1 Original Research Article

3	Association between antihypertensive combinations and postoperative mortality
4	and functional decline: a nationwide survey of Japanese adults undergoing major
5	surgeries
6	
7	Rena Suzukawa ¹ , Shintaro Mandai ¹ *, M.D., Ph.D., Yuta Nakano ¹ , M.D., Shunsuke
8	Inaba ¹ , M.D., Hisazumi Matsuki ¹ , M.D., Yutaro Mori ¹ , M.D., Ph.D., Fumiaki Ando ¹ ,
9	M.D., Ph.D., Takayasu Mori ¹ , M.D., Ph.D., Koichiro Susa ¹ , M.D., Ph.D., Soichiro
10	Iimori ¹ , M.D., Ph.D., Shotaro Naito ¹ , M.D., Ph.D., Eisei Sohara ¹ , M.D., Ph. D.,
11	Tatemitsu Rai ² , M.D., Ph. D., Kiyohide Fushimi ³ , M.D., Ph.D., Shinichi Uchida ¹ , M.D.,
12	Ph.D.
13	
14	¹ Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo
15	Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
16	² Department of Nephrology and Hypertension, Dokkyo Medical University, 880
17	Kitakobayashi, Mibu, Shimotsuga, Tochigi, 321-0293, Japan

- ¹⁸ ³Department of Health Policy and Informatics, Graduate School of Medical and Dental
- 19 Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo
- 20 113-8519, Japan

- 22 Suzukawa R and Mandai S contributed equally.
- 23
- 24 Short title: Antihypertensive class and postoperative outcomes
- 25
- 26 *Corresponding Author: Shintaro Mandai (ORCID iD: 0000-0001-6709-306X)
- 27 Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo
- 28 Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
- 29 Tel: +81-3-5803-5214; Fax: +81-3-5803-5215; E-mail: <u>smandai.kid@tmd.ac.jp</u>
- 30
- 31 Total word count: 3,543

32 Abstract

33	Background: Considering the limited information available regarding the impact of
34	antihypertensive classes on mortality and physical function during hospitalization, we
35	aimed to clarify the impact of six antihypertensive classes, namely thiazide/thiazide-like
36	diuretics (TH), calcium receptor blockers (CCBs), renin-angiotensin-aldosterone
37	system inhibitors (RASis), mineral corticoid receptor antagonists, α -blockers, and
38	β -blockers, on outcomes in adult patients undergoing major surgeries.
39	Methods: This study was a subanalysis of a nationwide observational cohort study
40	involving Japanese adults undergoing major surgeries from 2018 to 2019 using an
41	administrative claims database. We recruited 473,327 antihypertensive medication users
42	and 376,583 nonusers aged \geq 50 years who underwent six different types of surgeries,
43	including coronary artery bypass grafting (CABG), thoracic lobectomy, orthopedic
44	surgery, hepatopancreatobiliary surgery, gastrointestinal resection, and urological
45	surgery. The risk for overall death or functional decline, defined as a \geq 5-point decrease
46	in the Barthel Index score during hospitalization, was determined using multivariable
47	logistic regression models.
48	Results: All-cause inhospital deaths occurred in 5,777 (1.2%) users and 2,657 (0.7%)
49	nonusers. Functional decline was observed in 42,930 (9.2%) users and 22,550 (6.0%)

50	nonusers. Among single class users, RASi use had a multivariable odds ratio (OR) of
51	0.77 (95% confidence interval (CI) 0.63-0.93 vs. TH) for the composite of mortality
52	and functional decline. β -Blocker use was associated with an increased risk for
53	functional decline (OR 1.27, 95% CI 1.01-1.60 vs. TH). Among the recipients of the
54	two medication classes, TH/RASi usage was associated with the lowest risk for
55	composite outcome (OR 0.68, 95% CI 0.60–0.77 vs. TH/CCB). Among the recipients of
56	the three or more medication classes, TH/CCB/RASi or TH/CCB/RASi/other displayed
57	the lowest odds for composite outcome (OR 0.72, 95% CI 0.49–0.82 vs. TH/CCB/other;
58	OR 0.63, 95% CI 0.49–0.82 vs. TH/CCB/others). A stratified analysis revealed that
59	RASi users had a lower OR for the composite outcome after major surgery categories
60	except CABG than non-RASi users.
61	Conclusions: RASis were associated with decreased risk of postoperative mortality and
62	functional decline regardless of the number of antihypertensive classes or surgery type.
63	Managing hypertension through multidrug combinations, including RASis, may
64	mitigate mortality and loss of physical function during the perioperative period.
65	
66	Clinical Perspective

67 What is new?

68	• This nationwide observational cohort study of Japanese adults undergoing major
69	surgeries from 2018 to 2019 using an administrative claims database showed
70	that all-cause inhospital deaths occurred in 5,777 (1.2%) antihypertensive users
71	and 2,657 (0.7%) nonusers, whereas functional decline was observed in 42,930
72	(9.2%) antihypertensive users and 22,550 (6.0%) nonusers.
73	• We found that an increase in the number of antihypertensive classes used,
74	indicative of patients with treatment-resistant hypertension, was associated with
75	a higher risk of mortality and loss of physical function, partly attributed to loop
76	diuretic use for congestion.
77	What are the clinical implications?
78	• This study determined combinations of antihypertensive drugs that potentially
79	improve the outcomes of antihypertensive users undergoing major surgeries,
80	with the favorable regimens including RASis independent of the number of
81	antihypertensive classes used.
82	• After undergoing all major surgery categories except CABG, patients on RASis
83	were at a lower risk of death and functional decline than those who were treated
84	with other antihypertensive classes.

86 Keywords: hypertension, antihypertensive class, surgery, physical function,

- 87 renin–angiotensin–aldosterone system inhibitor
- 88

89	Nonstanda	rd Abbreviations and Acronyms
90	ACEi	angiotensin-converting enzyme inhibitor
91	AKI	acute kidney injury
92	ADL	activities of daily living
93	AHT	acute hypertension
94	ARB	angiotensin II receptor blocker
95	BMI	body mass index
96	CABG	coronary artery bypass grafting
97	ССВ	calcium channel blocker
98	CI	confidence intervals
99	CKD	chronic kidney disease
100	CVD	cardiovascular disease
101	DM	diabetes mellitus
102	DPC	diagnosis procedure combination
103	ESKD	end-stage kidney disease
104	ICD-10	International Classification of Disease and Related Health Problems,
105	10th Revisi	on
106	IQR	interquartile range
107	MRA	mineral corticoid receptor antagonist

108 OR odds ratio

100	D 1 0	• • • •
1/10		ranin anglatangin gygtam
107	N A O	

- 110 RASi renin-angiotensin-aldosterone system inhibitor
- 111 ROS reactive oxygen species
- 112 TH thiazide/thiazide-like diuretics
- 113

114 Introduction

115	The proportion of patients with hypertension continues to increase globally. The
116	number of adult patients with hypertension doubled from 1990 to 2019, affecting nearly
117	1,300 million people worldwide [1]. Although recent advances in antihypertensive
118	medications and their widespread availability have improved hypertension control in
119	this population, the prevalence of treatment-resistant hypertension requiring a
120	combination of multiple antihypertensive classes has continued to increase [2-5]. When
121	caring for patients with hypertension, the prevention of chronic systemic organ
122	dysfunction, hospitalization, acute kidney injuries (AKI), and death caused by acute
123	hypertension (AHT) is of considerable importance [6]. We previously reported an
124	increase in absolute death and urgent dialysis due to AHT from 2010 to 2019 among
125	hospitalized Japanese patients [6]. Given the lack of comprehensive investigations on
126	the effective combination of antihypertensive classes and the mostly empiric evidence
127	available [4], understanding the effects of various antihypertensive medications and

128 their management approaches for both in- and outpatients has been of notable interest

among physicians.

130	The decline in activities of daily living (ADLs) and frailty related to
-----	---

131 hospitalization have also been an enormous health concern for inpatients, given the

- 132 exponential increase in the aging population globally. Previous studies have established
- that the use of angiotensin-converting enzyme inhibitors (ACEis) has long-term effects
- 134 on muscle strength [7,8]. The use of angiotensin II receptor blockers (ARBs) promotes
- 135 enhanced exercise capacity among patients with heart failure [9]. In contrast, our studies
- 136 showed that patients taking loop diuretics were at an increased risk of developing
- 137 sarcopenia [10,11], with subsequent studies reporting the same correlation among
- patients with heart failure and hepatopathy [12-14]. However, no study has focused on
- 139 the effects of antihypertensive class or loop diuretics during hospitalization under acute
- 140 care settings, i.e., in patients with severe diseases (e.g., cardiovascular diseases [CVDs],
- 141 infectious diseases, or major surgeries). We evaluated the impact of continued empirical
- 142 antihypertensive drug administration during hospitalization on postoperative outcomes,
- 143 including mortality and physical function, after major surgeries.
- 144 The current study aimed to determine the most effective monotherapy or
- 145 combination therapy among six antihypertensive classes (i.e., thiazide/thiazide-like

146	diuretics [TH], calcium receptor blockers [CCBs], renin-angiotensin-aldosterone
147	system inhibitors [RASis], mineral corticoid receptor antagonists [MRAs], α -blockers,
148	and β -blockers) and loop diuretics, which helps lower the risk for postoperative
149	mortality and functional decline among patients aged 50 and older who underwent
150	major surgeries during hospitalization. We also aimed to investigate whether the type of
151	major surgery (i.e., coronary artery bypass grafting [CABG], thoracic lobectomy,
152	orthopedic surgery, hepatopancreatobiliary surgery, gastrointestinal resection, and
153	urological surgery) altered the association between antihypertensive class and
154	postoperative outcomes.
155	
156	Methods
157	Study design and participants
158	This study was a <i>posthoc</i> subanalysis of a national survey on postoperative
159	outcomes among Japanese adults undergoing major surgeries [15]. We used an
160	administrative claims database, the Diagnosis Procedure Combination (DPC) inpatient

- 161 database, to obtain data from 2018 to 2019 [6,15,16]. This dataset comprises
- 162 information obtained from over 1000 hospitals, including all 82 teaching hospitals, and
- 163 covers half or more of inpatient cases throughout Japan. The available information

164	included diagnosis and comorbidities upon hospital admission coded according to the
165	International Classification of Disease and Related Health Problems, 10th Revision [14].
166	The datasets also included information on patients' age, sex, body mass index (BMI),
167	the Charlson comorbidity index [17], which was updated for risk adjustment [18],
168	ADLs upon admission and discharge, and discharge status.
169	A total of 15,422,773 eligible cases were identified. The criteria for study
170	inclusion included age \geq 50 years, hospitalization \geq 24 h, and patients undergoing any of
171	the defined major surgeries. Major surgeries were previously defined as invasive
172	operative procedures, including CABG, thoracic lobectomy, orthopedic surgery (hip or
173	knee arthroplasty, laminectomy or spinal fusion, and surgery for hip fracture or
174	dislocation), hepatopancreatobiliary surgery (hepatic lobectomy, cholecystectomy, and
175	pancreatectomy), gastrointestinal resection (esophagectomy, gastrectomy, and
176	colectomy), and urological surgery (cystectomy and nephrectomy) [15,19]. The
177	exclusion criteria were as follows: second or later admissions; patients with incomplete
178	information on BMI, the Barthel Index, and admission type (emergency admission or
179	not); those who underwent multiple surgery types; and dependence on maintenance
180	dialysis therapy. Dependence on hemodialysis or peritoneal dialysis was determined
181	from the coding of patient care procedures (chronic maintenance hemodialysis with <4

182 h per session, \geq 4 h but <5 h per session, \geq 5 h per session or chronic maintenance

183	hemodiafiltration or continuous peritoneal dialysis) [17].
184	Our study protocol was approved by the ethics committee of Tokyo Medical and
185	Dental University. The need for informed consent was waived because the data were
186	anonymized. The study was conducted in accordance with the ethical principles of the
187	Declaration of Helsinki. The data used for the study analyses are available from the
188	corresponding author S.M. upon reasonable request.
189	

190 Patient characteristics

191 We calculated the Barthel Index scores upon admission and discharge based on 192 10 functional abilities, including feeding, bathing, grooming, dressing, bowel control, 193 bladder control, toileting, chair transfer, ambulation, and climbing stairs [20]. Barthel 194 Index scores ranged from 0 to 100 at 5-point increments, with 0 indicating complete 195 bed-ridden status and 100 indicating full independence of physical functions. Other 196 patient information on admission included age, sex, BMI, dependence on urgent or 197 maintenance kidney replacement therapy, updated Charlson comorbidity index, 198 excluding renal disease [17,18], comorbidity, surgery type, admission type (emergency 199 or elective admission), and fiscal year. We used the following age strata for the 200 analyses: 50–59, 60–69, 70–79, and \geq 80 years [21]. On the basis of previous studies, 201 antihypertensive medications were classified into six groups, including TH, CCBs, 202 RASis, MRAs, α -blockers, and β -blockers [22, 23]. Thiazide-like diuretics without a

203	benzothiadiazide structure, such as indapamide and metolazone, were also categorized
204	under TH. Only dihydropyridines were included as CCBs in this study. RASis included
205	ACE is and ARBs. Notably, α/β -blockers were included under β -blockers. Loop
206	diuretics were recognized when used both orally and intravenously.
207	
208	Outcomes
209	The primary outcome was the composite of overall inhospital death and decline
210	in physical function, which was defined as a 5-point lower Barthel Index score [24] at
211	discharge than at admission. Patients were followed up until discharge, transfer, or
212	inhospital death.
213	
214	Data analyses
215	Data were presented as number (percentage) or median (interquartile range
216	[IQR]). Logistic regression models were used to assess the association between
217	antihypertensive medication and loop diuretics and the risk for mortality or functional
218	decline, adjusting for potential confounding measurements, including age, sex, type of
219	major surgeries, BMI, Barthel Index score upon admission, diabetes mellitus (DM),
220	CVD, chronic kidney disease (CKD), emergency admission, and year of admission. We

222	association between antihypertensive class and outcomes according to major surgery
223	type. All statistical analyses were performed using Stata version 15.0 (Stata Corp.,
224	College Station, TX, United States), with $P < 0.05$ indicating statistical significance.
225	
226	Results
227	Patient characteristics
228	We identified 15,422,773 patients from a Japanese national inpatient database
229	between 2018 and 2019 (Fig. S1). Subjects aged 50 years and older who underwent
230	major operations during hospitalization lasting for at least 24 h were included (n =
231	1,283,540). Subsequently, those on their second or later admissions; those without
232	complete information on BMI, Barthel Index score, or emergency admission; and those
233	who underwent multiple surgeries or received maintenance dialysis were excluded. In
234	total, 849,910 subjects were included in the analysis.
235	Table 1 summarizes the demographics and characteristics of the study cohort.
236	Among the 849,910 patients, 473,327 (56%) were taking at least one class of
237	antihypertensive medication. Antihypertensive users and nonusers had a median age
238	(IQR) of 76 (69–82) years and 70 (63–78) years, female percentage of 49% and 50%,
239	and median BMI of 23.4 (20.9–26.0) kg/m ² and 22.5 (20.2–24.9) kg/m ² , respectively. A

240	larger proportion of antihypertensive users than nonusers had a low Barthel Index score.
241	The prevalence of comorbidities, including CVD, DM, and CKD, was higher among
242	antihypertensive users than among nonusers. Patients were also stratified according to
243	the type of major surgery that they underwent during hospitalization. Among the six
244	types of major surgeries (CABG, thoracic lobectomy, orthopedic surgery,
245	hepatopancreatobiliary surgery, gastrointestinal resection, and urological surgery),
246	orthopedic surgery was the most common in both groups (45% and 37%, respectively),
247	followed by gastrointestinal resection and esophagectomy (20% and 25%, respectively).
248	
249	
,	Effects of the number of antihypertensive classes on postoperative outcomes
250	After a median follow-up of 17 (IQR, 10–27) days, all-cause inhospital deaths
250 251	After a median follow-up of 17 (IQR, 10–27) days, all-cause inhospital deaths were observed in 5,777 patients (1.2%) out of 473,327 antihypertensive users and 2,657
250 251 252	After a median follow-up of 17 (IQR, 10–27) days, all-cause inhospital deaths were observed in 5,777 patients (1.2%) out of 473,327 antihypertensive users and 2,657 patients (0.7%) out of 376,583 nonusers. Functional decline was observed in 22,550
 250 251 252 253 	After a median follow-up of 17 (IQR, 10–27) days, all-cause inhospital deaths were observed in 5,777 patients (1.2%) out of 473,327 antihypertensive users and 2,657 patients (0.7%) out of 376,583 nonusers. Functional decline was observed in 22,550 (6.0%) nonusers and 42,930 (9.2%) users. Figure 1 displays the prevalence of all-cause
 250 251 252 253 254 	After a median follow-up of 17 (IQR, 10–27) days, all-cause inhospital deaths were observed in 5,777 patients (1.2%) out of 473,327 antihypertensive users and 2,657 patients (0.7%) out of 376,583 nonusers. Functional decline was observed in 22,550 (6.0%) nonusers and 42,930 (9.2%) users. Figure 1 displays the prevalence of all-cause inhospital death and functional decline after survival according to age category. The
 250 251 252 253 254 255 	After a median follow-up of 17 (IQR, 10–27) days, all-cause inhospital deaths were observed in 5,777 patients (1.2%) out of 473,327 antihypertensive users and 2,657 patients (0.7%) out of 376,583 nonusers. Functional decline was observed in 22,550 (6.0%) nonusers and 42,930 (9.2%) users. Figure 1 displays the prevalence of all-cause inhospital death and functional decline after survival according to age category. The proportions of mortality and functional decline were higher among patients on more

257	indicates a	a significant	association	between	resistance	and	antihype	rtensive	treatment
-----	-------------	---------------	-------------	---------	------------	-----	----------	----------	-----------

258	and the crude mortality rate and decline in ADLs (Figure 1)
259	Thereafter, multivariable logistic regression models were created to determine
260	the aggregate risk for all-cause inhospital death and functional decline after survival. In
261	the age- and sex-adjusted model, the odds ratios (ORs) for a composite outcome of
262	mortality and functional decline were 1.20 (95% confidence interval [CI], 1.18-1.23),
263	1.23 (95% CI, 1.20–1.25), 1.42 (95% CI, 1.38–1.47), and 1.57 (95% CI, 1.49–1.65) for
264	users receiving one, two, three, and four or more classes of antihypertensives when
265	compared with nonusers (Table 2). Similarly, in Models 2 and 3, which adjusted for
266	DM, CVD, CKD, emergency admission, and admission year, the use of more
267	antihypertensive classes was associated with a higher risk for the composite outcome.
268	After additionally adjusting for the use of loop diuretics (Model 4), the odds for the
269	composite outcome were comparable between users receiving one, two, three, and four
270	or more classes of antihypertensives. These findings indicate that congestion requiring
271	the use of loop diuretics is a major confounding factor for the association between
272	resistant hypertension and unfavorable postoperative outcomes.
273	

274 Combinations of antihypertensive classes and postoperative outcomes

275	We then investigated whether differences in postoperative outcomes following
276	major surgeries were present according to different combinations of antihypertensive
277	classes among the patients.
278	Among those who used only one of the six antihypertensive classes and loop
279	diuretics, RASis showed the lowest OR for composite outcome, mortality, and
280	functional decline (Table 3). With TH as the reference, RASi showed 0.77-, 0.58-, and
281	0.79-times lower odds for the composite outcome (95% CI, 0.63–0.93; $P = 0.008$),
282	mortality (95% CI, 0.34–0.99; $P = 0.045$), and functional decline (95% CI, 0.64–0.96; P
283	= 0.020), respectively, whereas β -blockers showed a 1.27-times higher odds for
284	functional decline (95% CI, 1.01–1.60; $P = 0.040$; Table 3). Among those who used two
285	antihypertensive classes, the combination of THs and RASi showed the lowest OR for
286	each outcome. Compared with TH/CCB, TH and RASi had an OR of 0.68 for the
287	composite outcome (95% CI, 0.60–0.77; $P < 0.001$; Table 3). Among those who used
288	three or more classes of antihypertensive, combinations including CCB and RASi
289	showed the lowest OR for each outcome. In comparison, using the combination of TH,
290	CCB, and other as the reference, the combination of TH, CCB, and RASi showed odds
291	of 0.72-, 0.43-, and 0.79-times lower for the composite outcome (95% CI, 0.49–0.82; P
292	< 0.001), mortality (95% CI, 0.31–0.60; P < 0.001), and functional decline (95% CI,

293	0.70–0.89; $P < 0.001$; Table 3), respectively. The use of RASis was significantly
294	associated with a lower OR for postoperative outcomes regardless of the number of
295	antihypertensive classes used for treatment. A comparison of those who did and did not
296	use loop diuretics showed that loop diuretic use consistently resulted in significantly
297	higher ORs for the composite outcome, mortality, and functional decline regardless of
298	the number of other antihypertensive medications used (Table S1).
299	
300	Impact of each antihypertensive class on postoperative outcomes according to the type
301	of major surgery
302	We performed a stratified analysis on the impact of each antihypertensive class
303	on postoperative outcomes according to six types of major surgeries (CABG, thoracic
304	lobectomy, orthopedic surgery, hepatopancreatobiliary surgery, gastrointestinal
305	resection, and urological surgery). Notably, RASis were associated with lower ORs for
306	the composite outcome of death and functional decline, all-cause inhospital death, and
307	survival with functional decline among those who underwent five types of major
308	surgeries except CABG (Figure 2). Only β -blocker use was associated with better
308 309	surgeries except CABG (Figure 2). Only β -blocker use was associated with better outcomes among patients who underwent CABG (OR, 0.77; 95% CI, 0.67–0.89).

311 **Discussion**

312	The current large-scale epidemiologic cohort study using the Japanese
313	administrative claims database clarified the effects of antihypertensive drugs on
314	postoperative mortality and functional decline in patients aged 50 and older. First, we
315	found that an increase in the number of antihypertensive classes, which indicated
316	treatment-resistant hypertension, was associated with a higher risk of mortality and loss
317	of physical function, partly attributed to loop diuretic use needed for congestion. Second,
318	we determined combinations of antihypertensives that potentially improve the outcomes
319	of antihypertensive users undergoing major surgeries. The favorable regimens included
320	RASis independent of the number of antihypertensive classes used. Third, among
321	patients who underwent any type of major surgery, excluding CABG, those on RASis
322	were at a lower risk of death and functional decline than those not treated with other
323	antihypertensive classes.
324	The primary finding of the current study was that patients who received RAS
325	inhibition had a lower risk for the composite outcome of all-cause inhospital death and
326	functional decline after surviving major surgeries than those without RAS inhibition,
327	independent of the number of antihypertensive classes used. RAS inhibition in patients
328	treated with ACEi and ARB is known to help decrease skeletal muscle loss [7-9]. A

329	plausible explanation for its underlying pathological mechanism is the suppression of
330	angiotensin II-induced impairment in protein synthesis, acceleration of protein
331	breakdown, and loss of appetite. Angiotensin II increases the levels of cytokines and
332	systemic hormones, including reactive oxygen species, insulin-like growth factor 1,
333	tumor necrosis factor alpha, interleukin-6, and transforming growth factor beta [7-9,
334	24-28]. The current study showed that among patients who used a single class of
335	antihypertensive, those who used RASi had lower odds for the composite outcome of
336	mortality and functional decline than those who used TH. Among those who received
337	two classes of antihypertensives, those who received a combination of TH/RASi had an
338	OR of 0.68 for the composite outcome compared with those on TH/CCB. The favorable
339	effects of RASis on mortality and functional decline were also observed among those
340	who used three or more antihypertensive classes. Our data clearly showed that RAS
341	interfered with functional decline, although pathological analysis at the molecular level
342	was not conducted.
343	Our findings showed that β -blocker users had a 1.27-fold higher OR for
344	functional decline than TH users, which is consistent with previous findings on the
345	association between β -blocker and functional decline in patients with end-stage kidney
346	disease (ESKD) [29], CVD, and heart failure [30, 31]. In our previous study on a cohort

347	with ESKD, β -blocker users had 2.5-fold higher odds of annual skeletal muscle mass
348	loss, whereas the use of RASi in combination with other medications minimized the
349	adverse effects [29]. Notably, only the use of β -blockers was markedly associated with a
350	lower risk for postoperative composite outcome in patients who underwent CABG.
351	Therefore, the current study reaffirms the positive effects of RASi on skeletal muscle
352	mass in acute care settings among patients undergoing major surgeries [29].
353	Nonetheless, further investigations are needed to uncover the mechanism underlying the
354	association between RAS inhibition and favorable outcomes after major surgeries,
355	excluding CABG.
356	Our findings showed that outcomes following major surgeries could be further
356 357	Our findings showed that outcomes following major surgeries could be further improved by combining empirically antihypertensive drugs prescribed. Frailty, often
356 357 358	Our findings showed that outcomes following major surgeries could be further improved by combining empirically antihypertensive drugs prescribed. Frailty, often defined as unintentional weight loss, has been shown to be associated with mortality
356 357 358 359	Our findings showed that outcomes following major surgeries could be further improved by combining empirically antihypertensive drugs prescribed. Frailty, often defined as unintentional weight loss, has been shown to be associated with mortality among inhospital patients [32], as well as postdischarge patients or outpatients [33-35].
 356 357 358 359 360 	Our findings showed that outcomes following major surgeries could be further improved by combining empirically antihypertensive drugs prescribed. Frailty, often defined as unintentional weight loss, has been shown to be associated with mortality among inhospital patients [32], as well as postdischarge patients or outpatients [33-35]. Newly acquired functional decline among older persons owing to hospital admissions is
 356 357 358 359 360 361 	Our findings showed that outcomes following major surgeries could be further improved by combining empirically antihypertensive drugs prescribed. Frailty, often defined as unintentional weight loss, has been shown to be associated with mortality among inhospital patients [32], as well as postdischarge patients or outpatients [33-35]. Newly acquired functional decline among older persons owing to hospital admissions is especially serious given the already high prevalence of frailty among
 356 357 358 359 360 361 362 	Our findings showed that outcomes following major surgeries could be further improved by combining empirically antihypertensive drugs prescribed. Frailty, often defined as unintentional weight loss, has been shown to be associated with mortality among inhospital patients [32], as well as postdischarge patients or outpatients [33-35]. Newly acquired functional decline among older persons owing to hospital admissions is especially serious given the already high prevalence of frailty among community-dwelling people in the aging Japanese society [36] and its association with
 356 357 358 359 360 361 362 363 	Our findings showed that outcomes following major surgeries could be further improved by combining empirically antihypertensive drugs prescribed. Frailty, often defined as unintentional weight loss, has been shown to be associated with mortality among inhospital patients [32], as well as postdischarge patients or outpatients [33-35]. Newly acquired functional decline among older persons owing to hospital admissions is especially serious given the already high prevalence of frailty among community-dwelling people in the aging Japanese society [36] and its association with higher mortality and economic burden. Our findings showed that 9.2% of

365	Barthel Index score during hospitalization, a figure even higher than the 7.4% overall
366	pooled prevalence of frailty among Japanese community-dwelling people aged 65 and
367	older reported in a previous review [36]. This suggests that the probability of functional
368	decline is primarily higher among inpatients and that patients with hypertension are at
369	substantially higher risk. Thus, combinations of antihypertensive drugs, including
370	RASis, may improve the clinical outcomes of patients with hypertension by minimizing
371	functional decline through internal treatment during the acute phase of hospitalization.
372	A substantial proportion of patients worldwide remain resistant to hypertension
373	treatment and are usually treated with more antihypertensive medication classes.
374	However, the optimal combinations of antihypertensives are yet to be fully understood.
375	As expected, our findings showed that the number of antihypertensive classes was
376	positively correlated with the risk of mortality and functional decline. Indeed, we found
377	that patients on multiple antihypertensive medications were at a greater risk for the
378	composite outcome, even after adjusting for potential confounders. Notably, after
379	adjusting for the use of loop diuretics, the odds for the risk of the composite outcome
380	were similar regardless of the number of antihypertensive classes used, suggesting that
381	loop diuretic usage was a powerful confounding factor associated with mortality and
382	functional decline. Loop diuretics are indispensable in addressing fluid retention among

383	patients with renal and heart failure. One possible side effect of loop diuretics is
384	sarcopenia, as discussed in previous studies [10-14]. Na+-K+-2Cl- cotransporter 1,
385	which is highly expressed in mammalian skeletal muscle and inhibited by furosemide,
386	might help prevent muscle loss based on its background pharmacological mechanism
387	[10]; however, the pathological pathway has yet to be not fully elucidated.
388	One strength of the current study is that we used well-validated Japanese
389	administrative data representing a sample of the general population. The validity of the
390	diagnoses and procedural records in the Japanese DPC database was corroborated in a
391	previous study [37]. However, several limitations need to be acknowledged. First, this
392	study was exclusively conducted on a single race or ethnicity. Evidence suggests that
393	Asian populations have a higher prevalence of uncontrolled hypertension [38]. Hence,
394	our findings may not be generalizable to other ethnicities. Second, the use of more than
395	one antihypertensive drug within the same antihypertensive class was under-represented
396	in this study. Third, given the nature of the datasets used herein, we were unable to
397	determine changes in blood pressure and antihypertensive drug use during
398	hospitalization potentially caused by poor control, complications, or side effects. The
399	number of antihypertensive classes may have been overestimated. Finally, the database
400	lacked biochemical data and longitudinal outcomes after discharge. Our study focused

401	only on the effects of antihypertensive medication on postoperative mortality and
402	functional decline during the acute phase of hospitalization following major surgeries.
403	A previous multicenter retrospective cohort study showed that the postoperative
404	initiation of RASis even at discharge was associated with reduced long-term mortality
405	rate in patients undergoing cardiac surgery [39]. Randomized controlled trials are
406	needed to determine whether perioperative RASi initiation could improve outcomes
407	following cardiac and non-cardiac surgeries.
408	In conclusion, the current study highlights the effects of antihypertensive classes
409	and their combinations on the risk of postoperative mortality and functional decline.
410	Our findings showed that RASis usage had a positive prognostic impact on
411	postoperative inhospital death and functional decline regardless of the number of
412	antihypertensive medication classes used. Thus, RASi use may mitigate negative
413	postoperative outcomes after major noncardiac surgeries.
414	
415	Acknowledgments

416 We would like to thank all study participants.

417

418 Sources of Funding

- 419 This study was supported by the Health and Labour Sciences Research Grant (Grant No.
- 420 Seisaku-Sitei-22AA2003 to KF) of the Japan Ministry of Health, Labour and Welfare.
- 421
- 422 Disclosures
- 423 **Conflict of interest**
- 424 None.
- 425
- 426 **References**
- 427 1. Zhou B, Carrillo-Larco RM, Danaei G, Riley LM, Paciorek CJ, Stevens GA,
- 428 Gregg EW, Bennett JE, Solomon B, Singleton RK, et al. Worldwide trends in
- 429 hypertension prevalence and progress in treatment and control from 1990 to 2019: a
- 430 pooled analysis of 1201 population-representative studies with 104 million participants.
- 431 Lancet. 2021;398:957–980.
- 432 2. Carey RM, Calhoun DA, Bakris GL, Brook RD, Daugherty SL,
- 433 Dennison-Himmelfarb CR, Egan BM, Flack JM, Gidding SS, Judd E, et al. Resistant
- 434 hypertension: detection, evaluation, and management: A scientific statement from the
- 435 American Heart Association. *Hypertension*. 2018;72:e53–e90.

- 436 3. Persell SD. Prevalence of resistant hypertension in the United States, 2003–2008.
- 437 *Hypertension*. 2011;57:1076–1080.
- 438 4. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A,
- 439 Cushman WC, White W, Sica D, et al. Resistant hypertension: diagnosis, evaluation,
- 440 and treatment. A scientific statement from the American Heart Association Professional
- 441 Education Committee of the Council for High Blood pressure research. *Hypertension*.
- 442 2008;51:1403–1419.
- 443 5. Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. *Nat*
- 444 *Rev Nephrol.* 2020;16:223–237.
- 445 6. Matsuki H, Genma T, Mandai S, Fujiki T, Mori Y, Ando F, Mori T, Susa K,
- 446 Iimori S, Naito S, et al. National trends in mortality and urgent dialysis after acute
- 447 hypertension in Japan from 2010 through 2019. *Hypertension*. 2023;80:2591–2600.
- 448 7. Dr Onder G, Penninx BWJH, Balkrishnan R, Fried LP, Chaves PH, Williamson
- 449 J, Carter C, Di Bari M, Guralnik JM, Pahor M. Relation between use of
- 450 angiotensin-converting enzyme inhibitors and muscle strength and physical function in
- 451 older women: an observational study. *Lancet*. 2002;359:926–930.
- 452 8. Di Bari M, van de Poll-Franse LV, Onder G, Kritchevsky SB, Newman A,
- 453 Harris TB, Williamson JD, Marchionni N, Pahor M, Health, Aging and Body

454	Composition	Study. Antihype	rtensive medic	cations and	differences	in muscle	e mass in
-----	-------------	-----------------	----------------	-------------	-------------	-----------	-----------

- 455 older persons: the health, aging and body composition study. J Am Geriatr Soc.
- 456 2004;52:961–966.
- 457 9. Hamroff G, Katz SD, Mancini D, Blaufarb I, Bijou R, Patel R, Jondeau G,
- 458 Olivari MT, Thomas S, Le Jemtel TH. Addition of angiotensin II receptor blockade to
- 459 maximal angiotensin-converting enzyme inhibition improves exercise capacity in
- 460 patients with severe congestive heart failure. *Circulation*. 1999;99:990–992.
- 461 10. Mandai S, Furukawa S, Kodaka M, Hata Y, Mori T, Nomura N, Ando F, Mori Y,
- 462 Takahashi D, Yoshizaki Y, et al. Loop diuretics affect skeletal myoblast differentiation
- 463 and exercise-induced muscle hypertrophy. *Sci Rep.* 2017;7:46369.
- 464 11. Ishikawa S, Naito S, Iimori S, Takahashi D, Zeniya M, Sato H, Nomura N,
- 465 Sohara E, Okado T, Uchida S, et al. Loop diuretics are associated with greater risk of
- 466 sarcopenia in patients with nondialysis-dependent chronic kidney disease. *PLOS ONE*.
- 467 2018;13:e0192990.
- 468 12. Hanai T, Shiraki M, Miwa T, Watanabe S, Imai K, Suetsugu A, Takai K,
- 469 Moriwaki H, Shimizu M. Effect of loop diuretics on skeletal muscle depletion in
- 470 patients with liver cirrhosis. *Hepatol Res.* 2019;49:82–95.

- 471 13. Felker GM, O'Connor CM, Braunwald E, Heart Failure Clinical Research
- 472 Network Investigators. Loop diuretics in acute decompensated heart failure: necessary?
- 473 Evil? A necessary evil? *Circ Heart Fail*. 2009;2:56–62.
- 474 14. Nakano I, Tsuda M, Kinugawa S, Fukushima A, Kakutani N, Takada S, Yokota
- 475 T. Loop diuretic use is associated with skeletal muscle wasting in patients with heart
- 476 failure. J Cardiol. 2020;76:109–114.
- 477 15. Nakano Y, Mandai S, Genma T, Akagi Y, Fujiki T, Ando F, Susa K, Mori T,
- 478 Iimori S, Naito S, et al. Nationwide mortality associated with perioperative acute
- dialysis requirement in major surgeries. *Int J Surg.* 2022;104:106816.
- 480 16. Isogai T, Yasunaga H, Matsui H, Tanaka H, Horiguchi H, Fushimi K.
- 481 Effectiveness of inferior vena cava filters on mortality as an adjuvant to antithrombotic
- 482 therapy. *Am J Med.* 2015;128:312.e23–312.e31.
- 483 17. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying
- 484 prognostic comorbidity in longitudinal studies: development and validation. *J Chron*
- 485 *Dis.* 1987;40:373–383.
- 486 18. Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, Januel JM,
- 487 Sundararajan V. Updating and validating the Charlson comorbidity index and score for

- 488 risk adjustment in hospital discharge abstracts using data from 6 countries. Am J
- 489 *Epidemiol.* 2011;173:676–682.
- 490 19. Bykov K, Bateman BT, Franklin JM, Vine SM, Patorno E. Association of
- 491 gabapentinoids with the risk of opioid-related adverse events in surgical patients in the
- 492 United States. JAMA Netw Open. 2020;3:e2031647.
- 493 20. Mahoney FI, Barthel DW. Functional evaluation: the Barthel Index, Md Stat.
- 494 *Med J.* 1965;14:61–65.
- 495 21. Kessler M, Frimat L, Panescu V, Briançon S. Impact of nephrology referral on
- 496 early and midterm outcomes in ESRD: EPidemiologie de l'insuffisance REnale
- 497 chronique terminale en Lorraine (EPIREL): results of a 2-year, prospective,
- 498 community-based study. Am J Kidney Dis. 2003;42:474–485.
- 499 22. Rethy LB, Feinstein MJ, Achenbach CJ, Townsend RR, Bress AP, Shah SJ,
- 500 Cohen JB. Antihypertensive class and cardiovascular outcomes in patients with HIV
- and hypertension. *Hypertension*. 2021;77:2023–2033.
- 502 23. Copland E, Canoy D, Nazarzadeh M, Bidel Z, Ramakrishnan R, Woodward M,
- 503 Chalmers J, Teo KK, Pepine CJ, Davis BR, et al. Antihypertensive treatment and risk of
- 504 cancer: an individual participant data meta-analysis. *Lancet Oncol.* 2021;22:558–570.

- 505 24. Tasheva P, Vollenweider P, Kraege V, Roulet G, Lamy O, Marques-Vidal P,
- 506 Méan M. Association between physical activity levels in the hospital setting and
- 507 hospital-acquired functional decline in elderly patients. JAMA Netw Open.
- 508 2020;3:e1920185.
- 509 25. Zhao W, Swanson SA, Ye J, Li X, Shelton JM, Zhang W, Thomas GD. Reactive
- 510 oxygen species impair sympathetic vasoregulation in skeletal muscle in angiotensin
- 511 II-dependent hypertension. *Hypertension*. 2006;48:637–643.
- 512 26. Brink M, Wellen J, Delafontaine P. Angiotensin II causes weight loss and
- 513 decreases circulating insulin-like growth factor I in rats through a pressor-independent
- 514 mechanism. J Clin Invest. 1996;97:2509–2516.
- 515 27. Dalla Libera L, Ravara B, Angelini A, Rossini K, Sandri M, Thiene G, Battista
- 516 Ambrosio G, Vescovo G. Beneficial effects on skeletal muscle of the angiotensin II type
- 517 1 receptor blocker irbesartan in experimental heart failure. *Circulation*.
- 518 2001;103:2195–2200.
- 519 28. Burks TN, Andres-Mateos E, Marx R, Mejias R, Van Erp C, Simmers JL,
- 520 Walston JD, Ward CW, Cohn RD. Losartan restores skeletal muscle remodeling and
- 521 protects against disuse atrophy in sarcopenia. Sci Transl Med. 2011;3:82ra37.

- 522 29. Hashimoto H, Mandai S, Shikuma S, Kimura M, Toma H, Sakaguchi Y,
- 523 Shiraishi S, Toshima N, Hoshino M, Kimura M, et al. The effect of antihypertensive
- 524 therapy on skeletal muscle mass and bone mineral density in patients with end-stage
- 525 kidney disease. J Ren Nutr. 2023. https://doi.org/10.1053/j.jrn.2023.10.008.
- 526 30. Steinman MA, Zullo AR, Lee Y, Daiello LA, Boscardin WJ, Dore DD, Gan S,
- 527 Fung K, Lee SJ, Komaiko KD, et al. Association of β-blockers with functional
- 528 outcomes, death, and rehospitalization in older nursing home residents after acute
- 529 myocardial infarction. JAMA Intern Med. 2017;177:254–262.
- 530 31. Palau P, Seller J, Domínguez E, Sastre C, Ramón JM, de La Espriella R, Santas
- 531 E, Miñana G, Bodí V, Sanchis J, et al. Effect of β-blocker withdrawal on functional
- 532 capacity in heart failure and preserved ejection fraction. J Am Coll Cardiol.
- 533 2021;78:2042–2056.
- 534 32. Mandai S, Koide T, Fujiki T, Mori Y, Ando F, Susa K, Mori T, Iimori S, Naito
- 535 S, Sohara E, et al. Association of Admission functional status and body mass index with
- 536 mortality in patients receiving chronic dialysis: A nationwide observational cohort study.
- 537 JMA J. 2023;6:404–413.

- 538 33. Pandey, A, Kitzman, D, Reeves, G. Frailty is intertwined with heart failure:
- 539 mechanisms, prevalence, prognosis, assessment, and management. J Am Coll Cardiol
- 540 HF. 2019;7:1001–1011.
- 541 34. Kulmala J, Nykänen I, Hartikainen S. Frailty as a predictor of all-cause mortality
- 542 in older men and women. *Geriatr Gerontol Int.* 2014;14:899–905.
- 543 35. Brummel NE, Bell SP, Girard TD, Pandharipande PP, Jackson JC, Morandi A,
- 544 Thompson JL, Chandrasekhar R, Bernard GR, Dittus RS, et al. Frailty and Subsequent
- 545 Disability and Mortality among Patients with Critical Illness. Am J Respir Crit Care
- 546 *Med.* 2017;196:64–72.
- 547 36. Kojima G, Iliffe S, Taniguchi Y, Shimada H, Rakugi H, Walters K. Prevalence
- 548 of frailty in Japan: a systematic review and meta-analysis. *J Epidemiol*.
- 549 2017;27:347–353.
- 550 37. Yamana H, Moriwaki M, Horiguchi H, Kodan M, Fushimi K, Yasunaga H.
- 551 Validity of diagnoses, procedures, and laboratory data in Japanese administrative data. J
- 552 *Epidemiol.* 2017;27:476–482.
- 553 38. Park JB, Kario K, Wang JG. Systolic hypertension: an increasing clinical
- challenge in Asia. *Hypertens Res.* 2015;38:227–236.

- 555 39. Ding Q, Zhang Z, Liu H, Nie H, Berguson M, Goldhammer JE, Young N, Boyd
- 556 D, Morris R, Sun J. Perioperative use of renin-angiotensin system inhibitors and
- 557 outcomes in patients undergoing cardiac surgery. *Nat Commun.* 2019;10:4202.

558

560 Tables

561 Table 1. Characteristics of patients aged 50 years and older undergoing major

562 surgeries

	Treatment with	
	antihypertensive	No treatment (n =
	medications ($n = 473,327$)	376,583)
Age (year)	76 (69–82)	70 (63–78)
Female	230417 (49)	187556 (50)
BMI (kg/m ²)	23.4 (20.9–26.0)	22.5 (20.2–24.9)
Barthel Index score		
0–25	82671 (17)	45681 (12)
30–55	23467 (5)	14150 (4)
60-85	24738 (5)	14592 (4)
90–100	342451 (72)	302160 (80)
Cardiovascular disease	82490 (17)	22696 (6)
Diabetes mellitus	123050 (26)	55841 (15)
Chronic kidney disease	25046 (5)	6468 (2)
Emergency admission	134369 (28)	91961 (24)
Major surgeries		
GABG	19617 (4)	167 (0.04)
Lobectomy	37348 (8)	36642 (10)
Orthopedic surgery	212501 (45)	138757 (37)
Surgery for diseases of liver, gall		
bladder, and pancreas	64788 (14)	63543 (17)
Gastrointestinal resection and		
esophagectomy	93624 (20)	95305 (25)
Urological surgery	45449 (10)	42169 (11)
Antihypertensive class		
One class	225731 (48)	NA
Two classes	172141 (36)	NA
Three classes	58456 (12)	NA
≥Four classes	16999 (4)	NA
Thiazide and thiazide-like	24625 (5)	NA

diuretics			
CCBs	359461 (76)	NA	
RASis	258134 (55)	NA	
MRA	45190 (10)	NA	
Beta blockers	105011 (22)	NA	
Alpha blockers	22981 (5)	NA	
Loop diuretics	91085 (19)	21782 (6)	
Year			
2018	247059 (52)	197997 (53)	
2019	226268 (48)	178586 (47)	

563 Data are presented as number (percentage) or median (interquartile range).

564 BMI, body mass index; CABG, coronary artery bypass grafting; CCB, calcium channel

565 blocker; MRA, mineral corticoid receptor antagonist; RASi,

566 renin–angiotensin–aldosterone system inhibitor; NA, not applicable.

568 Table 2. Number of antihypertensive classes and risk for mortality or functional

569 decline after survival in patients undergoing major surgeries.

	n/N	Model 1	Model 2	Model 3	Model 4	
No antihypertensive	25207/276592	Deference	Deference	Deference	Deference	
drugs	23201/370383	Reference	Reference	Reference	Reference	
One class	22063/225731	1.20 (1.18–1.23)	1.20 (1.17–1.22)	1.17 (1.14–1.19)	1.12 (1.10–1.14)	
Two classes	17558/172141	1.23 (1.20–1.25)	1.20 (1.18–1.23)	1.14 (1.12–1.17)	1.14 (1.04–1.09)	
Three classes	6861/58456	1.42 (1.38–1.47)	1.42 (1.38–1.46)	1.30 (1.26–1.34)	1.11 (1.08–1.15)	
≥Four classes	2225/16999	1.57 (1.49–1.65)	1.58 (1.50–1.67)	1.43 (1.36–1.51)	1.12 (1.07–1.19)	

570 Model 1: Adjusted for age, sex, and type of major surgeries (CABG, thoracic lobectomy,

- 571 orthopedic surgery, hepatopancreatobiliary surgery, gastrointestinal resection, and
- 572 urological surgery)
- 573 Model 2: Model 1 plus BMI and Barthel Index score on admission.
- 574 Model 3: Model 2 plus DM, CVD, CKD, emergency admission, and admission year.
- 575 Model 4: Model 3 plus loop diuretics.
- 576 CABG, coronary artery bypass grafting; BMI, body mass index; DM, diabetes mellitus;
- 577 CVD, cardiovascular disease; CKD, chronic kidney disease; CI, confidence interval;
- 578 OR, odds ratio.

580 Table 3. Combinations of antihypertensive classes and perioperative outcomes

581 following major surgeries in Japanese adults.

		Composite outco	me	Death		Functional decline	
		OR (95%CI)	P value	OR (95%CI)	P value	OR (95%CI)	P value
One cla	<u>ass</u>						
	TH	Reference		Reference		Reference	
	CCB	0.89 (0.73–1.08)	0.2	0.91 (0.55–1.53)	0.7	0.88 (0.72-1.08)	0.2
	RASi	0.77 (0.63–0.93)	0.008	0.58 (0.34-0.99)	0.044	0.79 (0.64–0.97)	0.022
	MRA	1.11 (0.91–1.36)	0.3	1.49 (0.88–2.51)	0.1	0.95 (0.76–1.18)	0.6
	β-blockers	1.14 (0.92–1.42)	0.2	0.59 (0.31-1.12)	0.1	1.27 (1.01–1.60)	0.040
	α-blockers	1.10 (0.90–1.34)	0.4	1.60 (0.95–2.69)	0.1	0.99 (0.80–1.22)	0.9
Two cl	asses						
	TH/CCB	Reference		Reference		Reference	
	TH/RASi	0.68 (0.60-0.77)	< 0.001	0.20 (0.09-0.41)	< 0.001	0.76 (0.67–0.86)	< 0.001
	CCB/RASi	0.78 (0.75-0.82)	< 0.001	0.47 (0.41-0.52)	< 0.001	0.85 (0.81–0.89)	< 0.001
	RASi/other	0.80 (0.75-0.86)	< 0.001	0.75 (0.65–0.87)	< 0.001	0.84 (0.78–0.90)	< 0.001
	Other/other	1.13 (1.03–1.23)	0.010	1.15 (0.99–1.34)	0.07	1.01 (0.90–1.12)	0.9
Three c	classes						
	TH/CCB/other	Reference		Reference		Reference	
	TH/CCB/RASi	0.72 (0.49–0.82)	< 0.001	0.43 (0.31-0.60)	< 0.001	0.79 (0.70-0.89)	< 0.001
	TH/RASi/other	0.87 (0.49–1.12)	0.2	0.62 (0.36-1.07)	0.09	0.98 (0.79–1.22)	0.9
	CCB/RASi/other	0.82 (0.52–0.86)	< 0.001	0.75 (0.63-0.89)	0.001	0.88 (0.80-0.97)	0.011
	RASi/others	0.78 (0.50-1.65)	< 0.001	0.55 (0.43-0.70)	< 0.001	0.91 (0.79–1.05)	0.2
	Others	1.66 (1.02–2.69)	0.040	0.72 (0.28–1.81)	0.5	2.19 (1.29–3.72)	0.004
<u>≥Four</u> of	classes						
	TH/CCB/others	Reference		Reference		Reference	
	TH/CCB/RASi/ot	0 (2 (0 40 0 92)	0.001	0.55 (0.26, 0.96)	0.000	0.75 (0.55, 1.02)	0.07
her		0.63 (0.49–0.82)	0.001	0.55 (0.36–0.86)	0.008	0.75 (0.55–1.03)	0.07
	TH/RASi/others	0.74 (0.49–1.12)	0.2	0.58 (0.27-1.23)	0.2	0.90 (0.56–1.45)	0.7
	CCB/RASi/others	0.67 (0.52–0.86)	0.002	0.50 (0.34–0.76)	0.001	0.83 (0.62–1.13)	0.2
	RASi/others	0.91 (0.50–1.65)	0.8	0.55 (0.18–1.65)	0.3	1.25 (0.64–2.46)	0.5

- 582 Multivariate logistic regression models adjusted for age, sex, type of major surgeries
- 583 (CABG, thoracic lobectomy, orthopedic surgery, hepatopancreatobiliary surgery,
- 584 gastrointestinal resection, and urological surgery), BMI, Barthel Index score on
- admission, DM, CVD, CKD, emergency admission, admission year, and loop diuretics.
- 586 CABG, coronary artery bypass grafting; BMI, body mass index; DM, diabetes mellitus;
- 587 CVD, cardiovascular disease; CKD, chronic kidney disease; CI, confidence interval;
- 588 OR, odds ratio; CCB, calcium channel blocker; MRA, mineral corticoid receptor
- 589 antagonist; RASi, renin-angiotensin-aldosterone system inhibitor; TH,
- 590 thiazide/thiazide-like diuretics.

592 Figure legends

593	Figure 1. Antihypertensive classes and prevalence of postoperative death or
594	functional decline after survival among patients undergoing major surgeries. a, b.
595	prevalence of all-cause inhospital deaths (a) and functional decline (b) among nonusers
596	and users of one, two, three, or four or more antihypertensive classes according to age
597	category. Functional decline was defined as a \geq 5-point decreased in the Barthel Index
598	score between admission and discharge. Each spot represents a mean, whereas the solid
599	lines represent the corresponding 95% CI. CI, confidence interval; n/N, number of
600	events/number of participants.
601	Figure 2. Association between surgery type and effects of antihypertensive classes
602	on negton anotive outcomes among notion to with hypothesian. Multivariable logistic
	on postoperative outcomes among patients with hypertension. Multivariable logistic
603	regression models adjusted for age, sex, number of antihypertensive classes, BMI,
603 604	regression models adjusted for age, sex, number of antihypertensive classes, BMI, Barthel Index score on admission, DM, CVD, CKD, emergency admission, year, and
603 604 605	regression models adjusted for age, sex, number of antihypertension. Multivariable logistic Barthel Index score on admission, DM, CVD, CKD, emergency admission, year, and loop diuretics according to surgery type. The type of major surgeries included CABG,
603 604 605 606	regression models adjusted for age, sex, number of antihypertension. Multivariable logistic Regression models adjusted for age, sex, number of antihypertensive classes, BMI, Barthel Index score on admission, DM, CVD, CKD, emergency admission, year, and loop diuretics according to surgery type. The type of major surgeries included CABG, thoracic lobectomy, orthopedic surgery, hepatopancreatobiliary surgery, gastrointestinal
603604605606607	regression models adjusted for age, sex, number of antihypertension. Multivariable logistic Regression models adjusted for age, sex, number of antihypertensive classes, BMI, Barthel Index score on admission, DM, CVD, CKD, emergency admission, year, and loop diuretics according to surgery type. The type of major surgeries included CABG, thoracic lobectomy, orthopedic surgery, hepatopancreatobiliary surgery, gastrointestinal resection, and urological surgery. CABG, coronary artery bypass grafting; BMI, body
 603 604 605 606 607 608 	regression models adjusted for age, sex, number of antihypertension. Multivariable logistic regression models adjusted for age, sex, number of antihypertensive classes, BMI, Barthel Index score on admission, DM, CVD, CKD, emergency admission, year, and loop diuretics according to surgery type. The type of major surgeries included CABG, thoracic lobectomy, orthopedic surgery, hepatopancreatobiliary surgery, gastrointestinal resection, and urological surgery. CABG, coronary artery bypass grafting; BMI, body mass index; DM, diabetes mellitus; CVD, cardiovascular disease; CKD, chronic kidney

- 610 mineral corticoid receptor antagonist; RASi, renin-angiotensin-aldosterone system
- 611 inhibitor.

Drug class vs other comparisons	Treatment group (n/N)	Control group (n/N)				OR (95% CI)
Thiazide vs other CABG Thoracic lobectomy Orthopedic surgery Hepatopancreatobiliary surgery Gastrointestinal resection Urological surgery	186/1308 64/1642 1921/12465 163/2818 358/4058 104/2334	2125/18309 1571/35706 29095/200036 3157/61970 7888/89566 2075/43115			_	1.29 (1.08–1.54) 0.74 (0.56–0.97) 0.98 (0.92–1.03) 0.99 (0.82–1.18) 0.86 (0.76–0.98) 0.85 (0.68–1.07)
CCB vs other CABG Thoracic lobectomy Orthopedic surgery Hepatopancreatobiliary surgery Gastrointestinal resection Urological surgery	1980/16639 1194/28487 23461/161680 2452/48244 5856/70469 1625/33942	331/2978 441/8861 7555/50821 868/16544 2390/23155 554/11507			Ξ	1.30 (1.13–1.50) 1.30 (1.13–1.50) 0.97 (0.94–1.00) 1.08 (0.99–1.18) 0.95 (0.89–1.00) 1.09 (0.97–1.21)
RASi vs other CABG Thoracic lobectomy Orthopedic surgery Hepatopancreatobiliary surgery Gastrointestinal resection Urological surgery	1290/11714 843/20334 17192/118685 1535/33329 3565/46994 1179/27078	1021/7903 792/17014 13824/93816 1785/31459 4681/46630 1000/18371	-1 -1 -1			0.97 (0.86–1.10) 0.72 (0.63–0.82) 0.87 (0.84–0.90) 0.69 (0.63–0.76) 0.67 (0.63–0.71) 0.83 (0.74–0.93)
MRA vs other CABG Thoracic lobectomy Orthopedic surgery Hepatopancreatobiliary surgery Gastrointestinal resection Urological surgery	1238/11619 166/1536 2600/14316 851/8683 1419/7018 183/2018	1073/7998 1469/35812 28416/198185 2469/56105 6827/86606 1996/43431			-	0.93 (0.83–1.06) 1.21 (0.99–1.47) 1.19 (1.13–1.26) 1.33 (1.21–1.47) 1.32 (1.22–1.43) 1.06 (0.88–1.28)
α-Blocker vs other CABG Thoracic lobectomy Orthopedic surgery Hepatopancreatobiliary surgery Gastrointestinal resection Urological surgery	120/803 60/1143 1980/12339 162/2250 478/4088 152/2358	2191/18814 1575/36205 29036/200162 3158/62538 7768/89536 2027/43091				1.16 (0.93–1.43) 1.07 (0.8–1.43) 1.18 (1.12–1.25) 1.12 (0.94–1.35) 1.20 (1.07–1.34) 1.17 (0.96–1.42)
β-Blocker vs other CABG Thoracic lobectomy Orthopedic surgery Hepatopancreatobiliary surgery Gastrointestinal resection Urological surgery	1900/17235 551/7998 6120/37443 868/12546 2638/20388 525/9401	411/2382 1084/29350 24896/175058 2452/52242 5608/73236 1654/36048	_	•- - • •	- -	0.77 (0.67–0.89) 1.49 (1.32–1.69) 1.08 (1.04–1.12) 1.03 (0.94–1.14) 1.32 (1.24–1.40) 1.08 (0.96–1.22)
			0.5	1.0	2.0	

Favors lower risk

Favors higher risk