parietal 
Precuenus, parietal operculum, supramarginal gyrus, 
superior parietal lobule, angular gyrus, postcentral 
gyrus, postcentral gyrus medial segment 

Occipital 
Cuneus, calcarine cortex, lingual gyrus, occipital 
fusiform gyrus, superior occipital gyrus, inferior 
occipital gyrus, middle occipital gyrus, occipital pole 

Insula Anterior insula, posterior insula 
Amygdala Amygdala 
Corpus Callosum Corpus Callosum 
Medulla Medulla 
Pons Pons 
Superior Cerebellar Peduncles Superior cerebellar peduncles 
Midbrain Midbrain 

Ventral Diencephalon 
Ventral Diencephalon (GIF segmentation includes 
subthalamic nucleus, substantia nigra and 
hypothalamus) 

Thalamus Thalamus 
Caudate Caudate 
Globus Pallidus Globus Pallidus 
Putamen Putamen 

Cerebellar Cortex Lobules I/IV, V, VI, VIIA-Crus I, VIIA-Crus II, VIIB, 
VIIIA, VIIB, IX, X 

Dentate Dentate nucleus 
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Supplementary Table 2 - Effect size (Cohen's 𝒅) by region of interest. 

Region of Interest Cohen’s 𝒅 
Putamen 1.62 
Frontal Posterior 1.49 

Midbrain 1.44 
Thalamus 1.43 

Parietal 1.37 
Insula 1.36 
Globus pallidus 1.22 

Pons 1.13 
Amygdala 1.07 
Ventral DC 1.06 

SCP 1.05 
Temporal 0.90 

Occipital 0.89 
Frontal Anterior 0.88 
Caudate 0.85 

Dentate 0.78 
Corpus callosum 0.73 
Medulla 0.72 

Cerebellar cortex 0.66 
NA 0.59a 

Basal forebrain 0.59a 
Cingulate 0.50a 
Vermis 0.49a 

Hippocampus 0.45a 

Cohen’s 𝑑 calculated as the standardised mean difference between adjusted the regional volume of that that region of interest 
(ROI) in cases vs controls. a a threshold of greater than or equal to 0.6 was used to select ROI as input for SuStaIn algorithm 
resulting in 19 biomarkers being included in model. Abbreviations: DC = diencephalon, SCP = superior cerebellar peduncles, 
NA = nucleus accumbens 
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Supplementary Table 3 - SuStaIn algorithm settings for each biomarker 

Biomarker R 𝒁𝒎𝒂𝒙 

Frontal Anterior 2 5 

Frontal Posterior 3 5 

Temporal 2 5 

Parietal 3 6 

Occipital 2 5 

Insula 2 5 

Amygdala 2 4 

Corpus Callosum 1 3 

Medulla 2 4 

Pons 2 4 

SCP 2 4 

Midbrain 3 6 

Ventral DC 3 5 

Thalamus 2 5 

Caudate 1 4 

GP 2 4 

Putamen 3 5 

Cerebellar cortex 1 3 

Dentate 2 4 

R is the number of z-scores included for biomarker 𝑖, and 𝑍!"# is maximum z-score modelled for biomarker 𝑖. Total number 
of biomarkers (𝑖) for model = 40. Cmax (the maximum number of subtypes fitted) = 3. Model uncertainty was estimated using 
100,000 Markov Chain Monte Carlo (MCMC) iterations. In the single-cluster expectation maximisation procedure the single-
cluster sequence was optimised from 24 different random starting sequences to find the maximum likelihood solution. 
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Supplementary Table 4 - Longitudinal consistency of subtype assignments for two-subtype model. 

 Classification follow-up visit 

Classification previous visit Normal appearinga Subcortical subtype Fronto-parieto-occipital subtype 

Normal appearinga 10 (91%) 0 (0%) 1 (9%)b 

Subcortical subtype 0 (0%) 36 (100%)b 0 (0%) 

Fronto-parieto-occipital subtype 0 (0%) 2 (3%) 64 (97%)b 

a Normal appearing = not subtypable (Stage 0). Note that this only includes 11 individuals that were not subtypable at baseline and had a follow-up scan. An observation is longitudinally consistent 
(b) if individuals remain in the same group or progress from the normal-appearing group to a SuStaIn subtype at follow-up visit. Entries indicate the number of visits n, with the % of the total 
individuals in classification at previous visit in classification at follow-up in brackets. Longitudinally consistent observations highlighted in bold. 

 

 

Supplementary Table 5 - Longitudinal consistency of subtype assignments for three subtype model 

 Classification follow-up visit 

Classification previous visit Normal appearinga Subcortical subtype Fronto-parietal subtype Parieto-occipital subtype 

Normal appearinga 10 (91%) 0 (0%) 0 (0%) 1 (9%)b 

Subcortical subtype 0 (0%) 21 (80%)b 5 (20%) 0 (0%) 
Fronto-parietal subtype 0 (0%) 0 (0%) 53 (96%)b 2 (4%) 

Parieto-occipital subtype 0 (0%) 0 (0%) 0 (0%) 21 (100%)b 
a Normal appearing = not subtypable (Stage 0). Note that this only includes 11 individuals that were not subtypable at baseline and had a follow-up scan. An observation is longitudinally consistent 
(b) if individuals remain in the same group or progress from the normal-appearing group toa SuStaIn subtype at follow-up. Entries indicate the number of visits n, with the % of the total individuals 
in classification at previous visit in classification at follow-up in brackets. Longitudinally consistent observations highlighted in bold. 
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Supplementary Table 6 - Regional brain volumes by subtype in the two-subtype model 

Region Subcortical Fronto-parieto-occipital 𝒑 value 

Frontal Anterior 128935 (13578) 126452 (16259) 0.36 

Frontal Posterior 34150 (4371) 32601 (4930) 0.07 

Temporal 117607 (10436) 109989 (13026) 4.6 x 10-4a 

Parietal 85183 (9049) 76286 (10901) 2.5 x 10-6a 

Occipital 68530 (7469) 63927 (8536) 0.02 

Cingulate 26734 (2915) 26268 (3409) 0.41 

Insula 9525 (1255) 9193 (1316) 0.16 

Amygdala 3301 (339) 3114 (372) 4.3 x 10-3a 

Corpus callosum 18084 (2796) 17992 (2673) 0.85 

Medulla 4597 (646) 4809 (590) 0.06 

Pons 12703 (1634) 13984 (1600) 2.7 x 10-5a 

SCP 196 (45) 230 (47) 5.4 x 10-5a 

Midbrain 5172 (759) 5778 (703) 1.3 x 10-5a 

Ventral DC 7837 (857) 8438 (973) 3.9 x 10-4a 

Thalamus 9727 (1002) 10110 (926) 0.03 

Caudate 6248 (821) 6177 (901) 0.65 

GP 3367 (349) 3383 (373) 0.81 

Putamen 7759 (726) 7557 (811) 0.15 

Cerebellar_cortex 86575 (8384) 88222 (8993) 0.30 

Dentate 2699 (376) 3023 (399) 9.4 x 10-6a 

Hippocampus 7361 (768) 7187 (662) 0.19 

Vermis 4359 (532) 4418 (491) 0.52 

NA 1051 (111) 1042 (126) 0.68 

Basal forebrain 982 (98) 975 (106) 0.73 

Values are mean volume (mm3) for that brain region (SD). Two-tailed, unpaired 𝑡 tests performed. astatistically significant at 
p < 0.05, corrected for multiple comparisons (Bonferroni). Abbreviations: SCP = superior cerebellar peduncles, DC = 
diencephalon, GP = globus pallidus, NA = nucleus accumbens
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Supplementary Table 7  - Regional brain volumes by subtype in the three-subtype model 

Region Subcortical Fronto-parietal Parieto-occipital 𝒑 value 
Frontal Anterior 131521 (11495) 124941 (14110) 127361 (20123) 0.12 

Frontal Posterior 34650 (4185) 32087 (3831) 33841 (6407) 0.03 

Temporal 119008 (9222) 112067 (10712) 108583 (16717) 1.6 x 10-3a 

Parietal 87136 (7631) 79395 (8404) 72733 (13935) 1.4 x 10-7a 

Occipital 69087 (7654) 66254 (7431) 61235 (9222) 5.8 x 10-4a 

Cingulate 27080 (2484) 26101 (3154) 26437 (4053) 0.35 

Insula 9807 (1109) 9129 (1192) 9136 (1594) 0.03 

Amygdala 3358 (272) 3112 (337) 3156 (474) 4.4 x 10-3a 

Corpus callosum 18127 (2414) 17642 (2575) 18774 (3287) 0.20 

Medulla 4507 (644) 4794 (616) 4820 (570) 0.051 

Pons 12513 (1471) 13700 (1834) 13985 (1435) 4.3 x 10-4a 

SCP 182 (40) 225 (47) 237 (43) 1.2 x 10-6a 

Midbrain 5074 (756) 5596 (720) 5894 (722) 1.4 x 10-5a 

Ventral DC 7738 (845) 8116 (852) 8843 (1010) 1.1 x 10-5a 

Thalamus 9686 (932) 9900 (979) 10342 (950) 0.02 

Caudate 6244 (740) 6123 (862) 6337 (1031) 0.56 

GP 3414 (323) 3292 (352) 3491 (403) 0.043 

Putamen 7893 (681) 7449 (722) 7723 (926) 0.020 

Cerebellar cortex 86043 (7531) 86829 (9419) 90988 (8156) 0.05 

Dentate 2652 (416) 2893 (355) 3142 (397) 6.8 x 10-6a 

Vermis 4378 (500) 4330 (543) 4540 (439) 0.20 

Hippocampus 7579 (686) 7186 (728) 7003 (597) 2.3 x 10-3a 

NA 1068 (99) 1016 (116) 1076 (141) 0.04 

Basal forebrain 981 (93) 978 (93) 979 (132) 0.99 

Values are mean volume (mm3) for that brain region (SD). Group comparisons were performed using a linear model for 
continuous variables (continuous variable ~ SuStaIn subtype). astatistically significant at p < 0.05, corrected for multiple 
comparisons (Bonferroni). Abbreviations: SCP = superior cerebellar peduncles, DC = diencephalon, GP = globus pallidus, 
NA = nucleus accumbens
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