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2 

Abstract 43 

Characterising the transmission dynamics between various population groups is critical 44 

for implementing effective outbreak control measures whilst minimising financial costs and 45 

societal disruption.  46 

Traditionally, mathematical models have primarily relied on assumptions of contact 47 

patterns to characterise transmission between groups. Thanks to technological and 48 

methodological advances, transmission chain data is increasingly available, providing 49 

information about individual-level transmission. However, it remains unclear how 50 

effectively and under what conditions such data can inform on transmission patterns 51 

between groups. 52 

In this paper, we introduce a novel metric that leverages transmission chain data to 53 

estimate group transmission assortativity; this quantifies the extent to which individuals 54 

transmit within their own group compared to others. Through extensive simulations, we 55 

assessed the conditions under which our estimator performs effectively and established 56 

guidelines for minimal data requirements. Notably, we demonstrate that detecting and 57 

quantifying transmission assortativity is most reliable when groups have reached their 58 

epidemic peaks, consist of at least 30 cases each, and represent at least 10% of the total 59 

population each.  60 
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3 

Author Summary 67 

Efficient outbreak control relies on understanding how infection spreads between affected groups, 68 

such as healthcare workers and patients or specific age groups. Policies and interventions may differ 69 

substantially depending on how much transmission is within groups or between them. However, 70 

assessing transmission patterns between groups is challenging as these patterns are not only 71 

influenced by social contacts but also by variations in individual susceptibility and infectiousness, 72 

which changes over time. To address this challenge, we developed an estimator that utilises 73 

information on transmission chains (who infected whom), enabling the identification and 74 

quantification of transmission patterns between groups. Through extensive simulations, we 75 

assessed the conditions under which our estimator performs effectively and established guidelines 76 

for minimal data requirements. Our results suggest that inferring transmission patterns is most 77 

reliable when groups have reached their respective epidemic peaks, contain at least 30 cases each 78 

and constitute at least 10% or more of the total population, each. 79 

 80 
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Introduction 93 

In response to the COVID-19 pandemic, governments across the world implemented nationwide 94 

lockdowns, later transitioning to targeted pharmaceutical and non-pharmaceutical interventions 95 

based on factors such as location, age, and vaccination status. However, these measures could not 96 

always be optimised in real-time due to a lack of quantitative understanding regarding the varying 97 

roles different groups played in disease transmission. For example, the decision to close schools 98 

was initially based on the assumption that children were significant drivers of transmission [1,2]. Yet, 99 

subsequent research suggested that children may be less susceptible to infection and that schools 100 

may not have played a major role in the transmission of SARS-CoV-2 [3–6]. 101 

The ability to detect and quantify the contributions of different groups to transmission during an 102 

outbreak is essential for implementing effective control measures. Not only does it enhance our 103 

comprehension of transmission dynamics within a population, but it may also lead to better 104 

predictions of the epidemic’s future trajectory and enables the development of evidence-based public 105 

health strategies tailored to the outbreak’s characteristics.  106 

Broadly, two approaches have been employed to assess the contributions of different groups to 107 

epidemic transmission. First, dedicated surveys have been conducted to measure the frequency of 108 

contact between different groups; combined with information about the relative infectiousness and 109 

susceptibility of each group (e.g. obtained from epidemiological or serological investigations), these 110 

data can be used by transmission models to estimate transmission assortativity [7,8]. Unfortunately, 111 

the underlying contact data can be biased, have limited sample size or representativeness, and may 112 

not be generalisable across different epidemic contexts [9–11].  113 

Alternatively, transmission assortativity can be directly assessed from observed transmission 114 

patterns e.g. by measuring the proportion of cases in different groups [12,13] or by reconstructing 115 

the transmission chains [14,15]. These approaches have their own limitations. For instance, 116 

accurately reconstructing transmission chains is challenging [16] and even with perfectly known 117 

transmission chains, transmission assortativity estimation may be impeded by differences in group 118 

sizes and group-level saturation (i.e. the depletion of susceptibles). 119 

This paper introduces a novel framework for evaluating transmission patterns among distinct groups 120 
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during an outbreak, utilising known transmission chains to quantify group-specific assortativity. We 121 

evaluate the performance of our estimator through simulations across diverse outbreak scenarios 122 

and offer guidance on the minimum data collection requirements and the optimal estimation 123 

timeframe to inform policy. 124 

 125 

Methods  126 

A new estimator of transmission assortativity 127 

Assortativity has been amply described for social mixing patterns, with homogeneous mixing 128 

referring to random contacts between individuals, and heterogeneous mixing denoting interactions 129 

characterised by distinct (non-random) patterns depending on group memberships [7]. 130 

Heterogeneous mixing can be either assortative, where individuals tend to interact more within their 131 

own group (e.g. social contacts by age [9,17,18]), or disassortative, where individuals interact 132 

preferentially with members of other groups (e.g. sexual contacts [19]). Here we use these definitions 133 

to characterise the patterns of transmission rather than contact.  134 

To quantify transmission assortativity, we examine the person-to-person transmission patterns. We 135 

denote βb←a the person-to-person transmission rate from an individual in group a to an individual in 136 

group b. We assume that βa←a can be expressed as βa←a  = γa  βb←a (with a ≠ b), where γa is the 137 

assortativity coefficient for group a. γa  is defined as the excess probability of a secondary infection 138 

taking place within group a compared to random expectation. γ values range from 0 (fully 139 

disassortative) to ∞ (fully assortative), with 1 indicating homogeneous patterns. For instance, γa = 2 140 

indicates that an infected individual from group a is twice as likely to infect an individual from the 141 

same group compared to infecting an individual from another group. Conversely, a γa of 1/2 means 142 

that an infected individual from group a is twice as likely to infect an individual from another group 143 

compared to infecting an individual from the same group.  144 

We consider G groups of relative sizes f1,...,fG  defined as: 145 
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(1)  

where Na is the number of individuals in group a. 146 

For an infectious individual in group a, the proportion πb←a of secondary cases who are expected in 147 

group b is (details in supplementary materials S1.1): 148 

 

(2)  

 

and 149 

 
(3)  

 150 

We can obtain γa  by rewriting equation 3 as:  151 

 
(4)  

152 

Here we assume that transmission chains are known. Among infections generated by infected 153 

individuals in group a, the proportion of secondary cases in group a, πa←a , can therefore be 154 

calculated as:  155 

 
(5)  

where τa←a is the number of observed within-group transmission pairs and τ.←a is the total number of 156 

infections coming from group a. We can obtain a confidence interval (CI) on πa←a for various 157 

significance (α) levels using the Clopper-Pearson binomial interval method [20] (S1.2). Feeding 158 

estimates of πa←a from equation 5 into equation 4, provides estimates of γa  with confidence intervals. 159 

To simplify interpretation, we introduce a rescaled parameter δ, ranging between -1 (fully 160 

disassortative) and 1 (fully assortative), with 0 corresponding to a homogeneous transmission 161 

pattern (Figure S1), defined as: 162 
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(6)  

All our results are presented using δ rather than γ. 163 

Simulation study 164 

We simulated numerous outbreaks under various contexts to assess the estimator’s performance. 165 

The simulation employed a discrete time branching process modelling individual infections spreading 166 

in successive generations. Simulations were specified with: i) group-level parameters including the 167 

size of each group, their assortativity coefficients (δ), initial introductions, basic reproduction 168 

numbers (R0) and ii) epidemic level parameters such as the number of groups, the pathogen 169 

generation time (w) and incubation period (v) distributions (both  assumed the same across groups). 170 

The simulation outputs the transmission tree of the infected individuals including their group and that 171 

of their infector, their date of infection and date of symptom onset. We constructed 10,000 sets of 172 

input parameters, referred to as ‘scenarios’, by randomly sampling parameters from pre-defined 173 

distributions (S1.3, Figure S2). To account for stochasticity, we conducted 100 simulations for each 174 

unique scenario resulting in a total of 1,000,000 simulated outbreaks. 175 

In our branching process model, the force of infection (FOI) generated by individual j from group a 176 

at time t, towards each individual in group b is defined as : 177 

 178 

 

(7)  

 

where: 179 

● sj
a is the time of infection of individual j in group a 180 

● R0a is the basic reproduction number of individuals in group a 181 

The total FOI that group b receives from all groups at time t is obtained as:  182 
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(8)  

183 

The probability of infection for each individual in group b at time t is then calculated as: 184 

 
(9)  

 185 

At time t + 1, the number of new cases in group b, Xb(t + 1), is drawn from a binomial distribution:  186 

 (10)  

where Sb(t) is the number of susceptible individuals in group b at time t.  187 

New cases are allocated at random amongst susceptible individuals. The simulation progresses in 188 

discrete daily time steps for 365 days. Nearly all simulations (99.99%) finished with the last infection 189 

occurring before day 300. Note that we assume that individuals who have been infected become 190 

fully immune.  191 

Assuming that bi (ith individual in group b) was infected at time t+1, their infector  is drawn across 192 

all infected individuals in all groups from a multinomial distribution with probabilities: 193 

 

(11)  

Where aj is the jth individual in group a.  194 

To assess the performance of our estimator, we computed 4 different performance metrics for each 195 

scenario:  196 

● Bias: defined as the average difference between the true δ value and its estimate (𝛿) across 197 

100 simulations. It is a measure of the estimator’s systematic error and inaccuracy and should 198 

be close to 0. Bias is positive when δ is underestimated, indicating underestimation of 199 

assortativity or overestimation of disassortativity. Conversely, negative bias occurs when δ is 200 

overestimated, indicating overestimation of assortativity or underestimation of 201 
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disassortativity. 202 

● Coverage (at significance level α): defined as the proportion of simulations (out of 100) where 203 

the true δ value is within the estimated CI corresponding to α. We evaluate 4 significance 204 

levels 0.05, 0.1, 0.25 and 0.5. Assessing coverage helps determine the reliability of the 205 

confidence intervals generated by the estimator. Coverage should approximate 1-α, and the 206 

coverage error, which measures the deviation from this target, should be close to 0. A positive 207 

coverage error suggests underestimation of uncertainty, while a negative coverage error 208 

indicates overestimation. 209 

● Sensitivity (true positive rate): defined as the proportion of simulations (out of 100) where the 210 

estimator correctly identifies a significant assortative or disassortative effect (i.e. the 𝛿 CI 211 

doesn’t contain 0). Sensitivity should be close to 1 (100%).  212 

● Specificity (true negative rate): defined as the proportion of simulations (out of 100) where 213 

the estimator correctly identifies no significant assortative or disassortative effect (i.e. the 𝛿 214 

CI contains 0). Specificity should be close to 1 (100%).  215 

 216 

We evaluated the estimator's performance at various stages of the outbreak, defined in relation to 217 

the group's epidemic peak, i.e. the day with the highest symptom onset incidence following the first 218 

case. Denoting T the date of the group’s peak incidence, we define the analysis time window as the 219 

time period from the first case of the group to day T x ε, where ε represents any non-negative real 220 

number and is referred to as the “peak coefficient”. A peak coefficient value of ε=1 implies analysis 221 

until the group's peak, while values above or below 1 imply analysis using data up to before or after 222 

the peak respectively (S1.4, Figure S3). Additionally, we introduce the term 'peak asynchronicity', 223 

calculated as the standard deviation of peak dates T across groups, to measure heterogeneity in the 224 

groups' peak dates. 225 

 226 

To assess the impact of the scenario parameters on the performance metrics, separate regressions 227 

were conducted with each performance metric as a dependent variable and scenario parameters as 228 

independent variables (S1.5).  229 
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Results  230 

Figure 1 presents the estimator's performance across all epidemic scenarios considered.  231 

 232 

Bias decreased as the analysis time window expanded, achieving near-zero levels once the group 233 

had reached its epidemic peak (ε=1), with no substantial further improvements at later epidemic 234 

stages (ε>1, Figure 1A).  235 

 236 

Coverage performance was contingent upon the significance (α) level and the stage of the group’s 237 

epidemic (ε) (Figure 1B). Halfway before the epidemic peak (peak coefficient ε=0.5), coverage at α 238 

levels up to 25% was too low, with average errors of 0.22, 0.18 and 0.07 for α levels of 5, 10, and 239 

25%, respectively. In contrast, the 50% coverage was too high with an average error of -0.10. Around 240 

the epidemic peak (ε 0.7-1.3), coverage for α = 5-10% was good, whilst coverage for α = 25-50% 241 

was too high (average error -0.14).  At later epidemic stages (ε 1.5-5), coverage was good across 242 

most significance levels, although the 50% coverage remained high across all epidemic stages. 243 

 244 

Sensitivity and specificity were contingent upon the CI significance level α and the stage of the 245 

group’s epidemic (ε) (Figure 1C). Larger α values enhanced sensitivity at the expense of specificity, 246 

irrespective of the epidemic stage. And, regardless of α, analysing transmission chains later in the 247 

epidemic (i.e. increasing ε) also enhanced sensitivity, although this improvement was marginal past 248 

a peak coefficient of 1.5. However, the gain in sensitivity relative to the loss in specificity induced by 249 

delaying the analysis varied with α, with more pronounced tradeoffs for larger α values.  250 

 251 

Figure 2 presents the relationship between various epidemic characteristics (columns) and the 252 

estimator’s performance metrics (rows), for a peak coefficient of 1 and a significance level of 0.05. 253 

Additional configurations are shown in supplementary materials (Figure S6).  254 

 255 

Our estimator maintained consistent unbiased performance across the entire assortativity range (δ 256 

from -1 to 1) (Figure 2 column A row 1). Coverage consistently met the 95% target for δ < 0.5, with 257 

a slight decrease in coverage performance for δ > 0.5, although coverage remained close to the 258 
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target, averaging at 0.91 (sd = 0.10) (Figure 2A2). This decrease in coverage in highly assortative 259 

scenarios could be due to a saturation effect: high assortativity will accelerate the depletion of 260 

susceptibles in the group, eventually resulting in lower observed assortativity compared to the true 261 

value (Figure S4). Although the assortativity coefficient δ only had a small effect on bias or coverage, 262 

it had a substantial impact on sensitivity, which was higher for larger absolute values of δ . However, 263 

sensitivity rose more gradually as ❘δ❘ increased on the disassortative scale compared to the 264 

assortative scale (Figure 2A3, Table S1.1), reaching an average of 82% for δ ≥ 0.5 compared  to 265 

55% for δ ≤ -0.5, suggesting a better ability to detect assortative than disassortative transmission. 266 

Indeed, assortative transmission implies that transmissions propagate within the same group across 267 

multiple generations, consequently increasing the sample size (τ.←a in equation 5) compared to 268 

disassortative transmission, and thus narrowing the CI, thereby enhancing sensitivity. Our linear 269 

regression suggested that the assortativity coefficient explained nearly 60% of the variance observed 270 

in sensitivity (Table S1.1).  271 

 272 

Increasing the number of cases substantially reduced bias (Figure  2C1, Table S2), and increased 273 

sensitivity (Figure  2C3, Table S1.2) but had little effect on specificity or coverage (Figure 2C4 and 274 

2C2). Bias was negligible (mean: 0.04, sd: 0.07) once the group reached 30 to 40 cases. Sensitivity 275 

was positively correlated with the number of cases: controlling for δ, the odds of detecting an 276 

assortative or disassortative pattern increased by 4% with each additional case (Table S1.2).   277 

 278 

The relative size of the group had a substantial effect on bias (Figure 2B1, Table S2) and sensitivity 279 

(Figure 2 B3, Table S1.2) but no effect on specificity (Figure 2B4) nor coverage (Figure 2B2). When 280 

groups comprised 10% or more of the total population size, bias was close to 0 (Figure 2B1), and 281 

the odds of detecting an assortative pattern increased fourfold, compared to smaller groups (odds 282 

ratios (OR) = 4.15, 95% CI = 4.07 – 4.24) (Figure 2B3, Table S.1.2). Relative size and the number 283 

of cases jointly accounted for 72% of the variation in bias (Table S2), and contributed to a 42% 284 

increase in the pseudo R-squared for the linear regression on sensitivity (from 0.566 in Table S1.1 285 

to 0.805 in Table S1.2). 286 

 287 
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Diverse transmission dynamics emerge from numerous groups, varying group sizes, reproduction 288 

numbers, and/or assortativity coefficients (Figure S5). This diversity results in varying saturation 289 

levels between groups over time, affecting transmission patterns within and between groups. Peak 290 

asynchronicity, a measure of heterogeneity in epidemic peak timing across groups  was negatively 291 

associated with coverage (OR = 0.78, 95% CI = 0.78-0.78) and specificity (OR = 0.76, 95% CI = 292 

0.76-0.76), explaining 18% and 24% of the variance, respectively (Table S3 and S4, Figure 2D2 and 293 

2D4). These results suggest a decrease in our estimator’s performance with increasing 294 

heterogeneity between groups. However, our estimates remained unbiased (Figure 2D1) and with 295 

consistent sensitivity (Figure 2D3) irrespective of that heterogeneity. 296 

 297 

In summary, analysing transmission chains at least up to the group’s epidemic peak generally 298 

improved all performance metrics. Near the group’s epidemic peak, coverage with significance levels 299 

of 5 or 10% yielded good performance, while levels of 25 and 50% were a bit too high, improving 300 

after the peak. Specificity was higher at lower significance levels, while sensitivity was higher at 301 

larger significance levels. Increased cases and relative group size contributed to improved estimator 302 

accuracy, reduced bias, and heightened sensitivity, with no significant impact on coverage nor 303 

specificity. Complex epidemic settings, measured through peak asynchronicity, did not significantly 304 

affect sensitivity or bias but were associated with a reduction in coverage and specificity.  305 

Discussion  306 

We developed a method to detect and quantify the transmission assortativity of different groups 307 

based on transmission chains. We performed an extensive simulation study covering a range of 308 

epidemic scenarios to assess the performance of our approach.  309 

 310 

Our results indicate that the estimator's performance is influenced by assortativity patterns, relative 311 

group sizes, number of cases, and peak dates asynchronicity. 312 

Generally, analysing transmission chains too early in the outbreak, before the group’s epidemic 313 

peak, results in poor performance across all metrics considered. On the other hand, delaying 314 

assortativity coefficient estimation poses challenges for timely policy implementation. Choosing 315 
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when exactly in the epidemic to analyse transmission chains, and what significance level to use for 316 

estimating the assortativity coefficients, will also depend on the objective. For instance, minimising 317 

bias and maximising sensitivity is best achieved later in the epidemic, past the group’s peak, and 318 

using larger significance levels. Conversely, improving coverage and maximising specificity is 319 

easiest before the group's epidemic peak and using lower significance levels. Nevertheless, 320 

estimating assortativity at a target time before or at the peak requires accurate prediction of the 321 

group’s peak date which can be very challenging. 322 

As a rule of thumb, we suggest analysing all available transmission chain data up to the group’s 323 

epidemic peak with a significance level of 0.05. Under this setting, our estimator provides a generally 324 

accurate measure of assortativity with reliable coverage and specificity albeit lower sensitivity. 325 

 326 

Detecting non-homogeneous transmission patterns (sensitivity) in the presence of relatively small 327 

groups (i.e. a group constituting less than 10% of the total population), with groups having fewer 328 

than 30 cases is challenging, particularly when assortative or disassortative patterns are mild (-0.5 329 

≤ δ ≤ 0.5). Importantly, it is considerably easier to detect assortativity than disassortativity, given that 330 

assortativity yields more transmission events within the group considered (where most new 331 

infections appear) compared to disassortativity (where new infections tend to appear in other groups, 332 

by definition). Hence, all other things being equal, larger sample sizes are more easily achieved in 333 

assortative groups.  334 

 335 

Our approach complements traditional survey-based methods when transmission chains are 336 

available. Worby et al.'s relative risk estimation [12], measuring each group’s proportional change in 337 

infection incidence before and after the peak, and Abbas et al.'s assessment method [15], comparing 338 

actual and expected proportions of infections across groups, do not consider the influence of group 339 

size.  By integrating group size into our approach, we account for variations in the pool of susceptible 340 

individuals within each group, offering a more comprehensive understanding of transmission 341 

dynamics. Consequently, our approach should provide novel insights into the impact of group 342 

dynamics when estimating transmission patterns.  343 

 344 
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The main limitation of our approach pertains to the assumption that transmission chains are perfectly 345 

known. Although transmission trees can be reconstructed  from data, such reconstruction effort 346 

comes with inherent uncertainty, which we have not considered here. Conventional epidemiological 347 

investigations may provide reliable transmission chains but require intensive labour for contact 348 

tracing, data collection and analysis, and may be prone to error [21]. Statistical approaches have 349 

been developed to reconstruct who infected whom using data on contacts, symptoms onset dates, 350 

and pathogen genome sequences [22], but in some contexts even these prove insufficient to 351 

precisely reconstruct transmission trees [14,23]. Our study underscores the challenges of inferring 352 

group contributions in some scenarios, even in the hypothetical instance where transmission trees 353 

are perfectly known. Nevertheless, our approach is adaptable and can be extended to reconstructed 354 

transmission chains, for example, by estimating the assortativity coefficient across all posterior 355 

transmission trees in the setting of Abbas et al. [15]. Future research should delve into understanding 356 

how uncertainty surrounding these transmission trees further impacts our ability to infer transmission 357 

patterns.  358 

 359 

Another limitation of our approach includes that our estimator requires information on group sizes 360 

which may be difficult to obtain in real-life settings, however various methods exist for population 361 

size estimation [24]. Our simulations also assumed that individuals who have been infected become 362 

permanently immune, an assumption which is typically valid over short time frames but may be 363 

unrealistic over longer time horizons. 364 

 365 

Despite these limitations, this study provides a valuable first step towards evaluating the 366 

contributions of different groups to the transmission of infectious diseases and informing targeted 367 

control policy. 368 

 369 

 370 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.13.24304225doi: medRxiv preprint 

https://www.zotero.org/google-docs/?oLiNYL
https://www.zotero.org/google-docs/?bjFxi5
https://www.zotero.org/google-docs/?gubRAy
https://www.zotero.org/google-docs/?iOLUFu
https://www.zotero.org/google-docs/?2xHZ2U
https://doi.org/10.1101/2024.03.13.24304225
http://creativecommons.org/licenses/by/4.0/


15 

Data Availability 371 

The analysis code is freely available on a GitHub repository: https://github.com/CyGei/o2groups-372 

analysis. An R package has been developed for simulating outbreak scenarios and is also available 373 

on GitHub at: https://github.com/CyGei/o2groups.  374 

Package and analysis code have been archived on Zenodo ( analysis: 375 

https://zenodo.org/doi/10.5281/zenodo.10616176, package: 376 

https://zenodo.org/doi/10.5281/zenodo.10616155)377 

Acknowledgements 378 

CG is supported by a PhD studentship at Imperial College London funded by the National Institute 379 

for Health Research (NIHR) Health Protection Research Unit (HPRU) in Modelling and Health 380 

Economics, which is a partnership between the UK Health Security Agency (UKHSA), Imperial 381 

College London, and the London School of Hygiene & Tropical Medicine (grant code NIHR200908). 382 

AC, PJW are supported by the HPRU in Modelling and Health Economics. This work was supported 383 

by the UK Medical Research Council (MRC) Centre for Global Infectious Disease Analysis (grant 384 

number MR/X020258/1); this award comes under the Global Health EDCTP3 Joint Undertaking. 385 

Author Contributions 386 

Conceptualization: CG, AC, TJ, PJW.  387 

Methodology: CG, AC, TJ, PJW.  388 

Software: CG.  389 

Validation: AC, TJ, PJW, CG.  390 

Formal analysis: CG, AC, TJ, PJW.  391 

Data Curation: CG. 392 

Original Draft: CG.  393 

Writing: CG, TJ, PJW, AC.  394 

Visualisation: CG.  395 

Supervision: AC, TJ, PJW.  396 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.13.24304225doi: medRxiv preprint 

https://github.com/CyGei/o2groups-analysis
https://github.com/CyGei/o2groups-analysis
https://github.com/CyGei/o2groups
https://zenodo.org/doi/10.5281/zenodo.10616176
https://zenodo.org/doi/10.5281/zenodo.10616155
https://doi.org/10.1101/2024.03.13.24304225
http://creativecommons.org/licenses/by/4.0/


16 

Figures & Tables 397 

 398 

 399 

Figure 1: Estimator's performance across all epidemic scenarios. 400 

A. Distribution of bias (the mean difference between the true assortativity δ value and its estimate) 401 

by peak coefficient. The peak coefficient (ε) is a non-negative real number used to define the analysis 402 

time window in relation to the group's epidemic peak. It determines the analysis period from the first 403 

case to the day Tε, where T is the date of peak incidence for the group. A value of ε=1 indicates 404 

analysis up to the group’s peak date, while values above or below 1 extend the analysis to data after 405 

or before the group’s peak date, respectively. 406 

B. Mean coverage (proportion of simulations where the true δ value is within the estimated CI) by 407 

peak coefficient for each significance level (blue shades). 408 

C. The Receiver Operating Characteristic (ROC) (the trade-off between sensitivity and specificity) 409 

curves by peak coefficient (orange-pink points) for each significance level (blue shaded lines). 410 

In panel A, each point shows the mean metric value across all scenarios for a given peak coefficient. 411 

In panels B and C, each point shows the mean metric value across all scenarios for a given peak 412 

coefficient and significance level. Dashed lines refer to the metric’s target value for A and B and 413 

represent a random classifier's ROC performance for C.  414 
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 415 

Figure 2: Estimator’s performance across scenario parameters and epidemic characteristics. 416 

Each row corresponds to one performance indicator and each column corresponds to one simulation 417 

parameter or epidemic characteristic. In each panel, the scatter plot depicts the univariate 418 

relationship between simulation parameter or epidemic characteristic (x-axis) and the performance 419 

metric (y-axis), where each black dot represents the average observation from 100 simulations for 420 

each group in every scenario. The pink points and error bars indicate the mean and interquartile 421 

range, calculated across different bin widths: 0.1 for δ (A.) and relative group size (B.), 12.5 for the 422 

number of cases in the group (C.) and 5 days for the standard deviation of peak date (D.). Dashed 423 

blue lines indicate target metric values. Transmission chains were analysed up to the group’s 424 

epidemic peak (ε=1), with a significance level of 0.05.  425 

 426 

 427 

 428 

 429 

 430 

 431 
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