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Abstract

Alzheimer’s Disease (AD) is a complex neurodegenerative disorder that
has gained significant attention in scientific research, particularly since the
Human Genome Project. Based on twin studies that utilize the resemblance
of Alzheimer’s disease risk between pairs of twins, it has been found that the
overall heritability of the disease is estimated at 0.58. When shared environ-
mental factors are taken into account, the maximum heritability reaches 0.79.
This suggests that approximately 58-79% of the susceptibility to late-onset
Alzheimer’s disease can be attributed to genetic factors [4]. In 2022, it is
estimated that AD will affect over 50 million people worldwide, and its eco-
nomic burden exceeds a trillion US dollars per year. One promising approach
is Genome-Wide Association Studies (GWAS), which allow the identification
of genetic variants associated with AD susceptibility. Of particular interest
are Single Nucleotide Polymorphisms (SNPs), which represent variations in
a single nucleotide base in the DNA sequence. In this study, we investigated
the association between SNPs and AD susceptibility by applying various
quality control (QC) parameters during data pre-processing and rank the
SNP associations through mixed linear models-based GWAS implemented
in BLUPF90. Our findings indicate that the identified SNPs are located in
regions already associated with Alzheimer’s Disease, including non-coding
regions. We also investigated the impact of incorporating demographic data
into our models. However, the results indicated that the inclusion of such
data did not yield any benefits for the model. This study highlights the im-
portance of GWAS in identifying potential genetic risk factors for AD and
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underscores the need for further research to gain a better understanding of
the complex genetic mechanisms underlying this debilitating disease.

Keywords:
Alzheimer’s Disease, GWAS, disease prediction, genetic markers, Single
Nucleotide Polymorphisms (SNPs), data pre-processing

1. Introduction

1.1. Alzheimer’s Disease

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that
is primarily associated with aging. It is characterized by a range of cogni-
tive and psychiatric symptoms that can lead to eventual disability [16]. As
per projections by the World Alzheimer Report, the number of AD cases is
expected to reach 131.5 million by 2050 [15]. Histopathologically, AD is char-
acterized by synaptic damage and neuronal loss in brain regions responsible
for cognitive function [16].

Given the significant worldwide impact of AD, researchers have aimed to
identify genetic markers associated with the disease. The goal is to develop
personalized medicine using data from these studies to improve the quality
of life of individuals predisposed to AD.

In the mid-1990s, with the advent of sequencing DNA technologies, the
Human Genome Project was initiated. It aimed to map and sequence the hu-
man genome, resulting in a significant increase in genetic data. The concept
of personalized medicine has evolved to include tailored medical treatments
based on an individual’s genetic features. Incorporating genetic risk factors,
such as disease-associated Single Nucleotide Polymorphisms (SNPs), has im-
proved disease prediction for individuals [6].

There are three primary genomic approaches employed by researchers to
explore AD. The first approach is Genetic Linkage Analysis, which aims to
identify chromosomal regions associated with the disease without relating
them to a specific gene [17]. The second approach involves the study of
candidate genes, which compares the genetic variation between healthy indi-
viduals and AD patients. This approach has identified alleles in the APOE
gene as strong candidates for AD [11]. The third approach is Genome-Wide
Association Studies (GWAS), which aims to identify SNPs associated with
increased susceptibility to AD.
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1.2. GWAS

The focus of this study is to identify SNPs that are associated with AD,
using genome-wide association studies. SNPs, or Single Nucleotide Polymor-
phisms, refer to variations at specific locations in the DNA chain. These
variations are categorized based on the type of nucleotide substitution that
occurs. For example, substitutions of C→T or G→A are referred to as tran-
sition SNPs, while substitutions of C→A, A→T, T→C, or T→G are referred
to as transversion SNPs [3].

SNPs are the most commonly occurring type of genetic polymorphism
in human genetics, and can impact various human traits and their develop-
ment in a specific environment. Additionally, SNPs are evolutionarily stable,
meaning that there is little variation among different generations [3].

The workflow of a GWAS involves multiple steps that are carefully planned
to avoid biases and errors. The first step is to obtain data from a compre-
hensive and diverse group of individuals, which includes genotypic and phe-
notypic information for both the case and control populations. Genotypic
information corresponds to the DNA obtained using SNP arrays or sequenc-
ing strategies. Before proceeding to the association test, it is recommended
to apply a quality control procedure to the data to increase its reliability.
This involves performing data cleaning using statistical approaches and bi-
ological concepts to mitigate biases that could interfere with the results. In
this study, we emphasize the impact of Quality Control on GWAS by creating
multiple scenarios, as explained in Subsection 1.3. Following the association
test, multiple post-GWAS analyses can be conducted to interpret the results.

1.3. Data Processing for Quality Control

The input data for the association analysis includes individual ID num-
bers, disease stage, sex, and SNPs obtained through sequencing, along with
information about the genotype batch. To minimize errors and bias, Quality
Control (QC) techniques are required for the input data. These methods fil-
ter SNPs and individuals using statistical and mathematical equations, based
on biological concepts.

To preserve data quality control and significantly reduce the number of
candidate SNPs, several statistical filters are applied in GWAS [1]. These
techniques prevent the effects of SNPs from being masked by the high di-
mensionality of the dataset. In this study, we present traditional methods
used in GWAS to filter SNPs, to avoid the situations mentioned above. The
filters used in our study are as follows:
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• Minor Allele Frequency (MAF): In population genetics, the term
“minor allele frequency” (MAF) refers to the frequency of a less preva-
lent allele at a particular locus (position) in a population. It is described
as the prevalence of the minor allele, or second most frequent allele, at
a specific locus in a population. The major allele, which is the more
prevalent allele at that locus, is opposed by the minor gene. In GWAS,
the calculated value for MAF can decrease the number of SNPs by
deleting rare variants from the database. Hence, MAF is the frequency
of the second most common allele in the studied population. SNPs
with MAF less than a specified threshold (e.g. 1%) are removed [19];

• Linkage Disequilibrium (LD): The non-random association of alle-
les at various loci in a community is known as linkage disequilibrium
(LD). In other words, it refers to the propensity of specific alleles to be
inherited together more frequently than would be predicted by chance
at various loci. In GWAS, researchers usually genotype a significant
number of SNPs throughout the genome in cases and controls to find
SNPs that are connected to the illness or trait under study. Researchers
can find clusters of SNPs that are in LD and therefore likely to be passed
together by looking at the patterns of LD between SNPs. These SNP
clusters are known as haplotypes, and they can be used to locate parts
of the genome that are linked to a particular illness or trait. There-
fore, the use of LD as a filter serves to guarantee quality control and
to prevent information loss [9];

• Hardy-Weinberg Equilibrium (HWE): Hardy-Weinberg equilib-
rium assumes that in a Mendelian population allele frequencies will
remain constant across generations. Thus it is used to remove variants
that do not conform to its expectations;

• Genotype Missingness (GENO) and Sample Missingness
(SAMPLE): For these both parameters the filtering procedure is ap-
plied by choosing a threshold and calculating the missingness of either
Genotype or Sample data. Missingness above the threshold is deleted
from the database.

Investigating the population structure in a Genome-Wide Association
Study (GWAS) is crucial, as it can result in misleading outcomes when pre-
dicting and selecting genetic variations that depict the issue at hand [8].
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Population stratification refers to differences in the frequency of genetic vari-
ants between groups of cases and controls due to systematic ancestral dif-
ferences [19]. In this work, the phenotype of interest is the occurrence of
Alzheimer’s Disease, and we conducted an Analysis of Variance (ANOVA)
to investigate whether the population structure would affect the model.

2. Methods

In this section, we describe the data utilized in this study and its acquisi-
tion. Additionally, we elucidate the data processing pipeline, encompassing
the data transformation, cleaning, and validation steps. Finally, we illustrate
how demographic information such as gender, race, ethnicity, and age of the
individuals were obtained to understand their influence on the phenotype.

2.1. Data

The data used in this study was obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) 1 database. Launched in 2004 as a public-
private partnership, ADNI aims to identify whether brain images, biological
markers, and clinical and neuropsychological assessments can be combined
to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD).

The genotype data initially contained 620,901 variants, with a mean miss-
ingness of 30,785 variants. The input file included 757 individuals, comprising
449 men and 308 women. The phenotype was divided into three categories:
Normal (CN), Alzheimer’s Disease (AD), and Mild Cognitive Impairment
(MCI). These categories were estimated by ADNI using various biomarkers,
which are substances, measurements, or indicators of a biological state that
may be identified before clinical symptoms appear.

2.2. Data Processing

The data processing pipeline included several steps for data transforma-
tion, cleaning, and validation, as well as demographic information extraction,
including gender, race, ethnicity, and age. The impact of this information on
the phenotype was also investigated in this study.

1http://adni.loni.usc.edu
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2.2.1. Data Manipulation

The initial dataset consisted of three separate files: a genotype file (Ta-
ble 2), a map file for identifying SNP ids in the genotype file (Table 3), and
a phenotype file (Table 4). To consolidate this information into a single file,
we utilized the PLINK software, a whole-genome association analysis toolset.
With PLINK, we successfully merged the separate files and applied the filters
mentioned in Subsection 1.3 to create the final dataset file (Table 1). This
consolidated file is suitable for use in GWAS analyses and Machine Learning
models.

Table 1: Dataset template layout: PLINK output file.

Individual ID Phenotype rs3094315 rs12563034 ... MitoC16272T

subject1 CN 0 1 ... 0
subject2 AD 0 0 ... 1
subejct3 CN 2 2 ... 2
... ... ... ... ... ...
subject n MCI 1 1 ... 2

Note: This file maps genotypes and health diagnoses for
each individual. SNP information is presented in columns,
with each column representing an allele. SNP names are
obtained from the MAP file.

Table 2: PLINK genotype input file

Individual ID Genotype

subject1 0102122102120
subject2 0112120212012

... ...
subject n 0212120211011

Note: Column 1: Individual
ID; Column 2: Genotyping data,
where 0 represents homozygous,
and 1 and 2 represent different
heterozygous types.

2.2.2. Samples demographics analyzes

In addition, during this study, the effects of demographics on the phe-
notype were analyzed to verify if they would be used as parameters in the
models. The demographics include information about the individuals such

6

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.14.24303161doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.14.24303161
http://creativecommons.org/licenses/by-nc/4.0/


Table 3: PLINK map input file

SNP ID Chromosome Position

rs3094315 1 742429
rs12563034 1 758311
... ... ...
MitoC16272T 26 16272

Note: The purpose of the MAP file is to identify the location of each SNP within
the chromosome, as well as its corresponding SNP ID. The order of the SNP IDs

in the MAP file matches the order of the genotype data in Table 1, column 2.

Table 4: PLINK phenotype input file

Individual ID Phenotype

subject1 1
subject2 3
subject3 1
... ...
subject n 2

Note: This file provides a
mapping of the health diagnoses
for each individual, where a
value of 1 indicates cognitive
normalcy, a value of 2 indicates
mild cognitive impairment, and
a value of 3 indicates
Alzheimer’s disease.

as race, gender, ethnicity, and age. If relevant, these data would be used to
train the models and improve the SNPs selection. To analyze the impact of
these features, a linear model was used to calculate the Analysis of Variance
(ANOVA) and obtain the feature importance of each demographic variable.

ANOVA is a statistical test that determines whether the observed corre-
lations in a sample can be generalized to the entire population. Therefore,
the results from this test indicate whether it is reasonable to draw any con-
clusions based on the sample and if it is valid to use certain demographic
information to train the model. In light of this, prior to incorporating de-
mographic variables into the models, we examined their significance through
ANOVA.

2.2.3. Quality Control

In this section, we discuss how statistical filters were applied to guaran-
tee quality control on the dataset. Quality control (QC) is a step in data
pre-processing, and it improved data consistency and validity of the results.
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Thus, we created multiple datasets by varying the values for each QC hyper-
parameter during the QC stage, as shown in Table 5.

Each combination of quality control parameters resulted in a distinct
dataset that was then used to generate a statistical model. Because each
set of quality control parameters produced a unique dataset and subsequent
model, we refer to each iteration as a “round”. In other words, a round is
a specific combination of QC hyperparameters that resulted in a particular
dataset, which was then used to build a model. By conducting multiple
rounds with varying combinations of quality control parameters, we could
explore the impact of these parameters on the final model’s performance and
identify the optimal set of parameters for our analysis.

To illustrate, consider the 1st round, which consists of a dataset generated
by combining QC hyperparameters. Specifically, the dataset has a genotype
missingness rate of 0.02, a sample missingness rate of 0.05, a minor allele
frequency (MAF) of 0.01, a Hardy-Weinberg equilibrium (HWE) threshold
of 5e-6, and a linkage disequilibrium (LD) cutoff of 80.

In this study, we performed QC using various parameter combinations,
and the resulting datasets were compared to assess the impact of each param-
eter on the data quality. We evaluated the quality of the datasets using dif-
ferent metrics, such as the percentage of missing data, the number of samples
and SNPs after QC, and the deviation from the expected Hardy-Weinberg
equilibrium. Subsequently, we assessed the impact of QC on downstream
analyses, such as principal component analysis and genome-wide association
analysis.

The filters listed in Table 5 were successfully applied to the data using the
PLINK toolset and a Python script that automated the process, resulting in
the creation of 144 filtered data files. Each of these data files was subjected
to GWAS analyses in this study.

To use PLINK, the data must be formatted into one of several standard
acceptable input formats, including .vcf, binary, or text files. The ADNI
dataset was pre-formatted in binary format.

2.3. GWAS and genomic prediction

The BLUPF90 is a family of programs designed for the computation
of mixed linear model with a focus on breeding applications. This soft-
ware was utilized for GWAS and fitting the genomic model in this study.
BLUPF90 offers a set of functionalities, including data QC, variance esti-
mation using various methods, the estimation of Best Linear Unbiased Es-
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Table 5: Parameters to guarantee quality control

Quality Control Hyperparameters

Hyperparamenter Names Values

MAF 0.01, 0.05, 0.1
LD 0.9, 0.85, 0.8
HWE 0.5e− 6, 10e− 8
GENO 0.02, 0.05, 0.1, 0.2
SAMPLE 0.05, 0.1

Note: This table presents the dictionary of hyperparameters
that were used to filter the SNPs. Each key in the dictionary cor-
responds to a specific hyperparameter, and the associated value
is a list of potential filter values for that hyperparameter. The
’Values’ column lists the potential filter values for each hyperpa-
rameter in the form of a list.

timators (BLUEs) and Predictors (BLUPs) for large datasets, computation
of individual-level accuracy, allows for the utilization of pedigree and SNP
information to estimate genetic merit and conduct genome-wide association
studies (GWAS) [10]. BLUPF90 program was developed to analyze large
datasets for breeding applications at high-performance and without need for
coding.

This study focuses on using a subset of programs from the BLUP fam-
ily of programs, being them: RUNUM, THRGIBBS1F90, POSTGIBBf90,
BLUPf90, and POSTgs. We built a pipeline using these programs, as shown
in Figure 1. Following is a description of each of the applications that were
used.

Figure 1: Execution pipeline of the BLUPF90 programs

1. RUNUM is used to generate the parameter file (runf90.par) as shown

9
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Figure 2: Parameters card (par file) used to specify the parameters and options to run the
BLUP family of programs

in Figure 2. A parameter file includes the statistical model, parame-
ters and options to run the programs in the pipeline. Parameters and
options are described in the BLUPF90 manual 2.

2. THRGIBBf90 runs the Markov chain Monte Carlo samples for the es-
timation of variance components of the Mixed Linear Models (MLM)
of a threshold model, utilized for categorical response variables. MLM
differ from general linear models (GLM) by modeling random effect
terms other than the residual term. Thus, the random component ε,
with variance V [ε] = R, of GLM (Equation 1) is extender to ε = Zu+e,
with variance V [ε] = ZGZ ′ + R, as the variance of the random terms
are V [Zu] = ZGZ ′ and V [e] = R = Iσ2

e , so that V [u] = G = Kσ2
u.

Thus, the variance component estimation is a key operation of MLMs.

y = Xβ + ε (1)

2http://nce.ads.uga.edu/wiki/lib/exe/fetch.phpmedia=blupf90_all8.pdf
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y = Xβ + Zu+ e (2)

This method uses Gibbs Sampling (GS) for the MCMC sampling of
variance components. GS samples each individual parameter from their
univariate full-conditional distribution as an efficient way to sample a
multivariate probability p(X, Y ) [2].

3. POSTGIBBSF90 summarizes the MCMC samples to generate the pos-
terior mean estimators of the variance components (σ̂2

u and σ̂2
e).

4. BLUPF90 uses the variance components from POSTGIBBSF90 to fit
the genomic model (2) to infer the genetic merit of individuals. Herein,
this corresponds to the probability of individuals to fall into one of
three phenotypic categories (i.e., CN, MCI and AD).

5. POSTgs is a post hoc procedure to extracts SNP solutions from the
genetic merits, as shown in 3. Subsequently, it computes p-values for
all SNPs. The significance of these associations allows for comparison
of the impact of data quality control for the various scenarios under
consideration.

β̂ = MK−1û (3)

The p-value is the probability of the estimated deregressed SNP effect
(α) given the the null-hypothesis (H0) is true, thus p(αj|H0). For the
jth SNP, this is computed according to the Equation 4.

p(αj|H0) = 2(1− Φ
|αj|
σαj

) (4)

The deregressed SNP effects (α) and their standard deviation are es-
timated from β rescaled by diagonal elements of the left-hand side
equation utilized to solve the mixed model equation. The equations
are described by Aguilar et al. (2019).

3. Results and Discussion

In this section, we describe the results obtained from this study. As ex-
plained in Subsection 2.2.3, quality control was applied to data by statistical
filters. Later, we used the BLUP Family of Programs to model the problem
and find the most significant SNPs for the Alzheimer’s Disease phenotype.
Furthermore, alongside the quality control phase, we analyzed the individual

11

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.14.24303161doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.14.24303161
http://creativecommons.org/licenses/by-nc/4.0/


demographic data to determine their suitability for use in the models. Addi-
tionally, we compared the SNPs with the most significance to those reported
in the literature to be associated with AD. SNPs with higher significance
may provide valuable information for studying Alzheimer’s Disease cases.

3.1. Demographics understanding

The ANOVA method was used to comprehend the significance of using
Age, Race, Ethnic, and Gender on the models to predict Alzheimer’s Dis-
ease. The first hypothesis was that at least age would be associated with the
disease. The ANOVA results are shown in Table 6. In the results obtained,
the p-values are always much greater than 0.05, for this reason, they are
not significant input in the model to assume someone’s likelihood to have
Alzheimer’s Disease.

Table 6: ANOVA: demographics data

Degrees of freedom P-value

Gender 1.0 0.87390
Race 4.0 0.35020
Ethnic 2.0 0.60523
Age 1.0 0.47378

3.2. Data Quality Control

Here we highlight the impact of varying the statistical filters for quality
control. In this manner, the datasets suffered cut-offs that will be exposed
along variations of significance values in each round.

Among the datasets generated, the most favorable outcome was observed
in the dataset characterized by a minor allele frequency (MAF) of 0.01, a
linkage disequilibrium (LD) threshold of 85, a Hardy-Weinberg equilibrium
(HWE) significance of 5e-6, a sample missingness rate of 0.01, and a gene
missingness rate of 0.1. Notably, the most significant result was obtained for
the SNP rs7918269, with a p-value of 1.600000e-09. This p-value was over 10
times larger than the second-best value encountered. The following images
show the impact of varying the QC hyperparameters and how the best result
encountered could be sweet spot.
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Figure 3: P-values variation by Minor Allele Frequency

Figure 4: P-Values variation by Linkage Disequilibrium
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Figure 5: P-Values variation by Hardy-Weinberg equilibrium (Created by author)

Figure 6: P-Values variation by Sample Missingness (Created by author
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Figure 7: P-Values variation by gene Missingness (Created by author

3.3. SNPs selection using BLUPF90

To analyze and evaluate each round, we created a table containing the
1000 most significant SNPs from each round. As shown in Table 7, for each
round there are two columns. The first column represents the SNP Name
and the second column represents its p-value. In this manner, each round is
ordered from the lowest to the highest p-value.

Table 7: Illustration of results: Ranked SNP p-values for each set of parameters

round 1 round 2 ... round 144
SNP Name SNP P-value SNP Name SNP P-value SNP Name SNP P-value

0 rs17184445 0.000001 rs738413 6.2300e-8 ... rs7158356 4.881000e-07
1 rs713158 0.000004 rs17107651 7.3900e-7 ... rs7863479 4.131600e-06
2 rs7914151 0.000005 rs1448333 1.5356e-6 ... rs2027767 4.601000e-06
3 rs608862 0.000006 rs9681884 5.5215e-6 ... rs10495181 4.627100e-06
4 rs12946426 0.000001 rs9941427 8.7564e-6 ... rs10894598 5.116100e-06
... ... ... ... ... ... ... ...
999 rs2617671 0.001010 rs10867501 9.755883e-04 ... rs4965091 1.327353e-03

This representation for the rounds simplifies the access to each round of
data. Besides that, it will help to answer questions such as “what round has
the highest SNP value?”, “Does the SNP with higher significance appears in
high positions in other rounds?”, and “Which SNPs appear more times in
the top-ranked SNPs with significance value in all rounds?”.
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Firstly we selected the 20 most significant SNPs in the whole table. In
other words, all SNPs in the table were sorted from the lowest to the highest
p-value, but only the 20 SNPs with the lowest p-values were selected. After
that, we were able to map those SNPs to their respective gene by using the
NCBI search engine.

After searching their position in the genome and getting their respective
gene, we found 8 genes already associated with Alzheimer’s Disease in other
studies. These genes are RUNX2-AS1, CNTN6, KLF12, RPS6KA2, MLN,
FANCC, RUNX2, and ADCY9.

Once the location in the genome of each of the 20 SNP was found, we
compared them with results from other studies. Table 8 shows this ranking
and which gene the SNP belongs to. Some SNPs belong to uncharacterized
genes, thus this work compared only SNPs in coding regions.

RUNX2-AS1 was related to AD due to its impact on anxiety-like behav-
ior [7], and was categorized as a novel biomarker for AD [18]. In [14] CNTN6
is described as a gene that modulates hippocampal synaptic plasticity and
behavior, and was recognized as a risk gene for neuropsychiatric disorders.
KLF12 is recognized as the gene with the second highest importance when
analyzing AD-associated genes from blood [13]. RPS6KA2 is a gene involved
in Neurotrophin signaling, and has had previous reports of association with
Parkinson’s Disease in GWAS studies [12]. FANCC has been associated with
entorhinal cortex thickness, a region that is involved early in the development
of Alzheimer’s disease [5].

In the same context, we wanted to obtain which SNPs appear in the best
positions in the rounds most of the time. By doing it we can analyze if sig-
nificant SNPs in most rounds are in genes related to AD, and also compare
them with future results from Machine Learning models. Table 9 shows the
10 SNPs that appeared in most of the rounds. As can be seen, there are
three SNPs in genes, which are protein-coding regions. Therefore, a bibli-
ographic research was performed about the genes ZFAND4, NCAM2, and
LOC105372740 with the goal of finding any relation to Alzheimer’s Disease.
In the bibliographic research, it was found that ZFAND4 protein domains
are involved in regulating the immune response when interacting with other
genes. Genetic data have implicated the NCAM2 gene in neurodevelopmen-
tal disorders including Down Syndrome, autism, and Alzheimer’s Disease.
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Table 8: SNPs with highest significance value among the rounds

SNP Name Gene

rs105375077 RUNX2-AS1
rs105375024 LOC105375024
rs105374660 LOC105374660
rs105370220 LOC105370220
rs102723906 LOC102723906
rs100887750 MRPS31P5
rs27255 CNTN6
rs11278 KLF12
rs6196 RPS6KA2
rs4295 MLN
rs2176 FANCC
rs860 RUNX2
rs115 ADCY9
rs105378215 CTB-99A3.1
rs105378178 LOC105378178
rs100887750 MRPS31P5
rs57628 DPP10
rs54877 ZCCHC2
rs27255 CNTN6
rs23544 SEZ6L

4. Conclusions and Future Work

In this study, we have developed a pipeline to compare the impact of
various parameters on Quality Control, namely MAF, GENO, MIND, HWE,
and LD. The implementation of this pipeline has provided a deeper under-
standing of genomic tools for Genome-Wide Association Studies (GWAS)
and Quality Control pruning, specifically using PLINK and BLUPF90. By
employing genomic selection with the BLUPF90 family of programs, we have
identified candidate genes for Alzheimer’s Disease. Some of these genes are
already known to be associated with Alzheimer’s Disease in the literature,
while others represent new findings.
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Table 9: SNPs with most occurrences

SNP Name Gene N of occurrences

rs10941189 None 66
rs3802542 ZFAND4 63
rs12703672 None 57
rs2142266 LOC105372740 55
rs2826810 NCAM2 52
rs2955864 None 49
rs9397629 None 47

Demographic information did not prove to be significant predictors for
estimating the desired phenotype, as determined by ANOVA, thus was not
accounted for in the genomic model.

Moving forward, we plan to employ Machine Learning (ML) models on
the best Quality Control round. We will select the 600 SNPs from the best
round and use k-fold cross-validation (k=5) to train our models. Specifically,
we will use THRGIBBS to calculate Genomic Best Linear Unbiased Predic-
tions (GBLUPs) and Random Forests to determine SNP’s significance, while
avoiding interference with the prediction process. Subsequently, we will use
GBLUPs to predict the phenotype, which will serve as a rough replacement
for LASSO Linear Regression. Finally, we will use Random Forest to predict
Alzheimer’s Disease using the remaining 20% of the data.
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