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Abstract—The purpose of this paper is to present a detailed
investigation of the advantages of employing GraphLIME (Local
Interpretable Model Explanations for Graph Neural Networks)
for the trustworthy prediction of diabetes mellitus. Our pursuit
involves identifying the strengths of GraphLIME combined with
the attention-mechanism over the standard coupling of deep
learning neural networks with the original LIME method. The
system build this way, provided us a proficient method for
extracting the most relevant features and applying the atten-
tion mechanism exclusively to those features. We have closely
monitored the performance metrics of the two approaches and
conducted a comparative analysis. Leveraging attention mecha-
nisms, we have achieved an accuracy of 92.6% for the addressed
problem. The model’s performance is meticulously demonstrated
throughout the study, and the results are furthermore evaluated
using the Receiver Operating Characteristic (ROC) curve. By im-
plementing this technique on a dataset of 768 patients diagnosed
with or without diabetes mellitus, we have successfully boosted
the model’s performance by over 18%.

Index Terms—Deep Supervised Learning, Diabetes Dataset,
Explainability, Attention Mechanism, Graph Neural Network

I. INTRODUCTION

In this paper, we explore the potential of advanced machine
learning techniques in the early detection of diabetes. This
chronic metabolic disorder, characterized by high blood sugar
levels, has become a burgeoning health crisis globally. The
escalating prevalence of diabetes underscores the necessity for
innovative diagnostic methodologies. Our focus is on leverag-
ing an attention mechanism within the framework of Graph
Neural Networks (GNNs), enhanced by LIME, to identify
individuals with or without diabetes [1].
Our approach employs an attention mechanism within machine
learning, drawing inspiration from the selective focus aspect
of human cognition. This mechanism enables the model to
dynamically prioritize certain segments of the input data that
are more relevant for accurate diagnosis. As can be seen in
Table I, there are many more advantages that have led us to
choose to use this technique. GNNs are adept at processing
data in graph structures, a common form in medical data
representation. LIME contributes by rendering these complex
models more interpretable [20]. It approximates the GNN
with a simpler, yet effective model, providing transparent and
understandable explanations for each prediction. This aspect
is important in medical diagnostics, as it not only provides
insight into the model’s predictive behavior but also enhances
trust and transparency in its outcomes, essential for healthcare
practitioners. We want to explore the advantages of using our
proposed method for predicting the presence or absence of

diabetes in patients [2]. We have conducted a comprehensive
comparison and analysis of the results obtained both before
and after the implementation of our adapted method to evaluate
the model’s performance. By employing our technique, we
have successfully increased the accuracy of the predictions by
over 18%.

II. RELATED WORK

The paper [4] is centered on developing machine learning
models for diabetes prediction, with a strong emphasis on
the use of explainable AI to improve the predictions’ trust-
worthiness. This research aims to offer a valuable tool for
the early detection of diabetes, vital for effective management
and treatment in healthcare. The method incorporates machine
learning algorithms like decision trees, SVM, Random Forest,
Logistic Regression, KNN, and ensemble techniques. Notably,
the XGBoost classifier emerged as the most effective, comple-
mented by the ADASYN technique to address class imbalance
in medical datasets. The model demonstrated notable accuracy
(81%), an F1 score of 0.81, and an AUC of 0.84, showcasing
its reliability. Interpretability is achieved using LIME and
SHAP, providing clarity on the model’s decision-making pro-
cess. Our approach, inspired by authors of paper [4], diverges
in utilizing GraphLIME instead of LIME. GraphLIME offers
improved feature extraction and contextually rich insights,
thereby enhancing model interpretations. By integrating an
attention mechanism, we not only focus on key features but
also add depth to the predictive analysis, making our approach
distinct and more nuanced [4].
The paper [5] offers a detailed evaluation of various machine
and deep learning techniques for Type 2 Diabetes prediction. It
reviews a spectrum of models, assessing their effectiveness and
pinpointing the most effective techniques for predictive mod-
eling. The review notes the superior performance of tree-based
algorithms and observes that, while deep neural networks are
potent with large datasets, they often yield less optimal results.
It underscores the significance of data balancing and feature
selection in boosting model efficiency, with well-structured
datasets leading to near-perfect outcomes. The article notably
delves into the advantages of using graphs in deep learning, a
key insight that influenced our decision to utilize GraphLIME
over traditional LIME for feature extraction. Inspired by the
article [11] we adapted its foundational concept to our dataset
[7]. We further enhanced our methodology by integrating
an attention mechanism, focusing on the relevant features
identified using GraphLIME. This approach aimed to refine
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and improve upon the existing models for this widely used
dataset, drawing on the systematic review’s findings and the
pivotal role of GraphLIME [5]. The most relevant differences
between LIME and GraphLIME can be observed in Table I.

TABLE I
DIFFERENCES AND SIMILARITIES BETWEEN LIME AND GRAPHLIME

Feature LIME GraphLIME
Specific for structured data ✓
Generalizable to any type of data ✓ ✓
Provides local explanations ✓ ✓
Suitable for graph-based models ✓
Simple and intuitive ✓
Manages complexity in graph data ✓
Versatile for various ML models ✓ ✓
Detailed explanations for network structures ✓
Quick and straightforward explanations ✓ ✓

III. PROPOSED APPROACH

A. Purposes

Following the research studies presented in the section II,
we noticed that explainability methods are not extensively
explored. Most works stop at extracting the most relevant
features, but they do not leverage this information to expand
the developed model. However, we wanted to explore this field
of explainability in this work and use the obtained information
to enhance the model’s performance.
Building on the foundation laid by the studies presented in the
section II, our secondary aim is to validate the hypothesis that
employing graph-based approaches in explainability represents
the most optimal strategy. Specifically, we aim to assess the
effectiveness of using GraphLIME in extracting the most
pertinent features from our dataset. This investigation is critical
in demonstrating the practical utility and superiority of graph-
based methods in elucidating complex data characteristics,
thereby contributing to the advancement of explainability in
machine learning [6].

B. Objectives

The objective of our research is to implement and rigorously
analyze the performance of the methodologies discussed ear-
lier. We aim to make a substantial and positive contribution to
the developed solution, enhancing and refining existing ideas
to improve the overall performance of the model. Our aim
is to observe how much using GraphLIME aids us in the
development of the model, compared to the classical method
of explainability, LIME. Through this analysis, we will be able
to demonstrate the importance of using explainability methods
in improving the model’s performance and, at the same time,
highlight that leveraging this technique comes with benefits.

C. Approach

For our experiments, we have used a public diabetes dataset
from Kaggle [7] that comprises medical records of 768 patients
(Fig. 1 to see how many patients suffer from diabetes and how
many do not), categorized based on their diabetic condition.

Eight of these columns contain independent data, encompass-
ing various factors that contribute to the diagnosis of diabetes
mellitus. The ninth column is dependent, indicating whether a
patient has diabetes.

Fig. 1. The number of patients with and without diabetes

As illustrated in the figure above (Fig. 1), the dataset encom-
passes 500 patients who do not have diabetes (indicated by
a dependent feature value of 0) and over 250 patients who
do have diabetes (with a dependent feature value of 1). This
presents a disparity where there are approximately 50% fewer
patients with the disease compared to those without it. Such an
imbalance necessitates the balancing of the dataset. To balance
our dataset, we used the SMOTE (Synthetic Minority Over-
sampling Technique) technique [19]. This technique works
by creating synthetic examples of the minority class, in our
case, patients suffering from diabetes. This is achieved by
interpolating between existing examples, contributing to the
diversification and expansion of the dataset. By applying this,
we were able to bring the number of cases in the minority
class (patients with diabetes) to a level similar to the majority
class (patients without diabetes).
To evaluate the performance of our model, we implemented
the k-fold cross-validation method, dividing the dataset into
5 folds. This approach allowed us to obtain a more precise
and robust estimation of our model’s effectiveness, avoiding
potential biases that can arise when using a single dataset
for testing. Through k-fold cross-validation, each example in
the dataset had the chance to be used both in the training
and testing sets. This helped us to verify if the model could
generalize well on new data. In each of the 5 iterations of k-
fold cross-validation, a different subset of data was chosen as
the testing set, while the rest of the data were used for training
the model [8].
The subsequent phase involves the development of a
TensorFlow-based model, utilizing GNN. This step marks the
transition from data preparation to the intricate process of
model building, where we leverage the advanced capabilities
of TensorFlow and the structural benefits of GNNs to extract
meaningful insights and patterns from the dataset. This ap-
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proach is expected to provide a comprehensive understanding
of the data characteristics, aiding in the accurate identification
and prediction of diabetic conditions among patients [9].

Fig. 2. INSIDE-GNN Process: Sequential Discovery and Integration of
Activation Rules for Enhanced Model Insight

The schematic in Figure 2 provides a detailed overview for
GNN process. This process begins with the utilization of a
trained GNN and a series of graphs that are, ideally, similar
in distribution to those used during the GNN’s training phase
[10]. The method unfolds as follows:

1) Construction of an Activation Matrix: We develop a
binary matrix to encapsulate how the nodes within the
graphs influence various vector components within the
GNN. This matrix also correlates the nodes with the
decisions derived from the GNN.

2) Establishment of a Preliminary Model: This model
serves as an initial framework, reflecting our base-level
understanding of the data within the matrix. At this start-
ing point, the model operates under the assumption that
there is no inherent connection between the activations
and the nodes in the graphs.

3) The INSIDE-GNN Procedure: This step involves the
application of the INSIDE-GNN process, which is de-
signed to pinpoint the most significant rule of activation.
It does this by analyzing both the activation matrix and
the initial model.

4) Model Refinement: Following the identification of a key
activation rule, we update the initial model to integrate
this new rule, thereby enriching our pattern set.

5) Iterative Enhancement: We repeatedly cycle through
steps 2 to 5, each time enhancing our model and pattern
set. This process continues until it either yields no
new significant rules or meets predefined criteria for
cessation.

6) Pattern-Based Explanations: Utilizing the collection of
activation patterns, we generate explanations for each
instance. This is achieved by implementing various
strategies that involve node-based masks in alignment
with the activation rules.

7) Rule-Support Analysis: For each identified activation
rule, we engage in an in-depth exploratory analysis,
employing techniques like subgroup discovery in graph

propositionalization or mining of subgraphs. The objec-
tive here is to conduct a detailed examination of the
nodes that support these rules, thereby providing clear,
interpretable insights into the aspects captured by the
GNN.

Following the successful construction of our TensorFlow
model, we embarked on a important phase: training the model.
This step was pivotal in fine-tuning the model’s parameters to
align with our dataset’s unique characteristics. Subsequent to
the initial training, we initiated the generation of perturbed
samples. Each of these samples underwent a meticulous train-
ing process, ensuring that our model was robust and capable
of handling a variety of data alterations. The final stage in our
methodology involved the computation of GraphLIME. This
was a significant step, as GraphLIME plays an instrumental
role in interpreting the model’s decisions by providing a
clear and comprehensible explanation of the model’s behavior,
particularly in relation to the perturbed samples. Through this
comprehensive process, from model building to GraphLIME
calculation, we aimed to create a model that is not only
accurate but also transparent and interpretable in its decision-
making. The Figure 3 shows all the mechanisms behind
GraphLIME [11].

Fig. 3. The architecture of GraphLIME

Upon successfully identifying the most pertinent features from
our dataset, we proceeded to apply an attention mechanism,
but exclusively to the extracted data. This focused application
is designed to enhance our model’s precision and interpretabil-
ity by concentrating on the key features. The outcomes of this
mechanism are of significant interest, and we will thoroughly
analyze and discuss the results in a subsequent section of
our study. This analysis aims to shed light on the efficacy of
the attention mechanism in refining model performance and
providing deeper insights into the data.

IV. PRELIMINARY RESULTS

Our dataset comprises a moderate volume of data (details
at III-C), a factor that favorably circumvented the challenges
often associated with smaller datasets. Consequently, the
solution we propose is ideally suited for datasets ranging
from moderate to large in size. In cases involving smaller
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Fig. 4. Full System Workflow Diagram. From dataset preprocessing to prediction, this figure outlines how our system utilizes GNN processing, GraphLIME
for feature importance extraction, and key features with an attention mechanism for diabetes prediction.

datasets, additional modifications would be necessary to adapt
our approach.

The core objective of our solution is to meticulously identify
and apply the most appropriate methods and techniques to
yield accurate and reliable results. Our structure facilitates a
detailed examination of factors leading to diabetes diagnosis,
ensuring both thoroughness and precision in our analysis. We
aim to use this data to create a model that is not only effective
in diagnosing diabetes but also robust across different data
volumes.

The resulting system that we envision is the one seen in
Figure 4. The sequential workflow is demonstrated, starting
with the diabetes dataset, followed by preprocessing steps and
preparing the input graph for analysis. The target feature is
highlighted and a toy example of feature relationships in the
graph is shown. Subsequently, the preprocessed data is fed into
our Graph Neural Network (GNN) architecture for processing.
After obtaining the model’s output, the input graph and the
we sample the neighbors of the target(red) node, we employ
GraphLIME to derive post hoc feature importance, isolating
those features with a positive impact on diabetes prediction.
These significant features are then utilized within an attention
mechanism to refine and focus the model’s predictive capabil-
ities. Finally, the system generates its prediction, leveraging
both the insights gained from feature importance analysis and
the focused processing power of the attention mechanism.

A. Designing and Evaluating a TensorFlow Model for Feature
Importance in Diabetes Prediction

In order to effectively extract relevant features from our
dataset, a two-step approach was initially employed. The
first step involved splitting the dataset, a relevant process
that set the stage for the subsequent model development.
Once the dataset was appropriately segmented, we proceeded
to construct a TensorFlow model, meticulously designed to
optimize feature extraction.
The architecture of our TensorFlow attention model is

structured around three Dense layers, each serving a specific
role in the learning process. This specific choice is the result
of extensive experimentation on a subset of the training
data, where different combinations of hyperparameters and
architecture shapes were tried. The final model contains in
the first layer 64 units with the ’relu’ activation function, the
second layer includes 32 units, also with the ’relu’ activation,
and the final layer is composed of a single unit with the
’sigmoid’ activation function. Using 64 units in the first layer
offers a balance between the ability to process various shapes
and complexities in the data and maintaining computational
efficiency. A smaller number of units could have limited
the model’s ability to learn complex features, while a larger
number could lead to overfitting and reduced computational
efficiency. The second layer with 32 units allows the model
to further refine the features identified by the first layer,
without adding unnecessary complexity. Choosing a final
layer with a single unit and ’sigmoid’ activation is relevant
for binary classification tasks, providing a clear probabilistic
output. Using a different function or more units in this layer
could have impacted the model’s ability to provide precise
binary predictions. Therefore, this specific configuration of
Dense layers was determined by the need to balance the
model’s learning capacity, avoiding overfitting and optimizing
computational efficiency, while ensuring accuracy in binary
classification tasks [14].
To train our model, we used the Adam optimizer, known
for its effectiveness in deep learning and handling sparse
gradients and noisy problems. This optimizer benefits from an
adaptive learning rate and combines features from AdaGrad
and RMSProp [15]. Our chosen loss function was binary
cross-entropy, apt for binary classification as it measures
the alignment of the model’s probability-based predictions
with actual labels. Accuracy was our performance metric,
indicating the proportion of correct predictions in binary
classification.
An important step in our analysis involved calculating the
GraphLIME explanation after generating perturbed samples
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Fig. 5. The importance of each characteristic in the prediction

and recording the model’s predictions. GraphLIME’s local
interpretable explanations provide deep insights into the
model’s data processing, important for ensuring its reliability
and robustness, particularly with perturbed samples. Figure 5
highlights the significant features in our Kaggle dataset for
predicting diabetes in women, with Pregnancies, Glucose,
and BMI (Body Mass Index) being the most impactful.

B. Application of the attention mechanism

In the realm of predictive modeling, attention mechanisms
have emerged as a pivotal tool, primarily due to their capacity
to enhance model interpretability and efficiency. The core
objective of an attention mechanism is to enable the model to
focus selectively on parts of the input that are most pertinent
for a specific task, thereby improving the overall accuracy
and interpretability of the model [16]. This selective focus is
especially beneficial in disease prediction, where discerning
subtle patterns and correlations within complex datasets is
important [17].

Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V (1)

Where:

• Q represents the query matrix,
• K represents the key matrix,
• V represents the value matrix,
• dk is the dimension of the keys and queries,
• The Softmax function is applied to normalize the atten-

tion scores.
The equation 1 expresses the core principles of the scaled dot-
product attention mechanism, a pivotal component in advanced
neural network architectures. This mechanism is particularly
renowned for its ability to enhance both the interpretability and
efficiency of models, especially in fields that require nuanced

understanding of complex data, such as natural language
processing or predictive modeling in healthcare. The equation
operates on three fundamental components: the Query (Q),
Key (K), and Value (V ). These components play an important
role in guiding the model’s focus to the most pertinent aspects
of the input data. The process initiates with the calculation
of the dot product between the Query and Key matrices.
This step is essential, as it forms the basis for determining
how each element of the Query aligns or correlates with the
elements in the Key. Following this, the results from the dot
product are meticulously scaled down by dividing them by
the square root of the Key’s dimension (

√
dk). This relevant

scaling step ensures that the softmax function, which follows,
operates within an optimal range. It prevents the softmax
from encountering extremely small gradients, which can be a
significant hindrance in the training phase of a model, ensuring
that the learning process remains stable and effective. The
culmination of this process is the creation of a weighted sum
of the Value components [18].
We incorporated an attention mechanism within our diabetes
dataset to harness these advantages. Specifically, we employed
two types of layers—ReLU and Sigmoid—to facilitate this
process. ReLU was chosen for its ability to introduce non-
linearity into the model without affecting the receptive fields
of the convolution layer. On the other hand, the Sigmoid
function was utilized due to its efficacy in binary classification
tasks, which is a fundamental aspect of disease prediction.
This combination of layers, in tandem with the attention
mechanism, significantly contributed to the model’s perfor-
mance. This integration resulted in a substantial increase in
the model’s accuracy, achieving approximately 92.6%. To fully
appreciate the outcome derived from the application of the two
aforementioned techniques, it is essential to turn our attention
to the following section. This segment meticulously delineates
the results, offering a comprehensive understanding of how
these methodologies converge to yield the observed findings.

V. OBTAINED RESULTS

In this section, our focus shifts to exploring the potential of
the implemented algorithms and assessing the performance of
our model both before and after the application of the tech-
niques discussed thus far. This comparative analysis aims to
shed light on the efficacy of these methodologies, providing a
clear understanding of their impact on the overall performance
and accuracy of the model.

Result description Accuracy
Before applying GraphLIME and Attention Mechanism 74.9%

After applying LIME 82.9%
After applying GraphLIME 86.2%

After applying GraphLIME and Attention Mechanism 92.6%
TABLE II

RESULTS OF THE MODEL WITH AND WITHOUT GRAPHLIME AND
ATTENTION MECHANISM

As can be seen from Table II, the accuracy of the model
increased upon implementing the GraphLIME explainability
method. Furthermore, by integrating an attention mechanism
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for relevant features within our dataset, we were able to
enhance the model’s accuracy by an additional approximate
6 percent. The targeted application of an attention mechanism
solely on relevant features within our dataset is of paramount
importance. This selective focus ensures that the model’s
computational resources are efficiently utilized, honing in on
the most impactful aspects of the data. By doing so, it not
only enhances the model’s accuracy but also improves its
interpretability. This approach mitigates the risk of overfitting
to irrelevant features and helps in maintaining the model’s
robustness, making it more reliable and effective in real-world
applications. We chose to utilize GraphLIME over LIME
due to its distinct advantages in handling graph-based data.
GraphLIME excels in providing graph-specific interpretability,
adeptly capturing and elucidating complex node relationships
and interactions that are relevant in graph structures. It is
uniquely equipped to manage the complexities and structural
dependencies inherent in graph data, offering localized ex-
planations at the node level, which are essential for models
trained on such data. Furthermore, GraphLIME stands out in
terms of scalability and efficiency, effectively handling large
graphs and complex network structures, a task where LIME
is less optimized [11].

Fig. 6. The ROC Curve for our developed model

As illustrated in Figure 6, the obtained ROC curve showcases
the high performance of our developed model. The curve,
tending towards 1, signifies an exceptionally good predictive
capability, underscoring the model’s effectiveness in the task
at hand. This graphical representation is a clear indicator
of the model’s robustness and accuracy in predictions. The
complete code for predicting diabetes in women using the
model developed and detailed in this paper is available for
reference and use at the following link Github.

VI. DISCUSSION

Through the application of our developed model, we have
achieved a more precise and realistic prediction of diabetes
based on the provided characteristics. The dataset utilized was
of a moderate size in terms of patient numbers, and in this
context, our model performed exceptionally well, surpassing

expectations. The use of GraphLIME in diabetes prediction, as
compared to LIME, has shown distinct advantages. Despite the
limited information available on GraphLIME, we successfully
developed a robust model capable of extracting relevant fea-
tures. Leveraging these features, we incorporated an attention
mechanism to enhance the predictability level, demonstrating
the efficacy of our approach in diabetes prediction.
We successfully achieved a significant milestone in enhancing
the accuracy of our predictions by approximately 18%. It was
observed that the sole use of LIME or GraphLIME did not
substantially increase the model’s accuracy. This led to the
realization that the inclusion of a simple attention mechanism
was necessary to achieve this level of improvement. The
integration of this mechanism played an important role in
fine-tuning our model’s performance, demonstrating that a
combination of advanced techniques is often required to realize
substantial gains in predictive accuracy.
As a future direction, we aim to adapt our solution to the multi-
class case in order to observe the model’s performance in this
context. Additionally, we intend to study the results obtained
from implementing the model for the multi-class scenario
and explore how we can enhance this technique to achieve
predictions that closely align with reality [21]. Therefore, our
objectives include the extension and in-depth exploration of
this technique for multi-class applications.
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