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France7

b
Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven – University of8

Leuven, 3000 Leuven, Belgium9

c
Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA10

d
Howard Hughes Medical Institute, Seattle, Washington 98109, USA11

e
Departments of Biomathematics and Human Genetics, David Ge↵en School of Medicine at UCLA, University12

of California, Los Angeles, CA, 90095, USA13

f
Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles,14

CA, 90095, USA15

g
Fogarty International Center, National Institutes of Health, Bethesda, MD, USA16

h
Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK.17

i
Department of Biology, Georgetown University, Washington, DC, USA.18

j
Department of Molecular Medicine, University of Padova, 35121 Padova, Italy19

1
F.P. and E.G.-B. contributed equally to this work.20

2
V.C., C.P. and P.L. contributed equally to this work.21

3
To whom correspondence should be addressed: philippe.lemey@kuleuven.be, chiara.poletto@unipd.it22

1

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.14.24303719doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

email:email-id.com
https://doi.org/10.1101/2024.03.14.24303719
http://creativecommons.org/licenses/by-nd/4.0/


Abstract23

Global seasonal influenza circulation involves a complex interplay between local (seasonality,24

demography, host immunity) and global factors (international mobility) shaping recurrent25

epidemic patterns. No studies so far have reconciled the two spatial levels, evaluating the26

coupling between national epidemics, considering heterogeneous coverage of epidemiologi-27

cal and virological data, integrating di↵erent data sources. We propose a novel combined28

approach based on a dynamical model of global influenza spread (GLEAM), integrating29

high-resolution demographic and mobility data, and a generalized linear model of phylogeo-30

graphic di↵usion that accounts for time-varying migration rates. Seasonal migration fluxes31

across global macro-regions simulated with GLEAM are tested as phylogeographic predic-32

tors to provide model validation and calibration based on genetic data. Seasonal fluxes33

obtained with a specific transmissibility peak time and recurrent travel outperformed the34

raw air-transportation predictor, previously considered as optimal indicator of global in-35

fluenza migration. Influenza A subtypes supported autumn-winter reproductive number as36

high as 2.25 and an average immunity duration of 2 years. Similar dynamics were preferred37

by influenza B lineages, with a lower autumn-winter reproductive number. Comparing sim-38

ulated epidemic profiles against FluNet data o↵ered comparatively limited resolution power.39

The multiscale approach enables model selection yielding a novel computational framework40

for describing global influenza dynamics at di↵erent scales - local transmission and national41

epidemics vs. international coupling through mobility and imported cases. Our findings42

have important implications to improve preparedness against seasonal influenza epidemics.43

The approach can be generalized to other epidemic contexts, such as emerging disease out-44

breaks to improve the flexibility and predictive power of modeling.45

Keywords: Influenza, Metapopulation, Phylogeography, Bayesian inference46

1 Introduction47

Seasonal influenza viruses cause recurrent epidemics characterized by annual periodicity in tem-48

perate countries and by diverse, less regular patterns in the tropics.1 Extensive epidemiological49

research highlighted the critical role of local sociodemographic and environmental aspects (e.g.50

weather conditions, school calendar and increased indoor activity) in the onset and unfolding51

of influenza waves.2–10 At the same time, international human travel ensures rapid worldwide52

circulation of influenza .11–13 Phylogeographic studies have reconstructed the global migration53

patterns of seasonal influenza in extensive detail, revealing limited local persistence of the virus54

in most regions and highlighting the importance of continual reseeding in determining viral55
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genetic structure, severity and timing of the epidemics.12,14–16 The concurrent impact of local56

and global drivers has also been apparent through analyses of the decline of influenza incidence57

observed during the coronavirus disease 2019 (COVID-19) pandemic. Both reduction in inter-58

national travel and social restrictions (due, e.g., to remote working and school closure) were,59

indeed, found to be associated to the influenza drop.17–19 From a modeling perspective, how-60

ever, reconciling the two spatial levels represents a major challenge, as the interplay between61

the local progression of an epidemic in a particular country and the coupling between di↵erent62

epidemics mediated by human mobility remains poorly understood.63

The unevenly distributed human host population across countries and seasonal areas and the64

complex network of human travel acting over both short and long range distances (i.e. from65

city-to-city commuting to international air travel) are key to this challenge.20,21 In addition,66

while influenza surveillance is improving worldwide,18 the coverage is still biased, restricting our67

ability to resolve the spatial dynamics. The quality of epidemiological data is generally higher68

in temperate areas, but these are the areas that are characterized by a high degree of synchro-69

nization of national influenza epidemics in the same hemisphere, thus making spatial e↵ects less70

identifiable. As a consequence, mathematical models for influenza dynamics at di↵erent scales71

remain di�cult to parametrize. Genetic data however carry the signature of large-scale circu-72

lation dynamics and may therefore represent a valuable complementary source to characterize73

seasonal influenza epidemics, especially when combined with epidemiological data. The recent74

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has illustrated the75

importance of combining epidemiological and mobility data, genomic sequences and metadata76

to provide insights into viral emergence and spread.22–27 Phylogeographic inference in particu-77

lar has been widely applied to elucidate SARS-CoV-2 genomic epidemiology, including origins,78

introductions, routes of dispersal, and drivers associated with variant dissemination, contribut-79

ing to the e↵ectiveness of systematic genomic surveillance.24–27 However, the development of80

integrated tools is still relatively limited and opportunities remain to fulfill the full potential81

of phylodynamic approaches. Di↵erent from previous phylogeographic reconstructions, we here82

propose a novel approach that combines a high-resolution dynamical model for the di↵usion of83

influenza worldwide, informed by extensive demographic and mobility data, and a generalized84

linear model of phylogeographic di↵usion that allows for inhomogeneous migration rates over85

time. We use the epidemic model to simulate migration fluxes across macro regions of the world86

and evaluate their ability to explain phylogeographic patterns.87
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2 Results and Discussion88

2.1 Combining mechanistic epidemic modeling and phylogeographic infer-89

ence90

We combine dynamical modeling and phylogeographic inference by considering the simulated91

fluxes of infectious cases generated by a data-driven computational model for infectious disease92

spread at the global scale as predictors for phylogeographic migration rates. For this purpose, we93

build on GLEAM, the GLobal Epidemic and Mobility model,28 that integrates high-resolution94

demographic and mobility data at di↵erent spatial scales - air tra�c database comprising nearly95

all commercial air-travels and short-range mobility obtained from national commuting data.2896

The global population is distributed among 3362 patches corresponding to large urban areas and97

traveling of individuals is modeled explicitly based on passenger data. GLEAM has been used98

to model the short-term outbreak dynamics in the case of the H1N1 influenza pandemic,11,1399

Ebola,29,30 MERS,31,32 Zika,33 and COVID-19,34–37 following prior modeling work considering100

the global scale.38–40101

To adapt GLEAM to seasonal circulation of influenza, we introduce a more realistic scheme102

for modeling mobility of individuals that preserves their geographic residence (see Material and103

Methods for more details). This approach is usually adopted for modeling recurrent travel,104

such as commuting,28,41,42 while a simpler Markovian mobility model assuming memory-less105

traveling trajectories is generally preferred for air travel. Although less realistic, the latter is106

more parsimonious and has only a limited approximation bias for fast spreading diseases and107

short-term epidemic dynamics.42 In our analysis of the multi-annual influenza propagation, we108

compare both the Markovian and the recurrent travel approach.109

In the metapopulation scheme, GLEAM transmission dynamics occur within patches ruled by110

a compartmental model specific to seasonal influenza2,3,11,43,44 (Material and Methods) and ac-111

counting for: (i) a temporary immunity to the virus of average duration D, with values explored112

between 1 and 8 years; (ii) a geographically dependent seasonal transmission in temperate areas113

varying sinusoidally in time between a minimum and a maximum basic reproductive number,114

Rmin (explored values: 0.5 and 0.75) and Rmax 2 [1.25,2.5], respectively, with 15 Nov, 15 Dec,115

and 15 Jan tested as dates of maximum transmission in the northern hemisphere and minimum116

transmission in the southern hemisphere; (iii) a constant transmission with a basic reproductive117
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number equal to Rmax in the tropics. Discrete stochastic simulations at the individual level118

provide numerical trajectories for the global seasonal dynamics with a time resolution of one119

day. Results display autumn-winter waves interspersed by subcritical spring-summer transmis-120

sion in the temperate hemispheres, and an irregular continuous circulation in the tropics. The121

output is summarized as fluxes during the spring-summer and autumn-winter epochs between122

the countries considered by the phylogeographic approach.123

To evaluate di↵erent parameterisations of our dynamical model, we test the resulting fluxes in a124

phylogeographic approach. To this purpose, we adopt a generalized linear model (GLM) exten-125

sion of discrete phylogeographic di↵usion12 that accommodates time-inhomogeneous migration126

dynamics. The GLM-di↵usion approach allows modeling the intensity of location exchange127

between discrete states along a phylogeny as a function of a number of potential predictors.12128

Using epoch modeling,45 we allow for di↵erent location exchange processes, and hence di↵erent129

predictors, across di↵erent time intervals in the evolutionary history. Specifically, we con-130

sider the di↵erence in model-based fluxes during alternating spring-summer and autumn-winter131

epochs. We employ comprehensive sequence data sets that were previously analyzed to recon-132

struct more than a decade of global seasonal migration dynamics of influenza A H3N2, H1N1133

(prior to the H1N1/09 pandemic), B Victoria (VIC) and Yamagata (YAM) between 2000 and134

2012.16 We model the phylogeographic process between the countries of sampling for these dif-135

ferent influenza subtypes. We use BEAST46 to estimate parameters of the time-inhomogeneous136

GLM-di↵usion approach through Bayesian inference while averaging over a set of time-measured137

trees.138

2.2 Model selection and parameter estimation139

We evaluated di↵erent sets of migration fluxes, including simple passenger fluxes based on air140

travel data, simulated migration fluxes from the Markovian and the recurrent travel version of141

GLEAM, either as homogeneously aggregated fluxes over time (annual fluxes) or as two-epoch142

level fluxes (seasonal fluxes).143

To avoid including an excessive amount of migration flux predictors in a single GLM di↵usion144

model analysis, our systematic evaluation relied on a stepwise approach. We first tested Marko-145

vian against recurrent travel fluxes for di↵erent epidemiological parameters (Rmin, Rmax and146

D) while conditioning on seasonal fluxes with a peak time in January in the northern hemi-147
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sphere. Next, we tested seasonal against annual fluxes conditioning on recurrent travel fluxes148

and a peak time in January. Finally, we tested the January peak time against peak times in149

December and November conditioning on seasonally aggregated recurrent travel fluxes. In each150

of these analyses, we include simple air passenger fluxes as a baseline predictor, and we per-151

form the analysis with and without a predictor based on the residuals of a regression of sample152

sizes against population sizes to assess the potential impact of sample sizes. Fig. 1 summa-153

rizes the marginal posterior inclusion probabilities for the di↵erent comparisons, while inclusion154

probabilities for individual flux predictors are provided in Supplementary Tables 3-6.155

Our analyses support GLEAM fluxes based on recurrent travel for H3N2, H1N1 and YAM,156

demonstrating i) an improvement of dynamical model predictions over simple air travel for157

most of the influenza variants and ii) the importance of accounting for memory in the origin158

of travel trajectories of individuals. For these three variants, seasonally aggregated fluxes also159

outperformed annual fluxes and a peak time in January outperformed earlier peak times (with160

an inclusion probability of ⇠1). For H3N2 specifically, seasonal fluxes strongly outperformed161

annual fluxes with and without residual predictor (inclusion probability of ⇠1) (Supplementary162

Table 4) and a similar support was detected for H1N1 (inclusion probability of ⇠0.95). The in-163

clusion probability for YAM was marginally lower when employing the residual predictor (0.72).164

When comparing the magnitude of best-supported predictors, the support for seasonal fluxes165

was approximately 20 times stronger than annual flux. In the case of VIC, GLEAM fluxes are166

only supported in the analysis without sample size residual. Standard phylogeographic analyses167

of these data sets have previously shown that VIC is associated with the highest degree of persis-168

tence and the lowest overall migration,16 so o↵ering less information to support GLEAM-based169

fluxes, in particular when sample heterogeneity can explain a considerable degree of migration170

variability. For the seasonal GLEAM fluxes based on recurrent travel and based on a Jan 15171

peak time, we next summarized the support for the di↵erent values of Rmax, Rmin and D172

(Fig. 2). For H3N2, the parameter combination including Rmax = 2.25, Rmin = 0.75 and173

D = 2years yields the highest flux inclusion probability (inclusion probability ⇠1 and 0.68 with174

and without sample size residual, respectively). The parameter values in this combination are175

also clearly the ones that are preferred across all combinations in analyses with and without176

residual predictor (Fig. 2). In Section 3 of the Supplementary Material, we investigate di↵er-177

ences in fluxes generated by di↵erent parametrizations and note that the GLM selects fluxes178

that are distinct from those generated by other parameterizations. The H1N1 analysis with179
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Figure 1: Marginal posterior inclusion probabilities associated with air travel data or with
GLEAM-based fluxes comparing recurrent against Markovian travel, seasonal against annual
fluxes and di↵erent peak time times. For peak times, we performed an analysis comparing Nov
15 against Dec 15 and an analysis comparing Dec 15 to Jan 15, but we only show the latter for
simplicity as Dec 15 outperformed Nov 15.
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Figure 2: Marginal posterior inclusion probabilities associated with recurrent travel distribution
of GLEAM fluxes for the three parameters Rmax, Rmin and D, without and with residual
predictor.

sample size residual also finds this parameter combination to be the best supported, but not180

as strongly so (0.59 inclusion probability), while the analysis without sample size residual finds181

marginally lower support (0.33 inclusion probability) compared to a parameter combination182

including Rmax = 1.50, Rmin = 0.75 and D = 1years (0.52 inclusion probability).183

The analysis of YAM without residual predictor recovers the same general preference for D184

and Rmin (2 years and 0.75, respectively), but finds the strongest support for a somewhat185

lower Rmax of 2.00 (0.77 inclusion probability). The same parameterization is supported by186

the analysis with residual predictor, but with somewhat lower inclusion probability (0.56).187

Without residual predictor, the analysis of VIC supports the same parameterization as YAM188

(0.60 inclusion probability, Fig. 2).189

The rapid immune waning we identify, with average duration of immune protection between 1190

and 3 years, is in agreement with previous work,47–50 but some studies have estimated longer191
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immunity duration.2,3 Smaller transmissibility for influenza B compared to A/H3N2 (as es-192

timated for both Yamagata and Victoria) is also consistent with previous works.16,48 Those193

studies typically use incidence curves at the country level, whereas our selection is based on194

influenza migration patterns encoded in the genetic data. The spatial coupling, thus, carries195

the signature of country seasonal waves. For the period between two consecutive epidemics,196

early analyses of genetic data in temperate areas suggested that inter-seasonal circulation of197

influenza was dominated by the importation of cases from other seasonal areas, with negligible198

local transmission following importation.51–53 Recent improvements in out-of-season surveillance199

are providing increasing evidence for the sporadic generation of cases during the spring-summer200

period,54–56 in agreement with spring-summer transmissibility of Rmin = 0.75 supported by201

our analyses.202

2.3 Predicted influenza dynamics203

We compare country-level epidemics simulated by GLEAM with recurrent travel and epidemic204

profiles reconstructed from FluNet data to evaluate model predictions against available surveil-205

lance data. The number of influenza-positive samples stored for each subtype in FluNet has206

been extensively used for reconstructing the timing and shape of the epidemic peaks.1,8,17,47,57207

We compute monthly distributions of cases averaged over the period 2004/05�2014/15 as an208

indicator of the typical influenza behavior of the country (see Supplementary Material for ad-209

ditional details). Fig. 3 compares the H3N2 epidemic profile with the simulated one for a set of210

countries in each seasonal area (see Supplementary Material for additional details). The timing211

and shape of the epidemic waves are well reproduced by the model in the majority of temperate212

area countries (average correlation 0.83± 0.03 for the Northern hemisphere and 0.66± 0.10 for213

the Southern hemisphere), representing also the region with the highest availability of country214

records. In the tropics, correlations are generally lower (average correlation 0.10±0.05) because215

of the rather noisy and flat epidemic profiles. For large countries, strong spatial fragmentation216

of the population and climatic heterogeneity complicates analyses at the national scale,58 as217

illustrated for China. These results were obtained with the best parameterization for H3N2 as218

selected by the phylogeographic GLM. Other parameter sets performed worse, but a number of219

di↵erent simulated scenarios also showed a similarly high correlation with the data (see Supple-220

mentary Material for details and analysis of other influenza subtypes). These results indicate221

that the degree of information carried by incidence data is limited, likely due to the high level222

9

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.14.24303719doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.14.24303719
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3: Annual epidemic profiles for 30 selected countries from FluNet H3N2 samples (colored)
and simulations with the best-supported scenario (gray). For each seasonal region, selected
countries are representative of the whole set for average correlation and its dispersion. Shaded
areas show the 95% CI of the normalized incidence (see Supplementary Material).

of synchronization between country waves, together with non-uniform surveillance coverage and223

quality (see Supplementary Fig. 5). This suggests that the best parametrization could be se-224
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Figure 4: Dominant fluxes of cases for the two epochs. To enhance clarity, countries have been
grouped into geographic areas. We have considered here the same region repartition as in.16 The
plots show the top 10 areas in terms of importations, along with the fluxes responsible for 60%
of the importations. In the case of Europe, we show the top 20 countries, each featuring only
the most significant importation flux. Fluxes between countries/areas are color-coded according
to their country/area of origin.

lected as the one that has high correlation with incidence and at the same time explains the225

genetic data well, i.e. has high inclusion probability in the GLM analysis.226

Simulated influenza circulation shows a strong coupling between Europe and North America227

during autumn-winter, together with the central role of Southeast Asia and China as influenza228

sources for the Asian continent and Oceania during spring-summer and autumn-winter periods.229

In particular, Southeast Asia is one of the main sources of importation for Australia, Japan230

and Korea, India and Europe. South America appears to be disconnected from Asian regions231

(see Fig. 4 and Supplementary Table 8 and 9), but plays a role as seeder of influenza in North232

America and Europe during spring-summer epochs.233

The pattern shown here is largely consistent with the results of previous phylogeographic recon-234
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structions .12,14–16 We looked more in depth to importation fluxes across European countries235

and found a West to East migration pattern compatible with the West-to-East gradient in peak236

timing observed in the region.57,59This highlights that human population distribution, human237

mobility and seasonal variation in transmission are important drivers of influenza circulation at238

the global and continental levels.239

The multiscale nature of influenza dynamics generated by GLEAM with recurrent travel allows240

simultaneously reconstructing within country spread and global virus circulation, shedding light241

on the dynamical coupling among countries underlying seasonal epidemic waves. In Fig. 5 we242

compare local transmission with case importations according to the region of origin. The contri-243

bution of importations to local epidemics is important during out-of-season periods as a seeding244

component that can generate long transmission chains at the beginning of the influenza season.245

Model predictions on the geographical origin of importations may therefore carry important246

epidemiological information about the approaching season. Fig. 5 highlights the di↵erences in247

the behavior between specific countries. A high level of geographical mixing is observed for248

Australia where importations during summer and at the beginning of the influenza season orig-249

inate from Southeast Asia, Europe and North America. For Japan and the United States on250

the other hand, a geographical pattern emerges in which the large majority of importations251

originate from a specific region, i.e. Southeast Asia for Japan and South America for United252

States.253

2.4 Limitations254

Our model captures global circulation patterns that largely explain both incidence and genetic255

data, with selected parameterizations that are generally consistent for both H3N2, H1N1 and256

YAM. While phylogeographic analysis showed that migration rates were substantially corre-257

lated for H3N2, H1N1, and YAM, these lineages were also characterized by di↵erent degrees258

of persistence in specific locations.16 A uniform model of seasonality in the region overlooks259

environmental and human forcing that are acting at the country and sub-country level and that260

are known to shape the epidemic dynamics in the region.7,8,57,60 In addition, strain-specific261

antigenic evolution and its interplay with demography and age structure can a↵ect migration262

patterns, which is not accounted for in our model. For instance, H1N1 hits more severely the263

younger population that mix more at the local geographical scale but travel less frequently over264

long-range distances compared to the adult population.16 This e↵ect has been shown to impact265
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Figure 5: Left: simulated incidence (black line, right axis) and number of imported cases
(bars, left axis) for two consecutive years from a single stochastic realization - for the best
parametrization obtained for H3N2. Right: ratio of imported vs. local cases. Bars are assigned
colors based on their respective are of origin (same repartition as in Fig. 4. The bars with
grey/white stripes combine values for regions outside the top six from which the selected country
imports cases.

the spatial invasion and the local persistence of an infection.16,61 Di↵erences in strain-specific266

patterns may arise also from complex interactions between subtypes that are di�cult to capture267

from a general seasonal model. Further fine-tuning of simulation parameters may also assist in268

better capturing subtle di↵erences in the strain specific dynamics.269
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3 Conclusions270

By designing a combined approach, we were able to employ genetic data to validate and calibrate271

a dynamical model for the multiscale spread of influenza. The model simulates within-country272

epidemics, spatial coupling mediated by human mobility, and thus the resulting global circu-273

lation of the virus. The information encoded in the genetic data allowed for unambiguous274

identification of the essential epidemiological parameters, whereas incidence data o↵ered only275

low resolution power. We were able to show that population distribution, local mobility and276

international travel, as well as seasonality are fundamental ingredients to accurately model277

influenza migration patterns.278

We have here studied a decade of influenza dynamics before the COVID-19 pandemic. Fol-279

lowing SARS-CoV-2 emergence in 2020, the global influenza circulation has been substantially280

altered with potential long-term consequences,62 as illustrated by the probable extinction of281

the B Yamagata variant.63 In such a situation, the long-term and global-scale description of282

influenza dynamics is more than ever important to identify viral evolutionary pathways for the283

prediction of vaccine composition, to inform projections on the approaching influenza season in284

a given region, and, on a more fundamental level, to disentangle the interplay between endoge-285

nous and exogenous factors in shaping regional epidemic waves. Phylodynamic approaches may286

become an invaluable tool to achieve these goals. Our study provides the starting point of a new287

methodological approach that can be further extended with additional ingredients and data lay-288

ers to improve the description of the source-sink dynamics and strain-specific features and their289

interactions in the post-COVID-19 pandemic era. Advances in global influenza surveillance,18,60290

along with the increased availability of large-scale data-sets8 will undoubtedly instigate further291

model developments. In addition, the flexible multi-step structure of our approach makes it292

adaptable to a variety of epidemic models, infectious diseases, and epidemic scenarios.293

4 Material and Methods294

4.1 GLEAM295

The GLEAM mobility layer integrates the global flight network with the daily commuting pat-296

terns between adjacent patches64 (see Supplementary Material). The short-range commuting is297

accounted for by defining e↵ective patch mixing, based on a time-scale separation approach.11,28298
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Air travel mobility is modeled explicitly, as a discrete-time multinomial process.65 In Markovian299

GLEAM, the daily probability that an individual travels from patch i to patch j is pij = wij/Ni,300

with Ni being the population size of i and wij being the flux of passengers from i to j in the301

air transportation data. Traveling probability does not account for the location of residence of302

individuals. In the recurrent travel GLEAM, the flux of travelers wij is subdivided into individ-303

uals resident in i and departing for j, and individuals visiting i and returning to the residence304

location j.41,66–68 Leaving and returning home are modeled as distinct processes with average305

trip duration assumed to be 15 days28 and departing rate derived from wij (see Supplementary306

Material). Influenza transmission dynamics is modeled within each patch through a compart-307

mental model where individuals are divided in susceptible, latent, symptomatic infectious (that308

may or may not travel dependent on the severity of symptoms), asymptomatic infectious and309

recovered, i.e. immune to the virus. The average duration of the exposed and infection pe-310

riod are set to 1.1 and 2.5 days, respectively.11 Given the stochastic nature of the model, each311

parametrization generates a collection of possible time evolutions for the observables, such as312

prevalence, peak of infection, number of imported cases, etc., at the spatial resolution of a sin-313

gle patch and time resolution of a day, that can be aggregated at the desired level in time and314

space.315

Phylogeographic analysis316

We combine a generalized linear model (GLM) parameterization of discrete phylogeographic317

di↵usion12 with epoch modelling45 in a Bayesian full probabilistic framework. Both approaches318

represent extensions of continuous-time Markov chain (CTMC) processes implemented in a319

Bayesian phylogenetic framework.69 The GLM di↵usion model parameterises the CTMC tran-320

sition rates as a log linear function of a number of potential predictors and allows estimating321

both the size of the contribution and the inclusion probability of each predictor. Previous322

applications have demonstrated how this model averaging approach can identify the predictor323

or set of predictors that adequately explain the dynamics among location 12,70 or among host324

transitioning.71 Here, we adapt this approach to compare the fit of individual model-based325

fluxes as predictors of phylogeographic di↵usion. In order to model heterogeneity in migration326

rates through time, and hence to allow for di↵erent fluxes predicting these time-variable rates,327

we adopt an epoch modeling approach.45 The epoch approach partitions evolutionary history328

into an arbitrary number of time intervals or epochs, separated by transition times, and allows329
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specifying a potentially di↵erent CTMC parameterisation for each epoch. Here, we set up tran-330

sition times every six months separating each time spring-summer (here defined as the period331

from March 21 to September 20) from autumn-winter (from the September 21 to March 20).332

We apply two di↵erent alternating GLM parameterizations through time: one shared by every333

spring-summer epoch and one shared by every autumn-winter epoch. We perform inference334

under the GLM and epoch model using Markov chain Monte Carlo (MCMC) integration using335

BEAST.46336

We fit both time-homogeneous and epoch GLM models with the flux predictors to influenza A337

lineages H3N2 and H1N1 and influenza B lineages Yamagata (YAM) and Victoria (VIC), pre-338

viously analysed by.16 These data sets consist of haemagglutinin (HA) gene sequences covering339

a time interval from 2000 to 2012 and represent roughly equitable spatiotemporal distributions340

across global regions. The data sets comprise 4,006, 2,144, 1,455, and 1,999 sequences for H3N2,341

H1N1, YAM, and VIC, respectively. We fit our models to the same empirical tree distributions342

as used in the original work. We run su�ciently long MCMC chains to ensure adequate mixing343

as assessed by e↵ective sample size estimates.344
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Crone, J. T.; Andersen, K. G.; Worobey, M.; Nelson, M. I.; Rambaut, A.; Suchard, M. A.414

Nature Communications 2020, 11, 5110.415

[24] Lemey, P. et al. Nature 2021, 595, 713–717.416

[25] Hodcroft, E. B. et al. Nature 2021, 595, 707–712.417

[26] Dudas, G. et al. Nature communications 2021, 12, 5769.418

[27] Tsui, J. L.-H.; McCrone, J. T.; Lambert, B.; Bajaj, S.; Inward, R. P.; Bosetti, P.;419

Pena, R. E.; Tegally, H.; Hill, V.; Zarebski, A. E., et al. Science 2023, 381, 336–343.420
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