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Abstract3

Background: Sepsis, a life-threatening condition, is the cause of a large number of mortalities4

worldwide. Accurate prediction of sepsis outcomes is crucial for effective treatment and man-5

agement. Previous studies have explored machine learning for prognosis but have limitations in6

feature sets and model interpretability.7

8

Methods: This study analyzes intensive care patient outcomes using the MIMIC-IV database,9

focusing on adult sepsis cases. Employing the latest data extraction tools, such as Google Big10

Query, and following stringent selection criteria, we selected 38 features in this study. This se-11

lection is also informed by a comprehensive literature review and clinical expertise. We used12

statistical methods to handle the imbalances inherent in healthcare datasets. Our modeling fo-13

cused on various classification techniques, with a train-test split preferred over cross-validation for14

its superior performance and computational efficiency.15

16

Results: The Random Forest model emerged as the most effective, achieving an AUROC17

of 0.94 with a confidence interval of 0.01, significantly outperforming other baseline models, and18

the best result in our literature review. This study not only yields a high-performing model but19

also provides granular insights into the factors affecting mortality, and demonstrates the value of20

advanced analytics in critical care.21

22

Conclusions: The study shows significant improvement in predicting sepsis outcomes, indicat-23

ing the potential of machine learning in critical care. By enhancing model accuracy and stability,24

this research contributes to clinical decision-making, offering a pathway for data-driven approaches25

to reduce sepsis-induced fatalities.26

Clinical Perspective

What is New?

• Use of advanced data preprocessing techniques addressing missing or duplicate values,
and regrouping categorical variables.

• Improved feature selection process, achieving more accurate predictions.

• Use of additional scoring tools, allowing for a more comprehensive assessment of the
proposed methodology’s performance.

• Better interpretability of the model’s predictive outcomes through the use of SHAP
analysis.

What are the Clinical Implications?

• The use of machine learning methods in medicine allows for an immediate and ac-
curate second opinion, serving as an alternate source of confirmation for medical
professionals.

• Mortality predictions are a valuable asset to resource management in hospitals.
Knowing a patient’s potential mortality outcome allows hospitals to refactor their
resources to help those in a more desperate state.

• Predictive models help in making more efficient use of healthcare services, allowing
for patients at greater risk of death to be treated more urgently, helping save the
most lives.

27
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1 Background28

Sepsis can cause the failure of one or more organ systems, which is a life-threatening condition that29

occurs unpredictably and can progress rapidly1–4. By 2017, Sepsis accounted for nearly 20% of30

all global deaths; more specifically, there were 11 million sepsis-related deaths in total 48.9 million31

sepsis cases5. Among those, 1.7 million adults develop sepsis each year in the United States, which32

causes around 270,000 deaths6. In a 2020 study, Suveges and other examine7 analyzed 110,20433

hospital admissions, revealing a direct correlation between the length of hospital stay and survival,34

with an average stay of 9.351 days indicating a decreased likelihood of survival. Given the sever-35

ity of the illness, it is crucial to find the possible factors that contribute to the mortality of sepsis8,9.36

37

Traditionally, various scoring systems(i.e. SOFA score) were used to predict in-hospital mortal-38

ity for critically ill patients with sepsis10–13. Such systems, while effective, are often limited in the39

range of features they examine14–16. Other studies, such as retrospective analysis, are also pop-40

ular methods for evaluating relationships between a specific feature and mortality. For instance,41

Bi’s study17 demonstrates a correlation between LnPaO2/FiO2 levels and 28-day mortality, more42

specifically, on a 200mg threshold. However, even though accurate, these studies are less effective43

and can only examine one pair of relationship.44

45

To overcome the limitations of traditional methods, recent studies have pivoted towards ma-46

chine learning (ML) and deep learning (DL) approaches18–26. In Bao’s study5, they presented47

the efficacy of the Light GBM algorithm in predicting sepsis patient mortality, suggesting its in-48

tegration into clinical tools. Similarly, Shifang and others27 highlighted the potential of Artificial49

Neural Networks (ANN) in the early detection of high-risk patients. Moreover, machine learn-50

ing methods are increasingly being employed across a broad spectrum of medical-related topics,51

demonstrating their versatility and efficacy.28,29 However, even though these previous works intro-52

duced advanced analytical methods, we found that they utilized a significant number of features53

and did not achieve satisfying results.54

55

This paper has set a new benchmark in the field through the implementation of more com-56

prehensive feature selection strategies, markedly enhancing the traditional approach by incorpo-57

rating additional scoring tools such as PaO2/FiO2 and employing advanced data preprocessing58

techniques. These innovations significantly improved our model’s accuracy, surpassing previous59

benchmarks found in literature reviews. Furthermore, by utilizing fewer features, our model offers60

increased efficiency for clinical application, making it a practical tool for healthcare professionals.61

This work not only sets a new standard for predictive modeling in our field but also provides a62

robust framework for future research.63

2 Methods64

2.1 Data Source and Inclusion Criteria65

The data for this study were sourced from the Medical Information Mart for Intensive Care66

IV (MIMIC-IV), an authoritative and comprehensive database30. The database contains health67

records of the Beth Israel Deaconess Medical Center from 2008 to 2019 and includes over 40,00068

unique patients from critical care units. The admission information was recorded into various69

tables, such as demographics, lab results, and ICU information. Compared to its predecessor,70

MIMIC-III, this dataset contains updated patient information and extends the scope of data cap-71

tured, thus offering a more current view of patient care. The utilization of MIMIC-IV for our study72

ensures that our analysis is grounded in the latest available data, facilitating a more accurate and73

relevant exploration into the factors affecting patient outcomes in intensive care settings.74

75

To narrow down the target patients, we applied the following criteria. These criteria stipulated76

that only adult patients (aged 18 and above) with a minimum intensive care unit (ICU) stay of77

over 24 hours were considered to guarantee ample data for a thorough analysis. Furthermore,78

the study targeted patients diagnosed with sepsis based on the Third International Consensus79

Definitions for Sepsis and Septic Shock (Sepsis-3), with a Sequential Organ Failure Assessment80

(SOFA) score of 2 or higher and a suspected infection as recorded in the MIMIC-IV database.81

This study implements Big Query as the data extraction tool to select the target patients from82

the dataset.83
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2.2 Feature Selection and Data Preprocessing84

The feature selection process was informed by a thorough review of academic literature and guided85

by recommendations from a clinical expertise. The selection methodology took two key consider-86

ations into account: (1) the recurrence of specific features across multiple studies, signaling their87

widespread recognition in critical care, and (2) the acknowledgment of certain features in prior88

individual studies as vital for mortality prediction.89

90

The final dataset contains 38 distinct features, including demographic information, antibiotic91

usage, patient medical history, and various laboratory results. Variables such as the Sequential92

Organ Failure Assessment (SOFA) score, average urine output, minimum and maximum glucose93

levels, sodium levels, heart rate, systolic and diastolic blood pressures (SBP and DBP), respiratory94

rate, oxygen saturation (SPO2), and albumin levels. These features were selected due to their fre-95

quent appearances in related studies, emphasizing their predictive value for patient outcomes. By96

integrating these variables, the dataset provides a robust foundation for developing predictive mod-97

els, aiming to enhance the accuracy of mortality and prognosis estimations in critical care settings.98

99

Further improving the dataset, we set a threshold for the PaO2/FiO2 ratio of 200. Addi-100

tionally, based on the recommendation of a clinical expertise, the coma score was incorporated,101

categorizing patients with scores above 8 as in a coma. Following the feature selection process,102

the dataset was narrowed down to 6,401 admission records. A detailed list of features, along with103

the categories they fall into, can be found in the table provided below.104

105

Table 1: Feature Information

Feature Type Feature Name Feature Type Feature Name

Admission Information los icu Demographics Age

Lab Results

SOFA score Comorbidities diabetes without cc
avg urineoutput diabetes with cc
temperature min severe liver disease
temperature max aids
temperature avg renal disease
heart rate min
heart rate max Medications
heart rate mean antibiotic Carbapenem
resp rate min antibiotic Aminoglycoside
resp rate max antibiotic Glycopeptide
resp rate mean antibiotic Oxazolidinone
spo2 min antibiotic Penicillin
spo2 max antibiotic Sulfonamide
spo2 mean antibiotic Tetracycline
hospital expire flag

106

The dataset’s cleaning was approached with the following steps: (1) addressing null values and107

duplicates in both numerical and categorical data; (2) grouping the existing categorical variables108

(race and antibiotics) into new features to facilitate future encoding processes. Specifically, races109

were separated and summarized into four groups: Black or African American, Hispanic or Latinx,110

White, and Other Races. For the antibiotics, the existing 25 categories were regrouped into seven111

different groups based on their chemical structure, mechanism of action, spectrum of activity, side112

effects, and toxicity. These groups are Aminoglycosides, Carbapenems, Glycopeptides, Oxazolidi-113

nones, Penicillins, Sulfonamides, and Tetracyclines.114

115

Upon review, the training data is imbalanced, which is a common issue in healthcare datasets.116

Unlike the cluster centroids method used in existing literature, the Synthetic Minority Over-117

sampling Technique(SMOTE) method was introduced to address this data imbalance issue by118

oversampling31. SMOTE method helps raise our data points for the minority class, which in-119

creases the likelihood that models will generalize well to new, unseen data and reduces the risk of120

overfitting. After applying the SMOTE method, the data points expanded from 6,401 to 7,304.121

Below is Figure 1, which illustrates the workflow for data preprocessing.122

3
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Figure 1: The figure illustrates the work flow of data preprocessing

2.3 Modeling123

The final dataset comprises 53 columns and 7,304 data points and has achieved balance after124

the application of SMOTE. To thoroughly evaluate the performance of various machine learning125

classification models, we utilized two methodologies: (1) train-test split; (2) 5-fold cross-validation126

and hyper-parameter tuning. More specifically, the Sequential Halving and Classification (SHAC)127

algorithm, proposed by Kumar et al.32, was adopted as a more efficient alternative to exhaus-128

tive grid search for hyperparameter tuning and preventing overfitting. We then fed the resulted129

dataset to the following models: tree-based models such as Decision Trees33, ensemble methods like130

Gradient Boosting34, Extra Gradient Boosting (XGBoost)35, Light Gradient Boosting Machine131

(LightGBM)36, neural networks with a focus on Multilayer Perceptrons (MLP)37, margin-based132

models including Support Vector Machines (SVM)38, and bagging models, notably Random For-133

est39.134

To determine the proposed model, we meticulously evaluated three key factors: firstly, the135

Area Under the Receiver Operating Characteristic (AUROC) scores to assess accuracy; secondly,136

sensitivity to variance, serving as a gauge for the model’s robustness; and thirdly, the overall con-137

sistency to ensure reliability across different datasets. Consequently, this evaluation framework138

led us to choose the Random Forest model implemented with the train-test split methodology.139

This choice was driven by the model’s superior AUROC scores, affirming its effectiveness in pre-140

diction and its potential for handling new data. Our selection process highlights the significance141

of utilizing a structured evaluation to identify a model that not only shows high performance but142
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also maintains robustness and consistency under various conditions. Figure 2 below shows the143

workflow of our methodology.144

145

Figure 2: Overview of the Methodology. This figure shows the overview of the methodology. The process starts with extracting
target patients from MIMIC-IV and then selecting the desired features. After feature selection is data preprocessing, which
includes SMOTE, regrouping categorical data, and the addition of one hot encoding. Train and test cohorts were split from the
final dataset and were then put into a variety of models for training. The optimal model was then used as a classifier for the
test set.

2.4 Statistic analysis between cohorts146

Statistical analyses, such as the chi-square test and two-sided t-test, were performed to compare147

the measurements of variables in the train and test cohorts. More specifically, the comparison148

for categorical features was conducted using the chi-square test, while for numerical features, the149

two-sided t-test was employed. These model developments and statistical tests were conducted in150

Python version 3.6.151

152

2.5 Variables Impacts153

Shapley value analysis40was performed on the test set to determine the influence of each variable154

on the predictions of our proposed model and to identify the variable most closely linked to mor-155

tality. The Shapley values illustrated the average impact of each variable on the results within156

various groups. In comparison to traditional feature importance measures, such as those derived157

from Random Forests, Shapley values offer a more comprehensive understanding of the impact of158

each feature on model predictions. While Random Forest feature importance typically relies on159

metrics like Gini impurity or information gain, SHAP values consider the entire space of possible160

feature combinations and allocate contributions fairly among features. The key distinction lies in161

the interpretability of Shapley values on an instance level, allowing us to understand the specific162

influence of each feature for a given prediction. This level of granularity is especially valuable163

when dealing with complex models and real-world datasets.164

165
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3 Results166

3.1 Cohort Characteristics Model Completion167

Following the discussion of feature selection and data preprocessing, the 7304 data points were168

used to train the model. These data points were split into train and test cohorts randomly with a169

ratio of 0.8 to 0.2. The model with the best AUROC was chosen to further evaluate the test set.170

171

In terms of ICU stay, the average length in the training cohort was 6.974 days, compared172

to 6.977 days in the testing cohort. Given that the p-value from the two-sided t-test is 0.98,173

surpassing our predetermined alpha threshold of 0.05, this indicates no significant difference in174

ICU stay length between the two cohorts. Regarding age, the training set had an average age175

of 65.16 years, slightly lower than the testing set’s average of 66.04 years. However, the p-value176

from the two-sided t-test here is 0.08, suggesting no statistically significant age difference between177

the cohorts. All other features, except for urine output, show no statistical significance, which178

indicates a notable difference in average urine output between the training and testing cohorts.179

The following table presents the statistical results for both numerical and categorical variables.180

A detailed table is presented below to show the statistical analysis results for train and test cohorts.181

182

Table 2: Summary of Features

Feature Train Test P-value

Admission Information

los icu 6.974258 6.977229 0.98958

Demographics

Age 65.15957 66.039032 0.08568
gender F 42.1875 41.842311 0.847623

Lab Results

SOFA score 4.316992 4.393443 0.304637
avg urineoutput 160.970729 153.107968 0.007049
temperature min 36.663145 36.631928 0.478322
temperature max 37.14918 37.145121 0.919911
temperature avg 36.906162 36.888525 0.65165
glucose min 110.363086 111.45121 0.414229
glucose max 211.147266 214.52459 0.453283
glucose average 154.669219 156.738707 0.332125
sodium min 135.375977 135.384856 0.961242
sodium max 141.557617 141.76815 0.222138
sodium average 138.499252 138.594931 0.52112
heart rate min 70.249414 69.693989 0.271372
heart rate max 114.752344 114.909446 0.819382
heart rate mean 89.383648 89.530586 0.763218
sbp min 81.940632 81.595238 0.488982
sbp max 154.473177 153.932475 0.475455
sbp mean 114.334401 114.630449 0.494836
dbp min 41.533887 41.300546 0.490546
dbp max 93.673503 93.544887 0.849288
dbp mean 61.570109 61.465963 0.725256
resp rate min 11.932129 11.803669 0.307428
resp rate max 31.217773 31.30445 0.7062
resp rate mean 20.510399 20.529248 0.880727
spo2 min 89.180469 89.023419 0.586353
spo2 max 99.731836 99.754879 0.362543
spo2 mean 96.887188 96.868516 0.801316
hospital expire flag 28.242188 30.444965 0.127392

Comorbidities

Continued on next page
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Table 2 – Continued from previous page

Feature Train Test P-value

diabetes without cc 31.640625 33.879781 0.133112
diabetes with cc 10.117188 9.445746 0.506134
severe liver disease 10.449219 9.758002 0.498902
aids 1.035156 0.936768 0.874196
renal disease 26.738281 27.24434 0.741164

Medications

antibiotic Carbapenem 15.664062 14.910226 0.533034
antibiotic Aminoglycoside 7.167969 7.962529 0.35961
antibiotic Glycopeptide 65.039062 66.042155 0.521223
antibiotic Oxazolidinone 0.195312 0.156128 1
antibiotic Penicillin 0 0.078064 0.453513
antibiotic Sulfonamide 0.722656 1.092896 0.24713
antibiotic Tetracycline 0 0.078064 0.453513

3.2 Evaluation metrics proposed and baseline models performance183

Figure 3 below illustrates the ROC curves for each model along with their corresponding AUC184

values. Notably, except for the Decision Tree’s curve, other curves exhibit remarkably smooth185

shapes. Additionally, it was noted that more complex models, particularly those based on ensem-186

ble learning techniques like XGB and LGBM, outperformed simpler base models. For instance,187

both XGB and LGBM achieved impressive AUC values of 0.92, significantly higher than the 0.75188

attained by simpler models such as Decision Trees and SVM.189

Figure 3: The figure illustrates the ROC AUC scores and the confidence intervals of mortality prediction machine learning
models. It shows that the model with the highest AUROC score and the most stable confidence interval is RandomForest.

190

The table (Table 3) below presents the detailed results, including other evaluations such as191

sensitivity, specificity, and F1 score. For both train test split and cross-validation, random forest192

demonstrates the best result. Hence, random forest is the proposed model in this paper, which193

achieved a 0.94 AUC score with a 0.01 confidence interval.194

195
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Table 3: Performance Metrics for Various Models on Different Sets

Model AUROC Precision Sensitivity Accuracy F-score

Decision Tree 0.7329 0.7219 0.7475 0.7327 0.7345
SVC 0.7277 0.6772 0.6179 0.6654 0.6462
GradientBoosting 0.906 0.8469 0.7597 0.8133 0.8009
XGB 0.9192 0.8491 0.8228 0.8401 0.8358
MLP 0.8763 0.7495 0.835 0.7804 0.7899
LGBM 0.9185 0.8521 0.7973 0.8313 0.8238

Proposed model (Test Set) 0.9388 0.876 0.8372 0.8631 0.857
Proposed model (Train Set) 1 1 1 1 1
Proposed model (Validation Set) 0.9293 0.8599 0.8312 0.8475 0.8453

3.3 Shapley Value analysis196

SHAP values analysis was applied to evaluate the importance of the feature within the context of197

random forests. According to the results of the SHAP analysis, the coma score has the highest198

impact on mortality prediction, which indicates that higher coma scores tend to have a strong pos-199

itive impact on the model’s prediction of mortality. In other words, as the coma score increases,200

the likelihood of mortality, as predicted by the model, also increases. Additionally, average urine201

output shows a notable impact. Lower average urine outputs are more influential in increasing202

the prediction of mortality compared to high urine outputs, suggesting that lower average urine203

outputs are associated with an increased prediction of mortality.Regarding the feature ’gender204

Male’, since a high SHAP value correlates with a decrease in the model’s prediction of mortality205

and males are represented by one, it indicates that being male is associated with a lower risk of206

mortality compared to females.207

208

Figure 4: This figure illustrates the feature importance, impact direction on mortality prediction, and distribution of Shapley
values for each feature. The figure indicates that coma, avg urineoutput, and gender M have the highest impact on the prediction.
The dots on the right are mostly red, meaning that when the feature has a higher value, it will increase the probability of
mortality.

4 Discussion209

In this study, supervised machine learning models were used to forecast mortality from sepsis210

within the first 24 hours of ICU admission. Our approach involved selecting a group of high-211

impact features, ensuring a concise and relevant model. To address the issue of dataset imbalance,212

we implemented the SMOTE, significantly bolstering the robustness and dependability of our pre-213

dictive model. Furthermore, we employed SHAP analysis to identify and quantify the contribution214

of each feature to our model’s outcomes, thereby enhancing the interpretability of our predictions215
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in a clinical context.216

217

The best AUROC curve achieved was 0.94 +/- 0.01. This is approximately 10.5% higher than218

the best result in our literature review, which is (0.85 +/- 0.11). The narrower confidence interval219

indicates that our model is more stable. Moreover, even though advanced analytical methods220

were applied in existing literature, they have obvious drawbacks. One such limitation is the wide221

confidence interval, which indicates the model’s performance might not be consistently high across222

different test sets. Another limitation is the employment of an excessive number of features. This223

overabundance could negatively impact the model’s predictive efficiency and interpretability, thus224

making it more difficult to use in clinical settings because of the increased complexity and risk of225

overfitting. Table 4 shows the results from other studies. Table 4 demonstrates the results from226

other studies.227

228

Table 4: Summary of Machine Learning Studies in Medical Prognostics

Study Method Top 5 Features Performance

C. Bao et al.
(2022)

Support vector machine, Decision
Tree Classifier, Random Forest,
Gradients Boosting, Multiple
Layer Perception, XGBoost, Light
Gradients Boosting

Max glucose; average urine output;
max platelet; age; max MBP

AUC: 0.85 ± 0.11 in the
test set

Chang Hu et al.
(2022)

Using Lasso regression for feature
selection, XGBoost, and six other
machine learning methods.

GCS (Glasgow Coma Scale); BUN
(blood urea nitrogen); RR
(respiratory rate); HR (heart
rate); PTT (partial
thromboplastin time)

AUC: 0.884; Accuracy:
89.5%

Yingjie Su et al.
(2022)

Artificial neural networks (ANN) Albumin; RDW (red cell volume
distribution width); PT
(prothrombin time); Lactate;
MCV (mean corpuscular volume)

AUC: Train set: 0.873 for
ANN, Validation set:
0.811 for ANN

Hongying Bi et al.
(2023)

Generalized Additive Model
(GAM) and smoothed curve
fitting.

Clinical notes The inflection point of
PaO2/FiO2 was 200.33
mmHg; Nonlinear
relationship appeared
between PaO2/FiO2 and
28-day death in Sepsis

Liwei Peng et al.
(2022)

Nine different machine learning
models are used: artificial neural
network (NNET), Bayes naive
(NB), logistic regression (LR),
gradient boosting machine (GBM),
adapting boosting (Ada), random
forest (RF), bagged trees (BT),
eXtreme Gradient Boosting
(XGB), and CatBoost

APSIII; RDW; Age; GCS;
Temperature

AUC: 0.834 in the test set
for adapting boosting

Our study has several advantages compared to previous studies. First, the SMOTE method229

helped deal with the data imbalance issue, which is one of the major reasons the model results im-230

proved. Another significant advantage of our methodology is the meticulous selection of features;231

with just 38 features—approximately half the average reported in the literature—we not only232

attained higher AUC scores but also achieved increased stability in our models. This deliberate233

minimization of features resulted in a 6% uplift in performance outcomes, alongside a narrower234

confidence interval, highlighting the efficacy and dependability of our approach.235

236

5 Limitation237

Although significant improvements have been made in both features and results, leading to a238

more stable model, this study still has some limitations. Currently, the MIMIC-IV dataset is the239

only data source for mortality prediction, with no other dataset available for validation. More-240

over, the complexity of machine learning algorithms can lead to difficulties in deciphering their241

decision-making pathways, posing a substantial obstacle for clinicians who require transparent242

and interpretable models. Last, as the fast development in the field of medicine, using historical243

datasets might not fully capture the latest clinical practices or treatments. Therefore, it is crucial244

to regularly update these datasets and incorporate new medical knowledge and technologies to245

ensure the models trained on them remain relevant and effective.246

9
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6 Future Work247

For future studies, it would be advantageous to include additional datasets, such as the eICU Col-248

laborative Research Database, to serve as validation sets. This approach would ensure the model’s249

robust performance across diverse patient data. Moreover, in addressing the model interpretability250

problem, our aim is to design algorithms that not only predict with high accuracy but also provide251

explanations for their predictions. Furthermore, establishing a real-time data flow for immediate252

predictions of sepsis mortality is another objective. To enhance the efficiency of the study, future253

implementations might leverage data streamlining tools, such as Google Cloud Dataflow.254

7 Conclusion255

Our study has achieved significant advancements in predicting sepsis outcomes by utilizing ad-256

vanced machine learning techniques and sophisticated data preprocessing methods. These meth-257

ods include data grouping and effective solutions to data imbalance issues found in the MIMIC-IV258

database. Remarkably, our approach is characterized by its efficiency, relying on a limited number259

of features to generate highly accurate predictions, as indicated by a robust AUROC score and260

enhanced stability, which is reflected in a narrower confidence interval. For the critical task of in-261

terpreting feature importance, we have incorporated the SHAP analysis, known for its consistency262

and the ability to provide a detailed explanation that is comprehensible to audiences from varied263

backgrounds.264

265

Our research underscores the potential of machine learning in clinical decision-making and266

prognostication within critical care settings. By employing these innovative approaches, we are267

moving towards a future where data-driven insights have the power to not only predict but also268

prevent sepsis-induced fatalities. The integration of such predictive models into clinical workflows269

could revolutionize patient care, offering clinicians a valuable tool in their efforts to combat this270

life-threatening condition.271
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