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Abstract4

Problem: Sepsis, a life-threatening condition, accounts for the deaths of millions of people5

worldwide. Accurate prediction of sepsis outcomes is crucial for effective treatment and man-6

agement. Previous studies have utilized machine learning for prognosis, but have limitations in7

feature sets and model interpretability.8

9

Aim: This study aims to develop a machine learning model that enhances prediction accuracy10

for sepsis outcomes using a reduced set of features, thereby addressing the limitations of previous11

studies and enhancing model interpretability.12

13

Methods: This study analyzes intensive care patient outcomes using the MIMIC-IV database,14

focusing on adult sepsis cases. Employing the latest data extraction tools, such as Google Big-15

Query, and following stringent selection criteria, we selected 38 features in this study. This selection16

is also informed by a comprehensive literature review and clinical expertise. Data preprocessing17

included handling missing values, regrouping categorical variables, and using the Synthetic Mi-18

nority Over-sampling Technique (SMOTE) to balance the data. We evaluated several machine19

learning models: Decision Trees, Gradient Boosting, XGBoost, LightGBM, Multilayer Percep-20

trons (MLP), Support Vector Machines (SVM), and Random Forest. The Sequential Halving and21

Classification (SHAC) algorithm was used for hyperparameter tuning, and both train-test split22

and cross-validation methodologies were employed for performance and computational efficiency.23

24

Results: The Random Forest model was the most effective, achieving an area under the re-25

ceiver operating characteristic curve (AUROC) of 0.94 with a confidence interval of ±0.01. This26

significantly outperformed other models and set a new benchmark in the literature. The model27

also provided detailed insights into the importance of various clinical features, with the Sequential28

Organ Failure Assessment (SOFA) score and average urine output being highly predictive. SHAP29

(Shapley Additive Explanations) analysis further enhanced the model’s interpretability, offering a30

clearer understanding of feature impacts.31

32

Conclusion: This study demonstrates significant improvements in predicting sepsis outcomes33

using a Random Forest model, supported by advanced machine learning techniques and thorough34

data preprocessing. Our approach provided detailed insights into the key clinical features impact-35

ing sepsis mortality, making the model both highly accurate and interpretable. By enhancing the36

model’s practical utility in clinical settings, we offer a valuable tool for healthcare professionals to37

make data-driven decisions, ultimately aiming to minimize sepsis-induced fatalities.38
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1 Background40

Sepsis can cause the failure of one or more organ systems, which is a life-threatening condition41

that occurs unpredictably and can progress rapidly [1–5]. By 2017, Sepsis accounted for nearly42

20% of all global deaths; more specifically, there were 11 million sepsis-related deaths in total 48.943

million sepsis cases [6]. Among those, 1.7 million adults develop sepsis each year in the United44

States, which causes around 270,000 deaths [7]. In a 2020 study, Suveges and other examine [8]45

analyzed 110,204 hospital admissions, revealing a direct correlation between the length of hospital46

stay and survival, with an average stay of 10 days indicating a decreased likelihood of survival.47

Given the severity of the illness, it is crucial to find the possible factors that contribute to the48

mortality of sepsis [9–11].49

50

Traditionally, various scoring systems (i.e. SOFA score) were used to predict in-hospital mor-51

tality for critically ill patients with sepsis [12–15]. Such systems, while effective, are often limited52

in the range of features they examine [16–18]. For example, these scoring systems typically focus53

on a narrow set of clinical parameters, which might not capture the full complexity of sepsis.54

This limitation can lead to incomplete assessments of a patient’s condition and subsequently, less55

accurate predictions. Other studies, such as retrospective analysis, are also popular methods for56

evaluating relationships between a specific feature and mortality. For instance, Bi’s study [19]57

demonstrates a correlation between PaO2/FiO2 levels and 28-day mortality, more specifically, on58

a 200mg threshold. However, even though accurate, these studies are less effective and can only59

examine one pair of relationship at a time. This approach does not account for the multifacto-60

rial nature of sepsis, where multiple physiological and biochemical parameters interact in complex61

ways. As a result, these studies often miss critical interactions between features that could improve62

the predictive accuracy of sepsis outcomes. The inability to integrate and analyze multiple features63

simultaneously poses a significant barrier to developing more comprehensive and precise predictive64

models for sepsis. Furthermore, the reliance on retrospective data means these models are often65

not adaptive to the dynamic and rapidly changing clinical status of sepsis patients, further limiting66

their real-time applicability and effectiveness.67

68

To overcome the limitations of traditional methods, recent studies have pivoted towards Ma-69

chine Learning (ML) and Deep Learning (DL) approaches [20–30]. In Bao’s study [6], they pre-70

sented the efficacy of the Light GBM algorithm in predicting sepsis patient mortality, suggesting71

its integration into clinical tools. Similarly, Shifang et al. [31] highlighted the potential of Ar-72

tificial Neural Networks (ANN) in the early detection of high-risk patients. Moreover, machine73

learning methods are increasingly being employed across a broad spectrum of medical-related74

topics, demonstrating their versatility and efficacy. [32–40], However, even though these previous75

works introduced advanced analytical methods, we found that they utilized a significant number76

of features and did not achieve satisfying results.These models often lacked comprehensive feature77

selection strategies and advanced data preprocessing techniques, which limited their accuracy and78

practicality in clinical settings. Additionally, the use of numerous features complicated the models,79

leading to overfitting and inefficiency, making them less suitable for real-time application. In the80

following, we will list the main contributions of our work:81

• Advanced data preprocessing techniques were employed to address missing or duplicate val-82

ues and to regroup categorical variables, significantly enhancing data quality and model83

performance.84

• A thorough review of academic literature and recommendations from clinical experts guided85

our feature selection process, leading to more accurate predictions using a smaller, more86

relevant feature set.87

• The use of SHAP (SHapley Additive exPlanations) analysis improved the interpretability of88

our model’s predictive outcomes, providing granular insights into the factors affecting sepsis89

mortality.90

• The Synthetic Minority Over-sampling Technique (SMOTE) was used to address data im-91

balance, significantly improving the robustness of our model.92

• Our proposed model, particularly the Random Forest model, achieved an AUROC of 0.9493

with a narrower confidence interval, representing a 6.3% improvement compared to the best94

existing study.95

This paper sets a new benchmark in the field, significantly improving model accuracy and96

efficiency, and making our model a practical tool for healthcare professionals. The use of ma-97

chine learning methods in medicine provides an immediate and accurate second opinion, serving98
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as an alternate source of confirmation for medical professionals. Mortality predictions derived from99

these models are valuable assets for resource management in hospitals, allowing for the refactoring100

of resources to prioritize patients in more desperate conditions. Additionally, predictive models101

facilitate more efficient use of healthcare services by enabling urgent treatment for patients at102

greater risk of death, ultimately helping to save more lives. These advancements enhance clinical103

decision-making and improve patient outcomes.104

105

The rest of the paper is organized as follows: Section 2 Methods describes the data source and106

inclusion criteria, feature selection and data preprocessing, modeling, statistical analysis between107

cohorts, and variables impacts. Section 3 Results presents the cohort characteristics, evaluation108

metrics, and Shapley value analysis. Section 4 Discussion interprets the findings and their signifi-109

cance. Section 5 Limitations addresses the study’s constraints and potential weaknesses. Section110

6 Future Work suggests directions for enhancing predictive capabilities and research extensions.111

Finally, Section 7 Conclusion summarizes the key contributions and clinical impact of the study.112

2 Methods113

2.1 Data Source and Inclusion Criteria114

The data for this study were sourced from the Medical Information Mart for Intensive Care IV115

(MIMIC-IV), an authoritative and comprehensive database [41]. The database contains health116

records of the Beth Israel Deaconess Medical Center from 2008 to 2019 and includes over 40,000117

unique patients from critical care units. The admission information was recorded into various118

tables, such as demographics, lab results, and ICU information. Compared to its predecessor,119

MIMIC-III, this dataset contains updated patient information and extends the scope of data cap-120

tured, thus offering a more current view of patient care. The utilization of MIMIC-IV for our study121

ensures that our analysis is grounded in the latest available data, facilitating a more accurate and122

relevant exploration into the factors affecting patient outcomes in intensive care settings.123

124

To narrow down the target patients, we applied the following criteria. These criteria stipulated125

that only adult patients (aged 18 and above) with a minimum intensive care unit (ICU) stay of126

over 24 hours were considered to guarantee ample data for a thorough analysis. Furthermore,127

the study targeted patients diagnosed with sepsis based on the Third International Consensus128

Definitions for Sepsis and Septic Shock (Sepsis-3), with a Sequential Organ Failure Assessment129

(SOFA) score of 2 or higher and a suspected infection as recorded in the MIMIC-IV database.130

This study implements BigQuery as the data extraction tool to select the target patients from the131

dataset.132

2.2 Feature Selection and Data Preprocessing133

The feature selection process was informed by a thorough review of academic literature and guided134

by recommendations from a clinical expertise. The selection methodology took two key consider-135

ations into account: (1) the recurrence of specific features across multiple studies, signaling their136

widespread recognition in critical care, and (2) the acknowledgment of certain features in prior137

individual studies as vital for mortality prediction. This selection was based on their prevalence138

in existing literature, clinical importance, and statistical validation to ensure their relevance and139

predictive power.140

141

The final dataset contains 38 distinct features, including demographic information, antibiotic142

usage, patient medical history, and various laboratory results. Variables such as the Sequential143

Organ Failure Assessment (SOFA) score, average urine output, minimum and maximum glucose144

levels, sodium levels, heart rate, systolic and diastolic blood pressures (SBP and DBP), respiratory145

rate, oxygen saturation (SPO2), and albumin levels. These features were selected due to their fre-146

quent appearances in related studies, emphasizing their predictive value for patient outcomes. By147

integrating these variables, the dataset provides a robust foundation for developing predictive mod-148

els, aiming to enhance the accuracy of mortality and prognosis estimations in critical care settings.149

150

Further improving the dataset, we set a threshold for the PaO2/FiO2 ratio of 200 [17]. Ad-151

ditionally, based on the recommendation of a clinical expertise, the coma score was incorporated,152

categorizing patients with scores above 8 as in a coma. Following the feature selection process,153

the dataset was narrowed down to 6,401 admission records. A detailed list of features, along with154
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the categories they fall into, can be found in the Table 1 provided below.155

156

Table 1: Detailed Overview of Feature Information

Feature Type Feature Name Feature Type Feature Name

Admission Information los icu Demographics Age

Lab Results

SOFA score Comorbidities diabetes without cc
avg urineoutput diabetes with cc
temperature min severe liver disease
temperature max aids
temperature avg renal disease
heart rate min
heart rate max Medications
heart rate mean antibiotic Carbapenem
resp rate min antibiotic Aminoglycoside
resp rate max antibiotic Glycopeptide
resp rate mean antibiotic Oxazolidinone
spo2 min antibiotic Penicillin
spo2 max antibiotic Sulfonamide
spo2 mean antibiotic Tetracycline
hospital expire flag

157

The dataset’s cleaning was approached with the following steps: (1) addressing null values and158

duplicates in both numerical and categorical data; (2) grouping the existing categorical variables159

(race and antibiotics) into new features to facilitate future encoding processes. Specifically, races160

were separated and summarized into four groups: Black or African American, Hispanic or Latinx,161

White, and Other Races. For the antibiotics, the existing 25 categories were regrouped into seven162

different groups based on their chemical structure, mechanism of action, spectrum of activity, side163

effects, and toxicity. These groups are Aminoglycosides, Carbapenems, Glycopeptides, Oxazolidi-164

nones, Penicillins, Sulfonamides, and Tetracyclines.165

166

Upon review, the training data is imbalanced, which is a common issue in healthcare datasets.167

Unlike the cluster centroids method used in existing literature, the Synthetic Minority Over-168

sampling Technique(SMOTE) method was introduced to address this data imbalance issue by169

oversampling [42]. SMOTE method helps raise our data points for the minority class, which170

increases the likelihood that models will generalize well to new, unseen data and reduces the171

risk of overfitting. After applying the SMOTE method, the data points expanded from 6,401172

to 7,304. By doing so, SMOTE helps balance the dataset, which is crucial for training models173

that generalize well to new, unseen data and reduces the risk of overfitting. This method ensures174

that our predictive models are more robust and reliable. Below is Figure 1, which illustrates the175

workflow for data preprocessing.176

2.3 Modeling177

The final dataset comprises 53 columns and 7,304 data points and has achieved balance after178

the application of SMOTE. To thoroughly evaluate the performance of various machine learning179

classification models, we utilized two methodologies: (1) train-test split; (2) 5-fold cross-validation180

and hyper-parameter tuning. More specifically, the Sequential Halving and Classification (SHAC)181

algorithm, proposed by Kumar et al. [43], was adopted as a more efficient alternative to exhaus-182

tive grid search for hyperparameter tuning and preventing overfitting. We then fed the resulted183

dataset to the following models: tree-based models such as Decision Trees [44], ensemble methods184

like Gradient Boosting [45], Extra Gradient Boosting (XGBoost) [46], Light Gradient Boosting185

Machine (LightGBM) [47], neural networks with a focus on Multilayer Perceptrons (MLP) [48],186

margin-based models including Support Vector Machines (SVM) [49], and bagging models, notably187

Random Forest [50].188

To determine the proposed model, we meticulously evaluated three key factors: firstly, the189

Area Under the Receiver Operating Characteristic (AUROC) scores to assess accuracy; secondly,190
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Figure 1: Work flow of data preprocessing. The process begins with selected records (red), followed by initial
preprocessing steps like SMOTE and dropping null values (orange). Data is then divided into categorical and
numerical types for further processing (purple). Categorical data is categorized and encoded (blue). Finally,
the processed data is ready for model fitting (green).

sensitivity to variance, serving as a gauge for the model’s robustness; and thirdly, the overall191

consistency to ensure reliability across different datasets. Consequently, this evaluation frame-192

work showed that the Random Forest model outperformed other models using both the train-test193

split and cross-validation methodologies. This choice was driven by the model’s superior AUROC194

scores, affirming its effectiveness in prediction and its potential for handling new data. Our se-195

lection process highlights the significance of utilizing a structured evaluation to identify a model196

that not only shows high performance but also maintains robustness and consistency under various197

conditions. Figure 2 below shows the workflow of our methodology.198

199

2.4 Statistic analysis between cohorts200

Statistical analyses, such as the chi-square test and two-sided t-test, were performed to compare201

the measurements of variables in the train and test cohorts. More specifically, the comparison202

for categorical features was conducted using the chi-square test, while for numerical features, the203

two-sided t-test was employed. These model developments and statistical tests were conducted in204

Python version 3.6.205

206

2.5 Variables Impacts207

Shapley value analysis [51] was performed on the test set to determine the influence of each vari-208

able on the predictions of our proposed model and to identify the variable most closely linked209

to mortality. The Shapley values illustrated the average impact of each variable on the results210
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Figure 2: Overview of the Methodology. The process starts with extracting target patients from MIMIC-IV,
followed by feature selection and data preprocessing (green). The input data (blue) is split for model fitting
(purple). The optimal model (yellow) is then used for predictions (red).

within various groups [52]. In comparison to traditional feature importance measures, such as211

those derived from Random Forest, Shapley values offer a more comprehensive understanding of212

the impact of each feature on model predictions. While Random Forest feature importance typ-213

ically relies on metrics like Gini impurity or information gain, SHAP values consider the entire214

space of possible feature combinations and allocate contributions fairly among features [53]. The215

key distinction lies in the interpretability of Shapley values on an instance level, allowing us to216

understand the specific influence of each feature for a given prediction. This level of granularity217

is especially valuable when dealing with complex models and real-world datasets.218

219

3 Results220

3.1 Cohort Characteristics Model Completion221

Following the discussion of feature selection and data preprocessing, the 7304 data points were222

used to train the model. The number of data points was determined by setting thresholds223

for LnPaO2/FiO2 at 200 mg, based on a literature review of Bi’s study, which highlighted224

LnPaO2/FiO2 as an important factor influencing sepsis mortality. Additionally, the SMOTE225

method was employed to balance the dataset [19]. These data points were split into train and226

test cohorts randomly with a ratio of 0.8 to 0.2. The model with the best AUROC was chosen to227

further evaluate the test set.228

229

In terms of ICU stay, the average length in the training cohort was 6.974 days, compared to230

6.977 days in the testing cohort. Given that the p-value from the two-sided t-test is 0.989, sur-231

passing our predetermined alpha threshold of 0.05, this indicates no significant difference in ICU232

stay length between the two cohorts. Regarding age, the training set had an average age of 65.160233

years, slightly lower than the testing set’s average of 66.039 years. However, the p-value from the234

two-sided t-test here is 0.086, suggesting no statistically significant age difference between the co-235

horts. All other features, except for urine output, show no statistical significance, which indicates236

a notable difference in average urine output between the training and testing cohorts. Table 2237
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below presents the statistical results of train and test cohorts for both numerical and categorical238

variables, where numerical feature values represent the average measurements, and categorical239

feature values represent the percentage of individuals in each category.240

241

Table 2: Statistical Analysis Results of Train and Test Cohorts for Numerical and Cate-
gorical Variables

Feature Train Test P-value

Admission Information

los icu 6.974 6.977 0.989

Demographics

Age 65.160 66.039 0.086
gender F 42.188 41.842 0.848

Lab Results

SOFA score 4.317 4.393 0.305
avg urineoutput 160.971 153.108 0.007
temperature min 36.663 36.632 0.478
temperature max 37.149 37.145 0.920
temperature avg 36.906 36.888 0.652
glucose min 110.363 111.451 0.414
glucose max 211.147 214.524 0.453
glucose average 154.669 156.739 0.332
sodium min 135.376 135.385 0.961
sodium max 141.558 141.768 0.222
sodium average 138.499 138.595 0.521
heart rate min 70.250 69.694 0.271
heart rate max 114.752 114.909 0.819
heart rate mean 89.384 89.530 0.763
sbp min 81.941 81.595 0.489
sbp max 154.473 153.932 0.475
sbp mean 114.334 114.630 0.495
dbp min 41.534 41.300 0.490
dbp max 93.673 93.545 0.849
dbp mean 61.570 61.466 0.725
resp rate min 11.932 11.804 0.307
resp rate max 31.218 31.304 0.706
resp rate mean 20.510 20.529 0.881
spo2 min 89.180 89.023 0.586
spo2 max 99.732 99.755 0.362
spo2 mean 96.887 96.868 0.801
hospital expire flag 28.242 30.445 0.127

Comorbidities

diabetes without cc 31.641 33.880 0.133
diabetes with cc 10.117 9.446 0.506
severe liver disease 10.449 9.758 0.499
aids 1.035 0.937 0.874
renal disease 26.738 27.244 0.741

Medications

antibiotic Carbapenem 15.664 14.910 0.533
antibiotic Aminoglycoside 7.168 7.962 0.360
antibiotic Glycopeptide 65.039 66.042 0.521
antibiotic Oxazolidinone 0.195 0.156 1.000
antibiotic Penicillin 0.000 0.078 0.453
antibiotic Sulfonamide 0.723 1.093 0.247

Continued on next page
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Table 2 – Continued from previous page

Feature Train Test P-value

antibiotic Tetracycline 0.000 0.078 0.453

3.2 Evaluation metrics proposed and baseline models performance242

Figure 3 below illustrates the ROC curves for each model along with their corresponding AUC243

values. Notably, except for the Decision Tree’s curve, other curves exhibit remarkably smooth244

shapes. Additionally, it was noted that more complex models, particularly those based on ensem-245

ble learning techniques like XGB and LGBM, outperformed simpler base models. For instance,246

both XGB and LGBM achieved impressive AUC values of 0.92, significantly higher than the 0.75247

attained by simpler models such as Decision Trees and SVM.248

Figure 3: The figure illustrates the ROC AUC scores and the confidence intervals of mortality prediction machine
learning models. It shows that the model with the highest AUROC score and the most stable confidence interval
is RandomForest.

249

The table (Table 3) below presents the detailed results, including other evaluations such as250

sensitivity, specificity, and F1 score. For both train test split and cross-validation, random forest251

demonstrated the best result. Hence, Random Forest (RF) is the proposed model in this paper,252

which achieved a 0.94 AUC score with a 0.01 confidence interval representing a 6.3% improvement253

compared to the best existing study. It is important to note that, although we typically expect254

cross-validation to provide a more robust estimate of model performance, in this particular study,255

the train-test split yielded slightly better results by chance. By using a random seed of 42 to split256

our dataset into training and test sets, we achieved an AUROC of 0.93, which was 1% higher257

than the cross-validation results. Both methods demonstrated high AUROC scores and narrow258

confidence intervals, indicating the stability and robustness of the dataset and features selected.259

This consistency across different data partitioning methods validates the reliability of our chosen260

approach and ensures that the model’s performance is not significantly affected by the method of261

data partitioning.262

263

3.3 Shapley Value analysis264

SHAP values analysis was applied to evaluate the importance of the feature within the context of265

Random Forest. According to the results of the SHAP analysis, the coma score has the highest266
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Table 3: Metrics for Baseline Models on Test Set and Random Forest on Different Sets

Model AUROC Precision Sensitivity Accuracy F-score

Decision Tree 0.7329 0.7219 0.7475 0.7327 0.7345
SVC 0.7277 0.6772 0.6179 0.6654 0.6462
GradientBoosting 0.906 0.8469 0.7597 0.8133 0.8009
XGB 0.9192 0.8491 0.8228 0.8401 0.8358
MLP 0.8763 0.7495 0.835 0.7804 0.7899
LGBM 0.9185 0.8521 0.7973 0.8313 0.8238

RF (Test Set) 0.9388 0.876 0.8372 0.8631 0.857
RF (Trainig Set) 1.0000 1.0000 1.0000 1.0000 1.0000
RF (Cross Validation) 0.9293 0.8599 0.8312 0.8475 0.8453

impact on mortality prediction, which indicates that higher coma scores tend to have a strong pos-267

itive impact on the model’s prediction of mortality. In other words, as the coma score increases,268

the likelihood of mortality, as predicted by the model, also increases. Additionally, average urine269

output shows a notable impact. Lower average urine outputs are more influential in increasing270

the prediction of mortality compared to high urine outputs, suggesting that lower average urine271

outputs are associated with an increased prediction of mortality. Regarding the feature ’gender272

Male’, since a high SHAP value correlates with a decrease in the model’s prediction of mortality273

and males are represented by one, it indicates that being male is associated with a lower risk of274

mortality compared to females. Figure 4 demonstrates the detailed result of the SHAP values275

analysis. The ’Sum of 39 features’ in the SHAP plot represents the combined SHAP values of the276

remaining less influential features. This aggregation provides a holistic view of their cumulative277

impact on the model’s predictions, highlighting that while individually these features may not278

have a significant impact, together they can still influence the model’s outcomes.279

280

After reviewing other articles about sepsis mortality rates, we found that there is some overlap281

between the top features. For example, the top five features in Bao’s study are glucose max,282

urine output, platelets max, age, and MBP max. This overlaps with our result on urine output,283

indicating that urine output is an important feature to be considered in real-life situations. These284

insights highlight key factors affecting mortality. Understanding that higher coma scores and lower285

average urine outputs significantly increase the risk of mortality, while being male is associated286

with a lower risk, can help in developing targeted interventions to mitigate mortality risks.287

Figure 4: This figure illustrates the feature importance, impact direction on mortality prediction, and distribu-
tion of Shapley values for each feature. The figure indicates that coma, avg urineoutput, and gender M have
the highest impact on the prediction. The dots on the right are mostly red, meaning that when the feature has
a higher value, it will increase the probability of mortality.
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4 Discussion288

In this study, supervised machine learning models were used to forecast mortality from sepsis over289

24 hours of ICU admission. Our approach involved selecting a group of high-impact features,290

ensuring a concise and relevant model. To address the issue of dataset imbalance, we implemented291

the SMOTE, significantly bolstering the robustness and dependability of our predictive model.292

Furthermore, we employed SHAP analysis to identify and quantify the contribution of each fea-293

ture to our model’s outcomes, thereby enhancing the interpretability of our predictions in a clinical294

context.295

296

The best AUROC curve achieved was 0.94 +/- 0.01. This is approximately 6.3% higher than297

the best result in our literature review, which is 0.884. The narrower confidence interval indicates298

that our model is more stable. The higher AUROC means that the model is good at accurately299

predicting the mortality of patients by successfully discriminating between positive cases (hospital300

exp flag = 1, the patient died) and negative cases (hospital exp flag = 0, the patient does not301

die). The stability of the model is important for providing consistent prediction results and en-302

sures more robustness against changes in input data, making the model’s outcomes more reliable.303

Furthermore, the study’s approach contributed to reducing sepsis-induced fatalities by providing304

personalized suggestions for each patient through model fitting. The model aids clinicians in mak-305

ing early identifications of sepsis, ensuring more attention is given to patients at higher risk of306

sepsis mortality. This early detection and targeted intervention enhance healthcare efficiency and307

effectiveness, ultimately helping to reduce sepsis-induced fatalities. Moreover, even though ad-308

vanced analytical methods were applied in existing literature, they have obvious drawbacks. One309

such limitation is the wide confidence interval, which indicates the model’s performance might310

not be consistently high across different test sets. Another limitation is the employment of an311

excessive number of features. This overabundance could negatively impact the model’s predictive312

efficiency and interpretability, thus making it more difficult to use in clinical settings because of313

the increased complexity and risk of overfitting.314

315

Our study has several advantages compared to previous studies. First, the SMOTE method316

helped deal with the data imbalance issue, which is one of the major reasons the model results im-317

proved. Another significant advantage of our methodology is the meticulous selection of features;318

with just 38 features—approximately half the average reported in the literature—we not only319

attained higher AUC scores but also achieved increased stability in our models. This deliberate320

minimization of features resulted in a 6.3% uplift in performance outcomes, alongside a narrower321

confidence interval, highlighting the efficacy and dependability of our approach. Furthermore, the322

use of advanced analytics provided valuable insights into key mortality factors, enhancing clinical323

decision-making and patient outcomes.324

325

5 Limitation326

Although significant improvements have been made in both features and results, leading to a327

more stable model, this study still has some limitations. Currently, the MIMIC-IV dataset is the328

only data source for mortality prediction, with no other dataset available for validation. More-329

over, the complexity of machine learning algorithms can lead to difficulties in deciphering their330

decision-making pathways, posing a substantial obstacle for clinicians who require transparent331

and interpretable models. Last, as the fast development in the field of medicine, using historical332

datasets might not fully capture the latest clinical practices or treatments. Therefore, it is crucial333

to regularly update these datasets and incorporate new medical knowledge and technologies to334

ensure the models trained on them remain relevant and effective.335

6 Future Work336

For future studies, it would be advantageous to include additional datasets, such as the eICU337

Collaborative Research Database, to serve as validation sets. This approach would ensure the338

model’s robust performance across diverse patient data. Moreover, in addressing the model inter-339

pretability problem, our aim is to develop algorithms that not only predict with high accuracy but340

also provide explanations for their predictions. Furthermore, establishing a real-time data flow341

for immediate predictions of sepsis mortality is another objective. To enhance the efficiency of342
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the study, future implementations might leverage data streamlining tools, such as Google Cloud343

Dataflow.344

7 Conclusion345

Our study has achieved significant advancements in predicting sepsis outcomes by utilizing ad-346

vanced machine learning techniques and sophisticated data preprocessing methods. These meth-347

ods include data grouping and effective solutions to data imbalance issues found in the MIMIC-IV348

database. Remarkably, our approach is characterized by its efficiency, relying on a limited number349

of features to generate highly accurate predictions, as indicated by a robust AUROC score and350

enhanced stability, which is reflected in a narrower confidence interval. As the number of variables351

decreased, the model became more stable compared to the results in the literature, which used352

many more features. Second, the AUROC for this study is higher compared to other sepsis mor-353

tality prediction papers. From a real-life perspective, fewer features are more interpretable, which354

can help doctors and clinicians focus on the features that are more related to sepsis mortality.355

For the critical task of interpreting feature importance, we have incorporated the SHAP analysis,356

known for its consistency and the ability to provide a detailed explanation that is comprehensi-357

ble to audiences from varied backgrounds. The following new standards have been established:358

the incorporation of diverse data types, including laboratory, demographic, and electronic health359

record data, and the use of advanced feature engineering methods that combine literature re-360

view and clinical insights. From this study, it can be concluded that patients with higher coma361

scores, lower average urine outputs, and female gender are more likely to be threatened by sepsis362

mortality according to the model’s predictions. In the future, clinicians can use the advanced ma-363

chine learning model as a tool to identify patients with features that make them more susceptible364

to sepsis mortality. This allows clinicians to take proactive measures to decrease the mortality rate.365

366

Our study has set new standards for predicting sepsis mortality by incorporating comprehensive367

data perspectives, including laboratory data, demographic data, and electronic health records. We368

also implemented advanced feature engineering methods, such as feature comparison with existing369

literature and real-world case suggestions from clinicians, to ensure accuracy and reliability in our370

predictions.371

372

Additionally, the findings of this study substantiate the effectiveness of machine learning mod-373

els in prognosticating sepsis. First, machine learning models can provide personalized suggestions374

for each patient through model fitting. Second, the model can help clinicians with the early identi-375

fication of sepsis and ensure more attention is given to patients who are more likely to be affected376

by sepsis mortality, thereby increasing healthcare efficiency. As clinicians use the predictive model,377

it can enhance the efficiency of early diagnosis, provide personalized treatment plans for different378

patients, and improve and support the decision-making process. The notable precision of these379

models, coupled with the reduced breadth of confidence intervals, corroborates their reliability in380

generating consistent predictions, an attribute that is highly valued in clinical settings. Although381

it is imprudent for medical professionals to depend solely on machine learning models for the di-382

agnosis and prognosis of medical conditions, these computational tools can serve as an adjunct,383

facilitating the confirmation of diagnostic outcomes or prompting a reevaluation of a patient’s384

status.385

386

Our research underscores the potential of machine learning in clinical decision-making and387

prognostication within critical care settings. By employing these innovative approaches, we are388

moving towards a future where data-driven insights have the power to not only predict but also389

prevent sepsis-induced fatalities. The integration of such predictive models into clinical workflows390

could revolutionize patient care, offering clinicians a valuable tool in their efforts to combat this391

life-threatening condition.392
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