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ABSTRACT 
Background and Objectives: The aim of  this  secondary data  analysis  was  to  determine whether 

multiple sclerosis (MS) is associated with changes in global degree rank order disruption index (kD), 

a graph theory-based  functional  connectivity  measure  representing  shift  in  overall  distribution  of 

nodal  degree  centrality.  Additionally,  we  tested  the  relationship  between  kD and  MS  symptoms 

(cognitive and motor impairment, fatigue, and global disability).

Methods: Global  kD was  computed  in  a  pre-existing  cross-sectional  fMRI  dataset  and  compared 

between  patients  with  MS (PwMS)  and healthy  controls  (HCs).  Group differentiation  was  tested 

against other known biomarkers in MS (regional degree centrality, structural MRI with volumetry,  

diffusion-weighted  imaging,  lesion  mapping)  using receiver  operating  characteristic  and  logistic 

regression analysis. Associations between kD and cognitive processing speed (Symbol Digit Modalities 

Test), fatigue (Fatigue Scale for Motor and Cognitive Functions), gait (Timed Up and Go Test), and 

disability  (Expanded  Disability  Status  Scale  [EDSS])  were  evaluated  using  Spearman  correlation 

coefficient and ordinal regression adjusted for structural imaging, age, sex, and disease duration.

Results: Analysis included 56 PwMS and 58 HCs (35/27 women, median age 45.1/40.5 years). Global 

kD was lower in PwMS (median −0.30, inter-quartile range [IQR] 0.55) than in HCs (median −0.06, IQR 

0.54;  p = 0.009,  Mann-Whitney U test).  kD yielded acceptable differentiation between groups (area 

under curve 0.64), but did not improve such differentiation on top of structural imaging. Both kD and 

regional  degree  in  medial  prefrontal  cortex  (MPFC)  were  correlated  with  cognitive  decline  (kD: 

Spearman’s ρ = 0.32, p = 0.019; MPFC: ρ = −0.45, p = 0.001, n = 55), while kD was also correlated with 

fatigue (ρ = −0.34, p = 0.010, n = 56), but not with EDSS (ρ = −0.06, p = 0.674, n = 56) or gait (ρ = −0.18, 

p = 0.211,  n = 52).  kD significantly explained cognitive impairment (χ2 =  4.49,  p = 0.034)  and fatigue 

(χ2 = 7.18, p = 0.007).

Discussion: Our data  provide evidence that  kD is  a  potential  biomarker  of  cognitive  decline  and 

fatigue. Further cross-validations are required to assess its generalizability.

KEYWORDS

multiple  sclerosis,  cognitive  speed  processing,  fatigue,  biomarkers,  resting  state  fMRI,  degree 

centrality
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1. INTRODUCTION

Disentangling the complex interaction between the structural brain damage due to multiple sclerosis  

(MS) and the resulting clinical presentation is currently one of the most challenging tasks of the MS 

research as development of new treatment strategies requires reliable biomarkers and predictors of 

increasing  disability  and cognitive  decline.1 Individual  lesions  in  MS do not  necessarily  translate 

directly into clinical deficits, since the interplay of functional reserve, adaptation, and maladaptation 

results in a non-linear relationship between lesion volume and the resulting disability, a fact known as 

“clinico-radiological paradox”.2

Several  MRI modalities  have been utilized to account for  this  mismatch and to model  functional 

deterioration in MS, including advanced lesion imaging techniques, T1-weighted structural imaging 

for volume measurement, diffusion weighted imaging (DWI) for assessment of white matter integrity, 

and functional MRI (fMRI).1,3,4 Especially changes in fMRI-based resting-state functional connectivity 

(rsFC) may reflect clinical deficits that cannot be explained by structural damage alone.5 Due to the 

high-dimensional  nature  of  raw rsFC data,  dimensionality  reduction procedures  are  necessary  to 

obtain  practicable  biomarkers.6 Analysis  of  rsFC  using  graph  theory  framework  provides  such 

network-wide numerical indices7 suitable for routine applications. Despite known abnormalities in 

graph-theoretical  parameters  such  as  mean  degree  or  eigenvector  centrality  in  MS  and  their 

association  with  global  disability,8,9 no  single  reliable  and  widely  used  graph-theory-based  rsFC 

biomarker has been incorporated into clinical practice, yet.1,10

Besides motor and sensory deficits,  MS is  frequently associated with cognitive impairment (CI).11 

Being underrepresented in Expanded Disability Status Scale (EDSS)12 and often neglected in routine 

neurological examination,11,13 CI and its imaging biomarkers are attracting increasing attention.1,11 In 

our group, the relationship between CI and cerebellar atrophy,14 brain activation during a cognitive 

task,15 or  damage to the parietal  white matter16 has been demonstrated.  Recent resting-state fMRI 

studies utilizing graph-theoretical approaches have identified relationship between CI and decreased 

overall mean degree17 or increased centrality in the default mode network (DMN), accompanied by 

decreased centrality outside the DMN.18–23 Moreover, changes in centrality also seem to precede the 

actual  cognitive  decline,  indicating its  potential  utility  as  a  prognostic  biomarker.19 However,  the 

ultimate goal, i.e., providing individual predictions applicable in day-to-day practice remains far from 

achieved, urging thus further refinement of imaging and analytical methods.1

Whereas a voxel-wise centrality assessment would require considerable time and personal resources, 

a recently introduced centrality-derived global scalar metric, the degree rank order disruption index 
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(kD),24 could serve as a biomarker reflecting simultaneous focal  increases and decreases in degree 

centrality throughout the brain, requiring less demanding interpretation. The kD has previously been 

demonstrated to be associated with brain-wide degree centrality changes in impaired consciousness25 

and chronic pain,24 but so far, it was evaluated neither as a biomarker of global disability nor predictor 

of CI in MS. The advantage of kD analysis is the potential ability to process data automatically without 

selecting a specific region of interest, which may be particularly useful in MS characterized by diffuse  

brain involvement and highly variable lesion distribution patterns.

Hence,  the  aim of  this  study was  to  assess  the  potential  clinical  utility  of  kD against  established 

structural and functional imaging biomarkers. We therefore investigated the correlation between the 

clinical presentation of MS (cognitive performance, global disability and motor performance) and kD 

in comparison to multimodal MRI parameters (resting-state fMRI with regional degree assessment, 

diffusion-weighted imaging [DWI], volumetry, and lesion mapping) in patients with MS and matched 

healthy controls. The hypotheses were as following: (1) kD differs between patients with MS (PwMS) 

and matched healthy controls (HCs); (2a)  kD is superior to the regional degree centrality in the pre-

selected regions of interest (ROIs) in differentiating between PwMS and HCs and (2b) improves such 

differentiation when used in conjunction with established global imaging diagnostic biomarkers of MS 

(lesion load, global atrophy, global white matter integrity); (3) kD correlates with deficits in cognitive 

processing speed in PwMS; (4)  kD provides superior correlation with cognitive processing speed in 

comparison to (4a) the regional degree centrality in pre-selected ROIs and (4b) improves regression 

model of cognitive processing speed when added on top of established global imaging diagnostic 

biomarkers of MS (lesion load, global atrophy, global white matter integrity).

In  addition,  following  exploratory  hypotheses  were  tested  to  assess  associations  between  kD and 

potential confounding factors: (5) kD correlates with global disability, fatigue, and motor performance 

(gait)  and (6)  improves regression models for these clinical  outcomes when used jointly with the 

established global imaging diagnostic biomarkers of MS (lesion load, global atrophy, global white 

matter integrity); (7)  kD correlates with the global imaging biomarkers (lesion load, global atrophy, 

global white matter integrity); (8) global imaging diagnostic biomarkers of MS (lesion load, global 

atrophy, global white matter integrity) differ between PwMS and matched HCs.

2. METHODS

2.1 Study Design and Participant Selection

The secondary analysis was performed on cross-sectional imaging and behavioral data of 65 PwMS 

and 65 HC matched for age and sex, with participants recruited from multiple sclerosis centers across 
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Czechia. The same cohort has been partially analyzed and published using other methods.6,26 Original 

inclusion criteria were: positive diagnosis of multiple sclerosis;27 spastic paraparesis as a prominent 

clinical feature; stable clinical status for at least three months preceding the study (determined by 

neurologist); physical ability to undergo clinical testing – consistent with the EDSS score ≤ 7.5. Subjects 

were excluded in case of missing imaging data or imaging artifacts and conditionally excluded if  

exceeding the motion outlier criteria (see Section 2.5 Data pre-processing and analysis below).  To 

address potential attrition bias, a sensitivity analysis was performed in a sample including motion 

outlier subjects.

2.2 Clinical Assessment and Questionnaires

Clinical parameters (regressands) comprised an objective assessment of cognitive performance using 

a Symbol Digit Modalities Test (SDMT)28 and possible confounding factors such as fatigue (Fatigue 

Scale  for  Motor  and  Cognitive  Functions,  FSMC),29 global  disability  (Expanded  Disability  Status 

Scales, EDSS),12 and motor performance (Timed Up and Go Test, TUG).30

2.3 Standard Protocol Approvals, Registrations, and Patient Consents

The secondary data analysis was pre-registered at osf.io (https://osf.io/v8ejw). The original study was 

approved by ethics committee of the Ethics Committee of the Faculty Hospital Královské Vinohrady, 

approval No. EK-VP/22/0/2014. All patients gave their written informed consent to participate in the 

study.

2.4 MRI Data Acquisition

Imaging  was  performed  using  a  3T  magnetic  resonance  scanner  (Siemens  Trio  Tim,  Erlangen, 

Germany)  equipped with a  12-channel  phased-array head coil.  The MRI protocol  included blood 

oxygenation level-dependent (BOLD) resting-state fMRI (repetition time [TR] = 2,500 ms, echo time 

[TE] = 30 ms, flip angle = 70°, voxel size = 3×3×3 mm, 44 contiguous slices, 240 volumes, acquisition 

time = 10 min), as well as high-resolution 1-mm T1-weighted and T2-weighted imaging, and 2-mm 

diffusion-weighted  imaging  (DWI).  Detailed  acquisition  parameters  have  been  published 

elsewhere.6,26

2.5 Data Pre-processing and Analysis

The  initial  pre-processing  consisted  of  motion  correction,  correction  of  susceptibility-induced 

distortions  and  normalization  to  standard  space  using  Advanced  Normalization  Tools  (ANTs, 

v2.3.5.dev212-g44225).31 Brain coverage was evaluated using Mask_explorer.32 Next,  motion outlier 

detection,  anatomical  component-based  denoising  procedure,  and  band-pass  filtering  within  the 
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frequency  range  0.008  Hz  –  0.09  Hz  were  applied  in  CONN  toolbox  v.  21a.33 Participants  with 

maximum  volume-to-volume  displacement  exceeding  2  mm  and/or  mean  volume-to-volume 

displacement exceeding 2 standard deviations above the sample mean (i.e., >0.26 mm) were marked as 

outliers (n = 13). In the main analysis, all remaining steps were performed after excluding the outliers. 

However,  additional  sensitivity analysis  consisting of  the same steps was conducted in a parallel 

pipeline in the sample with outliers. Please also refer to Supplementary Methods for further details on 

pre-processing.

Following  the  pre-processing,  subject-specific  functional  connectivity  matrices  containing  Fisher-

transformed Pearson’s  r coefficients were computed in CONN for 4,632 large voxels created using 

6-mm resampling of  a  common gray matter  mask,  see  Supplementary Methods for  more details. 

Degree  centrality  was  then  computed  for  each  subject  using  a  brain  connectivity  toolbox  (BCT, 

https://sites.google.com/a/brain-connectivity-toolbox.net/bct/) with 10% link density.24 Regional degree 

centrality  was  extracted  by  averaging  nodal  degree  from  the  DMN  (4  ROIs),18,19,21 basal  ganglia 

(6 ROIs),19,21 thalamus,  hippocampus,  and  cerebellum  (5  ROIs),21 and  from  the  multimodal  ROIs 

explicitly  participating  in  SDMT:  superior  parietal  lobule  (2  ROIs),  dorsolateral  prefrontal  cortex 

(2 ROIs), and anterior cingulate cortex (ACC; 1 ROI),15 see Supplementary Fig. S1 and Supplementary 

Table  1  for  detailed  ROI  description.  Finally,  kD was  calculated  using  custom  Matlab  scripts 

implementing a modified approach according to Mansour et al.24 In brief,  kD was obtained for each 

individual using a linear regression (y = kD *x + b), where y = individual nodal degree – mean control 

group nodal degree, x = mean control group nodal degree, and b = intercept of the regression, see 

Supplementary Methods for more details.

The  pre-processing  of  T1-weighted  and  DWI  data,  calculation  of  gray  matter  volume  (GMV)  as 

a measure of cortical atrophy and extraction of fractional anisotropy (FA) as a measure of white matter 

integrity, as well as ROI definition for GMV and FA is described elsewhere.6 Finally, the lesion load 

(LL) was calculated using the Lesion Segmentation Tool (LST,  www.statistical-modelling.de/lst.html 

with lesion prediction algorithm.34

2.6 Statistical Analysis

Initially, normality was assessed for all continuous variables using Kolmogorov-Smirnov test. Non-

parametric tests were applied in case normality was violated. Additionally, regressors considerably 

deviating from normal distribution (LL) were log-transformed prior to any subsequent analysis to 

meet regression model assumptions. Demographic variables were compared between groups using 
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Fisher’s exact test and Mann-Whitney U test. Pairwise deletion was applied in case of missing clinical  

data. A summary of all variables and outcome measures is provided in Supplementary Table 2.

The hypotheses were evaluated using following tests: (1) Group differences in kD (primary outcome 

measure) between PwMS and HCs were assessed using a  Mann-Whitney U test. (2) Differentiation 

between  PwMS and HC based  on  kD was  assessed  using  (2a)  area  under  the  receiver  operating 

characteristic  (ROC)  curve  (AUC)  and  compared  with  differentiation  based  on  regional  degree 

centrality  in  each  ROI  using  pair-wise  asymptotic  significance.  For  comparison  with  structural 

imaging parameters (2b), multiple logistic regression χ2 statistics was used to test whether model with 

kD, GMV, FA, and log(LL) significantly improved differentiation between PwMS and HCs compared 

to a nested model without kD as a regressor. The correlations between (3) kD and SDMT, (4a) regional 

degree centrality and SDMT, as well as auxiliary correlations between kD and (5) additional clinical 

variables (EDSS, FSMC, TUG) or (7) structural imaging parameters (GMV, FA, LL) were evaluated 

using  Spearman’s rank  correlation  coefficient.  For  correlations  of  regional  degree  centrality  (4a), 

Bonferroni-Holm correction for multiple comparisons across 18 ROIs was applied (α = 0.0028). To test 

whether  kD improves regression of clinical  scores on top of structural imaging, ordinal regression 

models including kD, GMV, FA, log(LL), age, sex, and disease duration as regressors of (4b) SDMT, 

(6a)  EDSS,  (6b)  FSMC,  and (6c)  TUG were  compared to  nested models  without  kD by  means  of 

likelihood ratio  test.  (8)  Finally,  differences  in  all  imaging parameters  (regional  degree  centrality, 

global GMV, global FA, and lesion load) were assessed using multiple  Mann-Whitney U tests with 

Bonferroni-Holm correction for multiple comparisons. All tests were performed using SPSS v29.0.1.1 

(IBM, Armonk, NY, USA). The p < 0.05 was considered significant. One-tailed tests were used where 

superiority was assumed by the hypotheses or statistics with one-tailed distribution was employed 

(2a, 2b, 4b, and 6), with two-tailed tests applied otherwise. Details on figure preparation are provided 

in Supplementary Methods.

2.7 Post-hoc Analyses

In  order  to  visualize  local  contributions  to  significant  global  correlations  between  kD and clinical 

scores, a post-hoc voxel-wise analysis was performed in randomise, part of FSL v. 6.0.3.35 First, nodal 

degree centrality was back-projected to the original 6-mm voxels. Next, general linear model with 

two-sample  t-test  (group  differences)  and  regression  contrast  was  employed  to  evaluate  the 

correlation using non-parametric threshold-free cluster enhancement (TFCE) correction for multiple 

comparisons with 10,000 permutations and family-wise error corrected alpha = 0.05. 
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In case of significant correlations with EDSS, FSMC or TUG, correlation with regional degree in the 

18 pre-defined  ROIs  was  additionally  assessed  using  Spearman  rank  correlation  to  allow  further 

interpretation.

2.8 Power Analysis

No  kD data in PwMS for a power analysis  were available.  Based on a published difference in  kD 

between patients and HC of |kD| = 0.21 in a different patient cohort,24 analysis results in a minimum 

sample of 12 participants to achieve power to detect a significant correlation of 90%. With the existing 

data set (n = 64) differences of down to |kD| = 0.09 can be identified with the same power of 90%.

2.9 Data Availability

Data not provided in the article  because of  space limitations may be shared (anonymized) at  the 

request of any qualified investigator for purposes of replicating procedures and results, upon signing 

a data sharing agreement. Part of the dataset (imaging data for 60 PwMS with the respective global  

disability and motor scales) is publicly available in an on-line repository at  https://osf.io/p2kj7/. The 

custom  Matlab  script  for  kD calculation  is  available  at 

https://github.com/pavelhok/calculate_kd/tree/MS-project.

3. RESULTS

3.1 Study Sample

Out of the original sample of 65 PwMS and 65 HC, one PwMS and one HC were excluded due to 

missing data (incomplete field of view and susceptibility artifact), another PwMS was excluded due to 

a suspected vascular lesion. In the remaining sample, 13 subjects with excessive motion levels were 

identified (7 PwMS and 6 HCs), see Supplementary Fig. S2 for inclusion/exclusion diagram. Here, only 

results in 56 PwMS and 58 HCs after excluding motion outliers are reported (“final” sample), whereas 

results  in  the  sample  with  outliers  are  provided  in  Supplementary  Results.  While  both  analyses 

yielded mostly similar results, two differences are explicitly stated below. Demographic details of the 

“final” sample and summary statistics for clinical parameters are provided in Table 1.
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Table 1. Demographic and clinical data

Variable Statistic PwMS HC p

Number
count

56 58

Sex [women/men] 35/21 27/31 0.095a

Age [yrs] median ±IQR 45.1 ±17 40.5 ±17 0.090b

Diagnosis

RRMS

count, %

35, 62.5%

SPMS 15, 26.8%

PPMS 5, 8.9%

no data 1, 1.8%

Time since diagnosis [yrs] mean ±SD 12.6 ±6.2

EDSS

median ±IQR

4.5 ±3.0

SDMT 45 ±29

FSMC 57 ±23

TUG [s] 10.3 ±9

Notes: a)Fisher’s exact test; b)Mann-Whitney U test.

Abbreviations: EDSS  –  Expanded  Disability  Status  Scale;  FSMC  –  Fatigue  Scale  for  Motor  and  Cognitive 
Functions; HCs – healthy controls; IQR – interquartile range; MS – multiple sclerosis; n – number; N/A – not  
applicable; PPMS – primary progressive MS; PwMS – patients with MS; RRMS – relapsing-remitting MS; SD – 
standard deviation; SDMT – Symbol Digit Modalities Test; SPMS – secondary progressive MS; TUG – Timed 
Up and Go Test; yrs – years.

3.2 Group Differences and Differentiation between PwMS and HCs

PwMS showed significantly lower kD compared to HCs (PwMS: median = -0.298, inter-quartile range 

[IQR]  =  0.549;  HCs:  median  =  -0.058,  IQR =  0.542;  p =  0.009,  Mann-Whitney  U  test),  see  Fig.  1. 

Underlying raw degree centrality data are summarized in Supplementary Fig. S3.
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Fig. 1. Group differences in degree rank order disruption index (kD).
Raincloud plots illustrating individual kD values and distribution. Patients with multiple sclerosis are 
shown in green, healthy controls in red. Mann-Whitney U test p value is provided in annotation.

The ROC analysis for differentiation between PwMS and HCs yielded significant above-chance area 

under  curve  (AUC)  for  kD (AUC  =  0.642,  p =  0.007,  two-tailed  asymptotic  significance  for  null 

hypothesis  AUC  =  0.5),  the  left  lateral  parietal  portion  of  the  DMN  (DMN-LLP;  AUC  =  0.671, 

p = 0.001), and the ACC (AUC = 0.619; p = 0.026), see Fig. 2 and Supplementary Table 3. In pair-wise 

comparisons, AUC for kD was significantly higher than AUC for 6 ROIs and did not significantly differ 

from the remaining ROIs (Supplementary Table 3).
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Fig. 2. Receiver operating characteristic (ROC) analysis.
ROC curves for differentiation between patients with multiple sclerosis (MS) and healthy controls 
using degree rank order disruption index (kD; area under curve [AUC] = 0.642; p = 0.007, two-tailed 
asymptotic significance for null hypothesis AUC = 0.5, uncorrected); the left lateral parietal portion of 
the default mode network (DMN-LLP; AUC = 0.671;  p = 0.001), and the anterior cingulate cortex 
(ACC; AUC = 0.619; p = 0.026).

We  observed  no  significant  improvement  in  a  multiple  logistic  regression  model  differentiating 

between PwMS and HCs after adding  kD as  an additional  regressor on top of  GMV, FA, log(LL) 

(χ2 step = 0.007, p = 0.934).

3.3 Correlation with Cognitive Processing Speed

We detected a significant correlation between kD and SDMT (Spearman’s  ρ = 0.32, p = 0.019,  n = 55, 

Fig. 3).  For  the regional  degree centrality,  significant  correlation with SDMT was observed in the 

medial prefrontal part of the DMN, yielding slightly higher effect size than the  kD, see  Table 2. An 

ordinal  regression  model  including  GMV,  FA,  log(LL),  age,  sex,  and  years  since  diagnosis  as 

regressors  of  SDMT score was significantly improved after adding  kD (χ2 step  =  4.49,  p =  0.034, 

likelihood  ratio  test,  see  Table 3).  In  contrast,  neither  significant  correlation  with  SDMT  nor 

improvement of  regression model  for  SDMT were observed in analysis  with motion outliers  (see 

Supplementary Results).
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Fig. 3. Correlation between kD and clinical scores.
Scatter  plots  illustrating  relationship  between  the  degree  rank  order  disruption  index  (kD)  and 
cognitive  processing  speed  (Symbol  Digit  Modalities  Test,  SDMT),  global  disability  (Expanded 
Disability Status Scales, EDSS), fatigue (Fatigue Scale for Motor and Cognitive Functions, FSMC), 
and motor performance (Timed Up and Go Test, TUG). Spearman’s rank correlation coefficient (ρ), 
two-tailed uncorrected significance, and number of valid observations are provided.
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Table 2. Correlation between regional degree and clinical scores

SDMT
n = 55

FSMC
n = 56

ρa pa ρa pa

DMN-MPFC -0.45 0.001 0.23 0.081

DMN-LP L -0.03 0.847 0.12 0.365

R -0.28 0.036 0.27 0.041

DMN-PCC -0.18 0.177 0.13 0.346

Put L -0.35 0.009 0.38 0.004

R -0.27 0.044 0.30 0.024

Cau L -0.35 0.008 0.41 0.002

R -0.38 0.004 0.40 0.002

Tha L -0.27 0.043 0.30 0.025

R -0.27 0.046 0.25 0.059

Hip L -0.24 0.084 0.23 0.085

R -0.33 0.015 0.26 0.053

Crbl -0.25 0.067 0.34 0.010

SPL L -0.04 0.781 -0.21 0.118

R -0.12 0.396 -0.12 0.369

DLPFC L -0.05 0.728 -0.24 0.069

R -0.11 0.424 0.01 0.913

ACC -0.21 0.120 0.06 0.657

Notes: a)Spearman’s rank correlation coefficient ρ, significant correlations at Bonferroni-Holm-corrected alpha = 
0.0028 are marked in bold type, significant correlations at uncorrected alpha = 0.05 are marked in italics.

Abbreviations: ACC  –  anterior  cingulate  cortex;  Cau  –  caudate  nucleus;  Crbl  –  cerebellum;  DLPFC  – 
dorsolateral  prefrontal  cortex;  DMN – default  mode network:  -LP – lateral  parietal  part,  -MPFC – medial 
prefrontal cortex, -PCC – posterior cingulate cortex; FSMC – Fatigue Scale for Motor and Cognitive Functions;  
Hip – hippocampus; L – left; n – number; Put – putamen; SPL – superior parietal lobule; Tha – thalamus; R –  
right; ROI – region of interest; SDMT – Symbol Digit Modalities Test.
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Table 3. Ordinal regression of clinical scores

Regressand SDMT EDSS FSMC TUG

Model No kD With kD No kD With kD No kD With kD No kD With kD

Pseudo R2 (Cox&Snell) 0.215 0.276 0.326 0.327 0.202 0.298 0.297 0.300

-2 Log Likelihood 375.129 370.642 252.124 252.077 374.630 367.449 387.036 386.810

χ2 13.311 17.799 22.101 22.149 12.614 19.795 18.348 18.574

df 6 7 6 7 6 7 6 7

Model Sig. 0.038 0.013 0.001 0.002 0.050 0.006 0.005 0.010

kD Wald N/A 4.051 N/A 0.056 N/A 7.662 N/A 0.249

kD Sig. N/A 0.044 N/A 0.813 N/A 0.006 N/A 0.618

χ2 step 4.49 0.05 7.18 0.23

df 1 1 1 1

pa 0.034 0.828 0.007 0.634

Notes: a)One-tailed likelihood ratio test.

Abbreviations: df – degrees of freedom; EDSS – Expanded Disability Status Scale; FSMC – Fatigue Scale for 
Motor and Cognitive Functions;  kD – degree rank order disruption index; n – number; N/A – not applicable; 
SDMT – Symbol Digit Modalities Test; TUG – Timed Up and Go Test.

3.4 Correlation with Fatigue, Global Disability, and Motor Performance

We detected a significant correlation between kD and FSMC (Spearman’s ρ = −0.34, p = 0.010, n = 56), 

but not for EDSS (Spearman’s  ρ =  −0.06,  p = 0.674,  n = 56) or TUG (Spearman’s  ρ =  −0.18,  p = 0.211, 

n = 52), see Fig 4. In ordinal regression,  kD significantly improved the model fit for fatigue (FSMC) 

when added on top of GMV, FA, log(LL), age, sex, and years since diagnosis, but not for EDSS or TUG 

(Table 3).

3.5 Relationship between kD and Structural Imaging Biomarkers

We observed no significant correlation between kD and structural imaging parameters, i.e., GMV, LL, 

and  global  FA,  see  Supplementary  Fig.  S4. In  analysis  with  motion  outliers,  however,  kD was 

significantly  correlated  with  LL  (see  Supplementary  Results).  All  structural  imaging  parameters 

significantly differed between PwMS and HCs, see Supplementary Table 4. 

3.6 Post-hoc Analyses

Voxel-wise group differences are illustrated in supplementary Fig. S3. Voxel-wise regression analysis 

for  degree  centrality  as  response  variable  and  SDMT  as  explanatory  variable  yielded  significant 

cluster with negative effect mainly in MPFC and ACC, and to a lesser degree in the subcallosal cortex 

and the right nucleus accumbens, overlapping in part with the DMN-MPFC ROI (Fig. 4 and Fig. S3 for  

14

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.14.24304081doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.14.24304081
http://creativecommons.org/licenses/by/4.0/


unthresholded data). The regression for FSMC yielded a positive effect in the predominantly right 

cerebellum, right caudate nucleus, right inferior frontal gyrus and a negative effect in the left temporo-

occipital fusiform and lateral occipital cortex (Fig. 4 and Fig. S3 for unthresholded data).

Fig. 4. Voxel-wise correlation between degree and clinical scores.
Color overlays illustrating spatial distribution of correlation of the voxel-wise degree centrality with 
(top)  cognitive  processing  speed  (Symbol  Digit  Modalities  Test,  SDMT)  and  (bottom)  fatigue 
(Fatigue Scale for Motor and Cognitive Functions, FSMC). Red-yellow and blue-lightblue overlays 
indicate  positive  and  negative  correlation,  respectively.  Thresholded  using  non-parametric 
threshold-free cluster enhancement (10,000 permutations, family-wise error-corrected p = 0.05). In the 
top panel, yellow overlay shows overlap with the medial prefrontal cortex default mode network 
(MPFC-DMN) region of interest.

The ROI analysis for FSMC yielded significant correlation in the left and right caudate nuclei (left: 

Spearman’s ρ = 0.41, p = 0.002; right: Spearman’s ρ = 0.40, p = 0.002; n = 56, Bonferroni-Holm-corrected 

across the 18 ROIs, i.e., alpha = 0.0028). See Table 2 for complete results.
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4. DISCUSSION

The  present  study  aimed  to  investigate  the  potential  utility  of  kD as  a  new  functional  imaging 

biomarker of CI in MS in comparison to regional degree centrality. While  kD in PwMS significantly 

differed from HCs and was a significant explanatory variable for cognitive processing speed (SDMT) 

in PwMS, it yielded weaker correlation than the mean degree centrality in the frontal hub (MPFC) of  

the DMN. In an exploratory analysis,  kD turned out to be a significant  explanatory variable for self-

reported fatigue.  This was not the case for global disability (EDSS) or motor performance (TUG). 

A post-hoc analysis indicated, that the correlation with fatigue might be driven by degree centrality 

changes in the cerebellum, basal ganglia (caudate nuclei), and left fusiform gyrus.

4.1 Differentiation between PwMS and HCs

Our primary observation of decreased kD in PwMS captures the global character of changes in nodal 

centrality (both degree and eigenvector) that have recently been reported on the local and network-

wide level in MS.9,18,20,21,36 Lower kD in PwMS suggests less centralized and more diffusely distributed 

rsFC, which is analogous to a previously described disruption of the rich-club topology of the brain 

network  in  MS.37 However,  our  multiple  regression  analysis  indicated  that  kD did  not  improve 

differentiation between PwMS and HCs when added on top of structural imaging parameters. Taken 

together with the considerable overlap between kD distributions in PwMS and HC (Fig. 1), it can be 

inferred that degree reordering is predominantly driven by factors other than presence of MS. In fact,  

changes in centrality of the network hubs have been consistently observed to depend on the cognitive 

status of PwMS.19–22 As such, we conclude that changes in kD are more likely related to the resulting 

neurological deficits than to the underlying MS-related pathology per se.

4.2 Correlation with Cognitive Processing Speed

Our next main analysis  demonstrated that  kD was a significant  explanatory variable for cognitive 

processing  speed  when  compared  to  global  structural  imaging  parameters.  While  the  negative 

correlation between  kD and SDMT is a novel finding, it is in line with previous evidence for weak 

positive association between SDMT score and rsFC of the peripheral nodes outside the rich club. 37 The 

correlation between kD and SDMT yielded an effect size similar to some previously reported structural 

imaging biomarkers of cognitive processing speed, including fractional anisotropy in the superior 

longitudinal fascicle16 or gray matter atrophy-based brain age gap,38 but was lower than overall effect 

size in a recent meta-analysis of multimodal structural MRI data.39

In our dataset, a superior correlation with SDMT was achieved using regional degree centrality in the 

MPFC hub of the DMN, yielding an effect size comparable with structural imaging biomarkers.39,40 
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Correspondingly, cognitive impairment in MS has been shown to be associated with increased degree 

or eigenvector centrality in the DMN19–23 and decreased centrality in the visual20,22,23 and sensorimotor 

network,20 while  eigenvector  and  degree  centrality  show  high  agreement  even  within  the  same 

group.21 Nevertheless,  our results add novel evidence for the strength of the relationship between 

degree centrality in the DMN and cognitive processing speed since no such correlation in MS has been 

reported before.

4.3 Role of the DMN in Pathophysiology of Cognitive Deterioration in MS

The ROI and  post-hoc voxel-wise analyses indicated that the MPFC and ACC (i.e., anterior DMN) 

provided the highest correlation between degree and cognitive processing speed. The role of DMN in 

CI remains controversial.1 Although rsFC abnormalities in DMN have been considered to be non-

specific, i.e., linked to the dysfunction of the entire brain network,1 an excessively central and less 

dynamic DMN has also been proposed to directly hinder externally oriented cognitive processing by 

superfluous introspective thoughts.20,41 In contrast, cognitive rehabilitation has been associated with 

increased activation and rsFC of  the  DMN, suggesting its  possible  participation in  compensatory 

mechanisms.42 Additionally,  some  rsFC  studies  using  the  Paced  Auditory  Serial  Addition  Test 

(PASAT), i.e., another frequently employed cognitive test in MS research, also point to dysfunction of 

DMN and subcallosal cortex.36,40 Hence, graph-theoretical measures extracted from anterior portion of 

the DMN are potential future candidates for even more accurate biomarkers of cognitive processing 

speed than kD, although studies using more elaborate cognitive testing are warranted to assess their 

specificity with respect to other cognitive domains.

4.4 Association with Fatigue

Our exploratory analyses indicated, that apart from cognitive processing speed, kD was a significant 

explanatory variable for the self-reported global fatigue score (FSMC). While cognitive performance 

and fatigue have been shown to be associated with similar rsFC dysfunctions, such as increased rsFC 

in posterior DMN and reduced rsFC in the anterior DMN,43 our post-hoc analyses on ROI and voxel-

wise  level  suggested  potential  differentiation  between  CI  and  global  fatigue:  Whereas  SDMT 

correlated with average degree in DMN-MPFC, fatigue scores were more strongly associated with 

degree in the caudate nuclei, cerebellum, and fusiform cortex (Table 2 and Fig. 4).

Although cytokine  and neuroendocrine  abnormalities  have  been  discussed  as  potential  causes  of 

fatigue in MS,44,45 it has also been associated with damage to cortico-subcortical pathways and with 

particular involvement of prefrontal cortex.45 On the computational (metacognitive) level, it has been 

proposed  to  result  from  mismatch  between  predicted  and  measured  output  from  cognitive  and 
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sensorimotor networks.1,44 Our results fit in by emphasizing the role of basal ganglia46 and cerebellum, 

which is involved in maintaining internal forward models and error monitoring.47 Future dedicated 

studies  should  evaluate  the  specificity  and  stability  of  the  here  identified  biomarkers  and  their 

accuracy with respect to the motor and cognitive sub-domains of FSMC.

4.5 Relationship with Global Disability and Motor Performance

Despite some evidence for increased eigenvector centrality in the basal ganglia,19 DMN,18,19 and lower 

degree  in  executive  control  and  visual  networks36 in  patients  with  higher  EDSS,  we  found  no 

association between  kD and global disability (EDSS) and gait (TUG). In contrast, previous machine 

learning study in the same dataset achieved a medium correlation (not exceeding r = 0.5) with EDSS or 

TUG  using  rsFC,  white  matter  integrity  and  gray  matter  atrophy  features  either  separately  or 

combined.6 We therefore speculate that motor deficits are better explained by local changes in rsFC 

than by overall network disarray. This is supported by fact that PwMS in our paraparetic cohort had 

significantly lower degree in supplementary motor area and paracentral lobule than HCs as shown by 

our post-hoc analysis (Supplementary Fig. S4). This may be, at least in part, due to strong influence of 

strategic  lesions  in  pyramidal  or  cerebellar  pathways  (including  the  spinal  cord)  on  motor 

performance including gait,48,49 which dominates the EDSS score.12

4.6 Correlation with Structural Imaging Parameters

Our results showed that kD was largely independent on global structural imaging parameters, such as 

brain atrophy, global white matter integrity or lesion load, supporting its applicability as an add-on 

biomarker  for  some of  the  clinical  scores.  In  previous  studies,  however,  degree  centrality  in  the  

thalamus  and cerebellum correlated  with  the  lesion  load,18 while  degree  centrality  in  the  insular 

cortex, cerebellum and precuneus (DMN) correlated with brain and gray matter volume.18 Correlation 

between LL and degree centrality of the executive and salience networks was also described.36 We 

speculate  that  the  lack  of  correlation  between  structural  imaging  and  kD might  reflect  its  closer 

relationship with actual  functional  reserve that  may vary even in patients  with similar  degree of 

structural damage.

4.7 Limitations and Future Directions

While the main strength of the study was rigorous pre-registration of all main analyses, there are also 

several limitations related to the fact that this study was carried out as a secondary analysis: SDMT 

reflects mainly cognitive processing speed and involves visual processing. Further assessments across 

multiple  cognitive  domains  and  sensory  modalities,  as  well  as  consideration  of  depression  as 

a potential  confounding  factor  are  warranted.  Furthermore,  our  cross-sectional  data  cannot 
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differentiate between state (e.g., affected by the current level of exhaustion) and trait (i.e., effect of 

structural  damage  and  subsequent  (mal-)adaptive  plasticity)  as  well  as  premorbid  patient 

characteristics. Normative data, assessment of test-retest reliability and longitudinal evaluation are 

thus needed. Future directions also include assessment of time-resolved kD, as temporal dynamics of 

centrality seem to provide additional insights into network dysfunction underlying CI.20 In case of 

fatigue,  more fine-grained distinction into motor and cognitive fatigue would also further aid the 

interpretation. Finally, our data cannot be currently generalized to all individuals with MS (see our 

inclusion criteria),  hence,  a  cross-validation of  our  results  in  an independent  dataset  is  necessary 

before translating the results into clinical practice.

5. CONCLUSIONS

Although  our  results  require  further  cross-validation,  they  suggest  that  obtaining  a  single  scalar 

functional imaging biomarker of CI is feasible and may provide an important diagnostic tool to assess 

performance decline due to CI and fatigue.
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