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Abstract 19 
Ebola virus disease outbreaks can often be controlled, but require rapid response efforts 20 
frequently with profound operational complexities. Mathematical models can be used to 21 
support response planning, but it is unclear if models improve the prior understanding of 22 
experts. 23 
 24 
We performed repeated surveys of Ebola response experts during an outbreak. From each 25 
expert we elicited the probability of cases exceeding four thresholds between two and 20 cases 26 
in a set of small geographical areas in the following calendar month. We compared the 27 
predictive performance of these forecasts to those of two mathematical models with different 28 
spatial interaction components. 29 
 30 
An ensemble combining the forecasts of all experts performed similarly to the two models. 31 
Experts showed stronger bias than models forecasting two-case threshold exceedance. Experts 32 
and models both performed better when predicting exceedance of higher thresholds. The 33 
models also tended to be better at risk-ranking areas than experts. 34 
 35 
Our results support the use of models in outbreak contexts, offering a convenient and scalable 36 
route to a quantified situational awareness, which can provide confidence in or to call into 37 
question existing advice of experts. There could be value in combining expert opinion and 38 
modelled forecasts to support the response to future outbreaks. 39 
  40 
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Background 41 
Following the initial emergence in 1976 in Zaire (now the Democratic Republic of the Congo, 42 
DRC)[1],  epidemics of Ebola Virus Disease (EVD) have occurred, on average, every 12 - 24 43 
months[2]. EVD is a viral haemorrhagic fever first caused by the Ebola Zaire virus (EZV), with a 44 
case fatality rate of 25-90%[3]. A major outbreak in North-Eastern provinces of DRC between 45 
2018-2020 resulted in over 3300 reported cases and over 2100 deaths [4](Figure 1).  46 
 47 

 48 
Figure 1. The extent of the 2018-2020 ebola outbreak in north-eastern DRC and areas included in our study. A) 49 
Daily incidence in north-eastern DRC between August 2018 and March 2020. Grey points show days prior to the 50 
study period, coloured points show days within the study period (November 2019 - March 2020), hue indicates 51 
month. B) Shows the total number of cases of ebola recorded in each Health Zone.  C) Number of cases in each 52 
month and health zone during the period covered by this study, health zones outlined in red show all health zones 53 
affected by the entire epidemic. 54 
 55 
Transmission of EZV occurs mainly through direct contact during the symptomatic phase of 56 
infection; therefore, isolation of infected individuals with strict infection control, contact 57 
tracing, and safe burials have been key to controlling past EVD outbreaks[5], although setting 58 
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specific challenges can hamper containment efforts [6]. More recently, vaccination has also 59 
become a tool for outbreak control, with two vaccines now licensed for use[7][8]. 60 
 61 
EVD outbreaks typically occur in resource-poor settings where limited communication and poor 62 
accessibility make logistics of surveillance and vaccination campaigns challenging. 63 
Understanding the spatial risk of future spread is therefore useful to allow response teams to 64 
focus efforts on high-risk areas. Mathematical and statistical models have been used 65 
extensively to forecast the spread of infectious diseases, including EVD[9]. Such models rely on 66 
a combination of statistical inference based on epidemiological data and information about the 67 
mechanisms underlying the dynamics of infection. However, the dynamics of EVD are 68 
frequently governed by changing contextual factors which are challenging to forecast 69 
quantitatively. For example, violent conflicts or flooding can seriously hinder, interrupt, or even 70 
reverse the impact of containment efforts  [6,10]. Moreover, changes in healthcare capacity 71 
and health seeking behaviour of patients can strengthen or weaken efforts to reduce 72 
transmission [11]. The timing and impact of these factors is notoriously difficult to predict using 73 
mathematical models.  74 
 75 
Models are used by epidemic response experts to support decision making in the field. In 76 
addition to models, experts also make judgments as to the future spread of the virus based on 77 
their interpretation of the current status of the outbreak combined with their knowledge of 78 
other less tangible factors such as the geography, climate (eg. seasonal variation in accessibility 79 
of particular areas) and soft intelligence about the escalation of conflict in areas which may as a 80 
result, be harder to access by response teams. There are clear costs and benefits to human-81 
made and modelled-based forecasts. Whereas models are objectively based on observations of 82 
the past outbreak dynamics and current case data, experts have additional knowledge of the 83 
complex factors surrounding the outbreak response. It is therefore difficult to assess the impact 84 
mathematical models have on decision making, how much modelled forecasts differ from those 85 
made by experts in the field and whether either modelled or human forecasts are 86 
systematically more accurate or useful. Moreover, the knowledge of experts in the field of EVD 87 
epidemiology, with a good understanding of the geographical area of study may provide an 88 
invaluable resource that is currently underused in forecasting.  89 
 90 
Previous studies have aimed to establish the relative performance of humans and models in 91 
predicting infectious disease spread in human populations, particularly in the context of acute 92 
respiratory infections such as Influenza and SARS-CoV-2. Three studies have evaluated the 93 
predictions of humans against models, explicitly. The first of these evaluated short-term 94 
forecasts and season-wide predictions of reports of influenza-like-illness (ILI) in the United 95 
States of America (USA) [12] and two studies [13,14] compared short-term forecasts of cases of 96 
and deaths from COVID-19, firstly in Germany and Poland and secondly in the United Kingdom 97 
(UK). All three studies found that humans tended to perform better than the mathematical and 98 
statistical models selected for comparison when predicting cases. However, the COVID-99 
focussed studies found the human ensembles performed worse than the ensemble prediction 100 
of the models when predicting deaths - These results were maintained when only self-declared 101 
‘experts’ were included in the forecasts. A number of other studies recorded expert predictions 102 
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without comparison to mathematical models. A study conducted early in the COVID-19 103 
pandemic [15] evaluated the relative ability of laypeople and experts to predict the course of 104 
the UK epidemic over the first calendar year. The study found that both experts and laypeople 105 
typically under-predicted the impact overall, however experts’ forecasts were more accurate 106 
and better calibrated than laypeople. A study of expert predictions in the United States of 107 
America [16] evaluated their weekly forecasts of case incidence and total deaths in the first 108 
year against a pooled ensemble of all predictions. The study found that the ensemble 109 
outperformed every expert individually over the period of the study. A similar study surveyed 110 
experts regarding the total number of cases and deaths from MPox in the USA during 2022 [17], 111 
however these predictions are yet to be evaluated. Overall, these studies provide evidence that 112 
human predictions can play a valuable role in epidemiological prediction, providing a 113 
comparator and complementary method to mathematical and statistical modelling. 114 
 115 
In this paper we extend the use of expert forecasters to predict spatial risk of transmission in 116 
the context of a local outbreak. We made monthly forecasts of the geographic spread of Ebola 117 
Virus Disease (EVD) from November 2019 to March 2020 during the declining phase of the 118 
2018-2020 outbreak in the Democratic Republic of the Congo (DRC) using both expert 119 
predictions collected through regular interviews and with two spatially explicit computational 120 
transmission models with different spatial interaction assumptions: a gravity model and an 121 
adjacency model (where transmission can only occur between contiguous regions), see the 122 
methods section for details. Alongside supporting situational awareness, these forecasts were 123 
motivated by an aim to inform site selection for a planned vaccine trial. The objective was to 124 
identify areas that had seen no cases yet and thus were not already being supported by 125 
vaccination and other interventions, but were at high risk of still becoming affected by the EVD 126 
outbreak, thus allowing estimation of efficacy [18]. Here we evaluate the performance of the 127 
forecasts and select ensembles of the methods in predicting continued transmission and flare-128 
ups of EVD in health zones (HZs) close to the affected area. We further study variation in 129 
forecast quality against a selection of factors related to local demography, case history and 130 
forecast implementation.   131 
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Methods 132 
 133 
Expert elicitation 134 
Experts in EVD epidemiology with knowledge of the local geography speaking English or French 135 
were identified originally by convenience sampling. The pool of experts was then expanded 136 
through recommendation from the identified experts (snowball sampling). This approach was 137 
best suited to capture the expertise of individuals who were most often temporarily based in 138 
the field.  139 
 140 
A pilot study was carried out in November 2019. Subsequently, monthly interviews were held 141 
over WhatsApp in December 2019, January 2020, February 2020, and March 2020. All 142 
interviews were scripted. The main biases of this type of study (availability bias, 143 
representativeness bias, overconfidence, motivational bias, anchoring on past estimates) were 144 
briefly discussed during the first interview.  145 
 146 
Experts also were provided with an interactive map of the outbreak area and surrounding 147 
health zones (HZ) showing the number of total cases during the outbreak and during the two 148 
preceding weeks for reference (supplementary figure S1). HZ were numbered to facilitate 149 
communication with the experts.  150 
 151 
Experts were asked to estimate the number of reported probable and confirmed cases they 152 
would expect per HZ during the following month using the online MATCH Uncertainty 153 
Elicitation Tool [19] (supplementary figure S1). Through this platform, the experts and the 154 
researcher (AR) interacted in real time. The “roulette” (chips and bins) method was used. 155 
Experts were instructed to place a total of 20 chips over the available bins (0-1 cases, 2-4 cases, 156 
…, 48-50 cases). Therefore, each chip represented for the expert a 5% probability that the 157 
number of cases was in the bin where the chip was placed.  This process aimed to capture the 158 
uncertainty surrounding the expert’s estimates.  159 
 160 
The experts were asked to estimate the number of reported cases they would expect in the HZ 161 
where there had been 1 or more cases in the 2 preceding weeks, as well as Goma (Figure 2). 162 
The experts were then asked to identify any additional HZ where they would predict 1 or more 163 
cases during the following month with >5% probability, and to also estimate the number of 164 
reported cases they would expect in these HZ. In the pilot study, carried out in October 2019, 165 
experts were asked to forecast the number of cases they expected during November 2019 in 10 166 
HZs: Beni, Goma, Kalunguta, Katwa, Lolwa, Mabalako, Mambasa, Mandima, Nyankunde, and 167 
Oicha.  168 
 169 
 170 
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 171 
Figure 2. Health zones included in the model and Expert Elicitation survey. A shows the provinces around the 172 
affected area, and included in the transmission model, the red box shows the area detailed in panel B. B shows the 173 
health zones included at least once in the Expert Elicitation survey we conducted.  174 
 175 
Ethics 176 
 177 
LSHTM ethics approval was obtained for this study (reference: 17633). Signed informed consent 178 
was taken from experts willing to participate and their verbal consent was requested again at 179 
the beginning of each elicitation.  180 
 181 
Modelling framework 182 
 183 
In parallel with the expert elicitation programme, we developed a modelling framework to 184 
forecast spatial risk of infection. In the framework, incidence of cases is forecast in each Health 185 
Zone based on historical case reports. The model was formed of two components, the 186 
autoregressive component, and the spatial component.  187 
 188 

 189 
 190 
The auto-regressive component modelled the rate of infections in a particular health zone i, on 191 
day t, to be proportional to the number of cases in the same health zone (i) between dates t-192 
(D+L) and t-D, where L is the estimated latent period and D is the estimated infectious period. 193 
The spatial component accounts for transmission between health zones, where rate of 194 
infection was proportional to the cases in each other Health Zone (i.e. ∀j j≠i) and moderated by 195 
a pairwise specific factor defined by a spatial kernel  We used two spatial kernels, both of 196 
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which use proximity of health zones to each other and their respective population size,  and 197 
. Firstly, the gravity model which treats interaction in an analogous way to Newtonian gravity 198 

with population size in place of mass, such that interaction reduces distance, d, raised to a 199 
power, k.  200 
 201 

 202 
 203 
Secondly, we applied a model with adjacency-based interaction. In this model only adjacent HZs 204 
can interact. The strength of interaction between HZs is proportional to the product of their 205 
population sizes.  206 
 207 

 208 
 209 

 210 
 211 
Cases were modelled as Poisson distributed such that:  212 
 213 

 214 
 215 
To forecast cases, we fitted the spatiotemporal model to historical data from the 60 days prior 216 
to the date the forecast was made, accounting for cases in health zones in seven regions (169 217 
HZs) centred on the location of the epidemic; Nord-Kivu, Ituri, Tshopo, Maniema, Sud-Kivu, 218 
Haut-Uele, Bas-Uele. We fit the model using the No U-Turn Sampling (NUTS) method for 219 
Hamiltonian Monte Carlo with Stan [20], a probabilistic programming framework. We 220 
estimated   and , which vary the contribution of within-health-zone and between-health-221 
zone transmission. We also estimated k, which determines how rapidly transmission rate 222 
decays with distance in the spatial component of the model. We sampled parameters from the 223 
resultant joint posterior distribution to simulate daily incidence in all HZs in the seven regions, 224 
up to and including the last day of the following month. We performed 1000 iterations for each 225 
forecast date. We then extracted the full distribution of the number of cases incident within the 226 
calendar month of interest. Forecasts were made using data up to the last day of the month 227 
prior to the forecast period. 228 
 229 
 230 
Quantification of risk and forecast evaluation 231 
To compare the model and the expert forecasts and score them according to the eventual true 232 
number of cases we calculated the probability attributed to cases over four thresholds, >=2, 233 
>=6, >=10 and >=20 cases.  234 
 235 
We evaluated the forecasts using the Brier Score, a proper scoring rule which quantifies how 236 
accurate a forecast or a group of forecasts are when compared to true data after the event. The 237 
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Brier score, BS,  is defined as the square of the difference between the probability of observing 238 
an event and the observation  status, which takes a value 1 or 0 for cases observed and none 239 
observed respectively. We calculated this for multiple (N) forecasts by taking the mean of the 240 
individual forecast scores.  241 
 242 

 243 
 244 
We also quantified the general bias and calibration of the forecasts by considering the hazard 245 
rate predicted by each forecast, which we calculated as the sum of probabilities attributed to 246 
exceeding each threshold. This gives the number of HZs the forecast ‘expected’ to cross the 247 
threshold in each month. To quantify the bias of each set of predictions, we took the difference 248 
between the hazard rate and the actual number of HZs that exceeded each threshold in each 249 
month. We refer to this as the hazard gap (HG).  250 
 251 
 252 

 253 
 254 
 255 
  256 
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Results 257 
Expert panel and health zones included in survey  258 
Over the study period, we conducted a total of 40 interviews with 15 experts, three of which 259 
took place during the pilot phase (November 2019).  Figure 3 shows the timeline of the expert 260 
elicitations. 261 
 262 

 263 
Figure 3. Timeline of the expert elicitation. Each point shows the date of the interview of the expert labelled to 264 
obtain forecasts for the following month. Colour indicates the month for which the forecast was made, the 265 
forecast windows are highlighted with a shaded band of the same colour. 266 
 267 
Eight experts worked at the World Health Organization, four at the London School of Hygiene & 268 
Tropical Medicine, two for Médecins Sans Frontières, and one at the DRC Ministry of Health. 269 
Most experts (10/15) had more than five years of experience working in infectious disease 270 
epidemiology. About half of the interviews (21 of 40) were conducted with experts that were in 271 
the outbreak area (defined HZs affected by EVD or Goma, the site of the international response 272 
base) or had been there within 2 weeks of the interview. Four experts had never been in the 273 
outbreak area. 274 
 275 
 276 
 277 
 278 
 279 
 280 
Table 1: Experts and health zones included in each round of the survey 281 
 282 
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Month 
forecasted 

Experts interviewed 
(Highlighted) 

Health zones in 
interview (HZs) 

No. 
experts 

HZ nominated 

December   1 2 3   Beni   7  Oicha 
    4 5 6   Goma   5  Komanda 
    7 8 9   Kalunguta   2  Butembo  
    10 11 12   Mabalako   2  Katwa 
    13 14     Mambasa   1  Lolwa  
            Mandima   1  Makiso - Kisangani 

                1  Nyankunde 
                    

January   1 2 3   Beni   6  Butembo 
    4 5 6   Biena   3  Katwa 
    7 8 9   Goma   1  Kalunguta 
    10 11 12   Mabalako   1  Mangurerdjipa 
    13 14     Mandima       
            Oicha       
                    

February   1 2 3   Beni   6  Oicha 
    4 5 6   Bunia   4  Biena 
    7 8 9   Butembo   2  Vuhovi 
    10 11 12   Goma   1  Lolwa 
    13 14     Kalunguta       
            Katwa       
            Kayna       
            Mabalako       
            Mambasa       
            Mandima       
            Musienene       
                    

March   1 2 3   Beni   3  Mabalako 
    4 5 6   Butembo       
    7 8 9   Goma       
    10 11 12   Mandima       
    13 14             

 283 
 284 
Eight to ten experts were interviewed each month between December and March where they 285 
were asked to forecast cases in between four and eleven health zones (supplementary figures 286 
S2 - S5).  287 
 288 
In December there were four health zones that reported 2 or more cases, Beni (3), Kalanguta 289 
(5) and Mambasa (4) did not reach the 6 case threshold. Mabalako reported 38 cases, therefore 290 
exceeding all of the thresholds (Figure 4). All experts attributed a greater than 50% chance of 291 
Mabalako exceeding 2 cases in December with a mean of 82%. The experts were collectively 292 
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less confident of it exceeding the higher thresholds, with a number of experts attributing no 293 
probability of crossing these thresholds at all. The experts ranked Beni, which reported 3 cases, 294 
as the second most likely to pass all of the thresholds. They also attributed Mambasa and 295 
Kananguta, which reported 4 and 5 cases respectively, with lower probability (53% and 54%) 296 
than Mandima (72%), where no cases were confirmed in December.  297 
 298 
The experts correctly identified Beni and Mabalako as high risk HZs in January, where there 299 
were 22 and 11 cases reported respectively. However, they generally expected more cases in 300 
Mabalako than Beni, and in fact attributed 0% probability of exceeding 20 cases in Beni (where 301 
the threshold was exceeded) but 11% chance in Mabalako, where the threshold had been 302 
exceeded the previous month - but was not exceeded this month. Similarly to December the 303 
experts expected to see high numbers of cases in Mandima, where no cases were reported in 304 
January. There was near unanimity amongst the experts that cases would arise here, with all 305 
but one expert attributing a probability of at least 90% that 2 or more cases would be reported. 306 
The experts also collectively predicted a probability of at least two cases in Oicha in January but 307 
were more cautious with a mean probability of 63% for crossing the 2 case threshold. Similarly, 308 
for Biena experts gave a mean probability of 60% for exceeding the 2 case threshold. In both 309 
HZs no cases were confirmed in January.  310 
 311 
In February, of the eleven HZs nominated, only Beni reported confirmed cases. Here, 9 cases 312 
were confirmed in total, meaning the 6 case threshold wes passed. Experts collectively assigned 313 
a probability of 70% for this. Seven and five of the ten experts were certain that the 2 case and 314 
6 case thresholds would be crossed in Beni respectively. Collectively, the experts expected 315 
similar case numbers in Mabalako attributing 60% probability of exceeding the 6 case 316 
threshold, however no cases were reported here in February. Notably, cases were reported 317 
here in December and January. Experts also assigned a probability of over 50% for crossing the 318 
2 case threshold for Butembo, Kalunguta, Katwa, Mombasa, Mandima and Musienene. None of 319 
which reported confirmed cases in February. Experts, however, considered Bunia, Kayna and 320 
Goma to be at low risk of having 2 or more cases, with the exception of one expert—who 321 
attributed a probability of 100% to the 2 case threshold in Kayna.   322 
 323 
In March no cases were reported in any HZ. Experts broadly predicted this well with only one 324 
expert assigning a probability of greater than 50% for exceedance of the 2 case threshold. The 325 
HZ with the highest average assigned probability was Beni with a mean probability of 33% of 326 
exceeding the 2 case threshold.  327 
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 328 
Figure 4. Expert elicitation results and accuracy of predictions. Only the HZs that were rated by all experts are 329 
included here. Results are shown as probabilities (vertical axes) that a given health zone (horizontal panels) 330 
exceeds a given threshold (horizontal axes) according to the experts (box plots) or models (square / diamond for 331 
gravity and adjacency models, respectively) across different months (vertical panels). Health zone / month 332 
combinations where the given thresholds were exceeded are marked in cyan, and ones where they weren't in red. 333 
 334 
Performance evaluation 335 
We evaluated the forecasts using the Brier score. The overall scores of individual experts varied 336 
between 0 and 0.6 across the four thresholds. Collectively, the experts scored best at the 337 
highest threshold (20 cases) and worst for forecasts of the lowest threshold (2 cases). The 338 
models also performed better at higher thresholds than low thresholds, but the difference was 339 
less pronounced. Overall, the gravity model ranked best amongst all forecasts at the 2 case 340 
threshold. It also ranked best for this threshold in the month of February and consistently in the 341 
top half of forecasts in December and January, however performed comparatively poorly in 342 
March, ranking higher than only one of the experts. The adjacency model also performed better 343 
than the experts overall for the 2 case threshold.  Related to this, including the models 344 
improved the ensemble forecast. Although the gravity model performed better than the 345 
adjacency model for higher thresholds, together the models performed similarly to the expert 346 
ensemble forecast overall. In January and February the gravity model performed well compared 347 
to the adjacency model and the expert ensemble, however in March both models performed 348 
particularly badly compared to the experts for all thresholds. None of the experts performed 349 
consistently well relative to the others, experts 3 and 10 performed best for the 2 case 350 
threshold, whereas experts 13 and 14 did best for higher thresholds.  351 
 352 
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 353 
 354 
Figure 5. Evaluation of forecasts made by the experts, models, and ensembles. A shows the overall Brier Score for 355 
each expert, model and ensemble (calculated over all forecasts included in the study). In B each panel shows the 356 
Brier score across all health zones for each month (vertical) at each case threshold (Horizontal). Coloured points 357 
show each expert score, the violin plot shows their distribution. The grey hollow points show the model scores, the 358 
yellow points show the ensemble scores (circles show experts alone, squares show models alone and triangles 359 
show experts and models with 50% weight given to each). C Shows the ranking of each expert and model in terms 360 
of forecast performance  361 
 362 
To evaluate how the different forecasts may impact decision making we ranked the health 363 
zones for each month, based on the probability of exceeding each threshold of cases forecast 364 
by each ensemble and by the model alone (supplementary figure S6). In general, the model and 365 
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the ensembles all ranked health zones that did reach the threshold highly. In some cases the 366 
model performed better, ranking health zones that did meet the threshold higher than the 367 
experts, specifically ranking Beni Higher than Mandima in higher thresholds (>=6 and 10 cases) 368 
for the forecast of January, where Beni ultimately had cases and Mandima did not, in that 369 
month. Considering the models separately, the gravity model performed better than the 370 
adjacency model in general, with the adjacency model occasionally performing worse than the 371 
experts when ranking the HZs. This was clearest in the forecasts of November and January.  372 
 373 
Bias and calibration in forecasts 374 
We evaluated the bias in each forecast type by considering the hazard gap between forecasts 375 
and actual cases. We found that experts systematically forecasted higher risk of the lowest 376 
threshold (>=2 cases) than was warranted, but tended to forecast lower risk of exceeding the 377 
highest threshold (>=20 cases) than was borne out across all HZs (Figure 6). When calculated 378 
across all months, this bias was present in 12 of the 15 experts. The models did not show clear 379 
consistent bias in either direction.  380 
 381 

 382 
Figure 6 Bias and calibration of forecasts. Panels show the Hazards gap difference between the Hazard rate 383 
(expected number of exceedances across all health zones) for each threshold attributed by the forecast and the 384 
actual number of Health Zones that exceeded the associated threshold. Each panel shows one forecast (expert or 385 
model) in each month. The bottom row shows the same for each forecast calculated over the entire study period. 386 
 387 
Forecasting flare-ups 388 
In addition to the health zones presented to all experts, each expert was able to nominate 389 
health zones, which they deemed at risk. Experts nominated seven further HZs to forecast in 390 
December, four in January, four in February and one in March (Table 1).  391 
 392 
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Of the seven HZs nominated in December, all except Lolwa had at least one expert attributing 393 
some probability of more than 2 cases. Oicha and Komanda had the most nominations with 394 
seven and five each, and six and four of the ten experts interviewed allotted greater than 5% 395 
chance of 2 or more cases in December. For Oicha, attributed probabilities of observing at least 396 
2 cases ranged between 5% and 95%, for Komanda probabilities of between 30% and 80% were 397 
attributed to crossing the threshold. Neither HZ passed the threshold in November. Experts 4 398 
and 8 both nominated Katwa (both gave 50% chance of 2 or more cases) and Butembo 399 
(attributed probabilities of 45-50%) - the only health zones not included in the survey for 400 
December to have greater than 2 cases. Makiso-Kisangani and Nyankunde) were nominated by 401 
one expert each (expert 4 with 50% and 10 with 35% respectively). Lolwa was nominated by 402 
expert 3, but attributed all probability to less than 2 cases.  403 
 404 
In January all nominations of health zones were accompanied by an attribution at least 5% 405 
probability of exceeding the 2 case threshold. Six of the eight experts interviewed nominated 406 
Butembo (1,2,4,5,9, and 11 with probabilities of 5% to 85% of crossing the 2 case threshold) 407 
three of them also nominated Katwa (2 and 9 giving 85% and 5 giving 5%) and Kalunguta and 408 
Manguredjipa were also nominated by one expert each, 5 with 10% and 11 with 50% 409 
respectively. None of the nominated health zones crossed the threshold in January.  410 
 411 
In February six of the ten experts interviewed (2, 4, 5, 11, 12 and 14) nominated Oicha with 412 
probabilities between 10% and 95% of crossing the 2 case threshold. Four (2, 4, 5 and 11) 413 
nominated Biena with probabilities between 10% and 95% of exceedance. Experts 4 and 8 also 414 
nominated Vuhovi with attributing 55% and 20% probability of threshold exceedance 415 
respectively. Expert 3 nominated Lolwa alone but gave no probability of exceeding 1 case. No 416 
HZs not included in the interview as default crossed the 2 case threshold in February.  417 
 418 
In March three (4, 8 and 11) of the eight experts interviewed gave probabilities of 35%, 50% 419 
and 15% of exceeding the 2-case threshold respectively. No HZs not included in the interview as 420 
default crossed the 2 case threshold in March.  421 
  422 
To compare the model with the experts we included all HZs modelled and attributed all HZs not 423 
nominated by experts an exceedance probability of 0%. To allow comparison, we also set all 424 
HZs given a probability of lower than 5% to 0% for both the gravity and adjacency models. 425 
When considering the Brier Score (Figure 7), we found that the gravity model performed 426 
comparably to some experts when forecasting for December, and February. The adjacency 427 
model performed worse than all the experts in every month except February. In every month 428 
the ensemble of experts did better than the models and including the models in the ensembles 429 
reduced performance.   430 
 431 
 432 
 433 
 434 
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 435 
Figure 7 Evaluation of forecasts made in health zones not included in the main survey.  Each panel (right to left) 436 
shows the Brier score across all health zones for each month. Coloured points show each expert score, density plot 437 
shows their overall distribution. The red points show the model scores, the yellow points show the ensemble 438 
scores (squares show experts alone, crosses show experts and models with 50% weight given to each).  439 
 440 
Discussion 441 
We compared forecasts of the geographic spread of Ebola made by experts, with those made 442 
using a modelling framework. Since the outbreak dynamics of Ebola are highly sensitive to the 443 
changeable context in which they take place, mathematical models and expert opinions are 444 
expected to have different strengths and weaknesses, with models benefiting from objective 445 
inference from previous observations and experts able to utilise detailed knowledge about the 446 
outbreak and the changing surrounding context to make informed projections of risk. By 447 
interviewing experts and asking them to forecast risk in a structured way, we were able to 448 
compare the performance of their forecasts against those made with well-established 449 
modelling approaches in a quantifiable and robust way. 450 
 451 
Overall, the forecasts made by the group of experts as a whole performed similarly to those of 452 
the model, with a few consistent exceptions. The model performed better than the experts 453 
when considering the lowest threshold in four of the five months covered by the survey, but 454 
performance was more comparable for the higher thresholds. The model also performed 455 
marginally better when ranking health zones by risk of ongoing transmission, indicating that use 456 
of a model may improve prioritisation of health zones when attributing resources. 457 
 458 
We found that both methods performed better when considering higher case thresholds. This is 459 
likely to be due to a combination of bias in both forecast types towards under prediction of 460 
cases and the fact that there were few instances where the higher thresholds were reached.  461 
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 462 
Although individual experts frequently out-performed ensembles in individual instances, no 463 
individual expert outperformed the ensembles overall. This supports the practice of considering 464 
predictions from a range of experts over a smaller number of more specialist or experienced 465 
experts. The models tended to perform similarly to the ensemble representing more consistent 466 
performance across all forecasts. 467 
 468 
Experts tended to be more biased than models, especially at low case thresholds with a 469 
tendency to over-predict cases to a greater degree than models. This bias reduced rapidly as 470 
the case threshold increased. This may be interpreted as over cautiousness from the experts 471 
regarding potential for geographic spread of the virus but confidence that transmission could 472 
be contained quickly. This trend reflects a pattern amongst previous introductions into new 473 
health zones earlier in the pandemic, where a small number of cases were reported, but the 474 
local outbreak was quickly stopped (Figure 1).  475 
 476 
To our knowledge, our study is the first to record experts’ assessment of geographical risk at a 477 
local level during an epidemic and the first comparison of outbreak response experts' 478 
predictions to those of models in real-time. Although direct comparison is not possible, our 479 
results lead to conclusions that are broadly similar to those from previous studies [12–14], 480 
however each of these studies found that ensemble expert forecasts performed better than the 481 
comparison models, whereas our study found no clear performance difference. This may 482 
suggest that experts are better at predicting simple time series than geographic distribution of 483 
cases. However, we cannot view these findings independently from the different survey designs 484 
or study contexts.  485 
 486 
There are a number of important limitations to consider when interpreting our results. The 487 
context within which we conducted the study has important implications for interpretation. 488 
Due to the timing and logistics of setting up the questionnaire, the study only began in the 489 
closing phase of the epidemic, whereas the relative performance of experts and models may 490 
differ during different phases of the epidemic. For example, in the early phase where dynamics 491 
are driven more by infectious transmission than established response practices, or during the 492 
peak where changes in intervention strategy may be more influential. The stage of the epidemic 493 
also meant that there was a substantial trend towards ‘negative’ results (i.e. no threshold 494 
exceedance), which is likely to favour some forecasting methods over others.  495 
 496 
Additionally, experts were not all interviewed on the same day and interviews occurred several 497 
days before the beginning of the month they were forecasting. In some cases experts were 498 
interviewed up to 2 weeks prior to the beginning of the month. This means that the information 499 
available differed both between experts and with the model, which was run considering data 500 
up to the first day of each month. This reduces our ability to compare models to experts 501 
directly, however, it could also be argued that this is a ‘built-in’ factor which represents the 502 
inherent challenge of eliciting predictions from experts. In addition, the interview process for 503 
experts was quite taxing and required a phone call - which can cause scheduling challenges 504 
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during an epidemic response. It may be that other methods, with less arduous and more 505 
flexible data entry would improve responses. 506 

 507 
Our analysis represents the comparison of expert forecasts to only two specific forecasting 508 
models. There are a great range of models that could have been applied in this context which 509 
may have differed in performance to those we used. We chose these models for convenience 510 
since we were applying them to the outbreak at the time of the interviews. It is also possible 511 
that some of the experts involved in the study had ingested results from our model, which were 512 
available through our online dashboard, or other models being used at the time.  513 
 514 
Since our findings, like those of similar studies, suggest that models and experts perform 515 
comparably in this context, there is an argument that models have no value in informing expert 516 
decision making. It can be argued, however, that models remain useful in outbreak response. 517 
Firstly, while the models performed similarly to the ensemble forecasts of the experts, there 518 
was no individual expert that performed consistently better than the models. Secondly, models 519 
are much more easily scaled and generalised making them simple to deploy in new contexts 520 
and to adapt as epidemics grow. Expert interviews are time-consuming and often inconvenient, 521 
especially in the context of outbreak response activities, which are characteristically fast paced. 522 
Models therefore offer a more convenient route to a quantified insight, which from our results, 523 
performs comparably to the way groups of experts may think. Finally, there are ways to 524 
combine both methods. For example, in the event that expert forecasts can be garnered, joint 525 
ensembles can capture information from both the expert and modelled forecasts. Further, we 526 
suggest that models can offer a role in aiding decision making by providing confidence in or 527 
calling into question expert advice that is being considered.  528 
 529 
Conclusions 530 
Our analysis evaluated performance of experts and models when forecasting the spatial spread 531 
of Ebola, representing the first such study incorporating local geographic distribution and the 532 
first to focus on an epidemic in a resource poor setting. We found that forecasts made by 533 
experts and models performed comparably overall, but experts tended to be slightly more 534 
biased towards predicting that a small number of cases would persist. The results support the 535 
use of models in outbreak response and provide insight into how models and expert opinion 536 
could be combined when tackling future epidemics.   537 
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