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Abstract11

Increasingly efficient methods for inferring the ancestral origin of genome regions are needed to gain12

new insights into genetic function and history as biobanks grow in scale. Here we describe two near-13

linear time algorithms to learn ancestry harnessing the strengths of a Positional Burrows-Wheeler14

Transform (PBWT). SparsePainter is a faster, sparse replacement of previous model-based ‘chromo-15

some painting’ algorithms to identify recently shared haplotypes, whilst PBWTpaint uses further ap-16

proximations to obtain lightning-fast estimation optimized for genome-wide relatedness estimation.17

The computational efficiency gains of these tools for fine-scale local ancestry inference offer the pos-18

sibility to analyse large-scale genomic datasets in completely novel ways. Application to the UK19

Biobank shows that haplotypes better represent ancestries than principal components, whilst linkage-20

disequilibrium of ancestry identifies signals of recent changes to population-specific selection for many21

genomic regions associated with immune responses, suggesting new avenues for understanding the22

pathogen-immune system interplay on a historical timescale.23

Introduction24

Modern human populations are complex mixtures between ancient contributing source groups1. Ge-25

netic admixture is the process of mixing groups that were genetically distinct due to genetic drift,26

which can create new distinct populations2,3. The process is ubiquitous and spans scale in space and27

time, from the admixture with Neanderthals around 50,000 years ago when modern humans migrated28

out of Africa4, to native Americans mixing with primarily European and African immigrants over the29

last 500 years to form the majority of United States ancestry5, and the fine-scale geographical regional-30

isation within a single country such as the UK6. The identification of chromosomal regions originating31

from a specific population is known as local ancestry inference (LAI)7, which can be used to map32

disease loci8, investigate the relationships between modern populations, improve association studies9,33

and study demographic histories10.34
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Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs)35

associated with human complex traits and diseases11, but the SNP frequencies are likely to be associ-36

ated with particular ancestries. Local ancestry may then either be viewed as a confounder of the SNP37

effect9, or treated as a predictor as in ‘Ancestral GWAS’12. In this framing, local ancestry inference38

examines the ancestral origin of risk loci in terms of a population and a time — for instance, risk alleles39

associated with multiple sclerosis originated from pastoralists dwelling on the Pontic Steppe, which40

were brought into Europe by the Yamnaya-related migration around 5,000 years ago12. Other examples41

include the relationship between platelet count in Hispanics and an Amerindian-origin variant of the42

ACTN1 gene13, a link between quantitative red blood cell traits and African- and Amerindian-origin43

loci in the HBA1/2 gene14, and kidney disease in African-origin variants of the APOL1 gene15.44

It is hard to perform LAI accurately and efficiently. Various LAI software have been developed45

since the 21st century, and the majority16 are based on the Li and Stephens hidden Markov model46

(HMM)17, including HAPMIX7, ChromoPainter18, LAMP-LD19, MOSAIC3 and FLARE20. HAP-47

MIX pioneered this application but is limited to modelling two ancestries. In comparison, Chro-48

moPainter enables the accurate analysis of admixtures from multiple groups but is slow. LAMP-LD is49

faster but can be unstable16. The distinctive feature of MOSAIC is that the knowledge of the intricate50

connections between reference haplotypes and ancestral mixing groups is not required3. Recently,51

through the on-the-fly compression of reference panels, saved checkpoints and composite reference52

haplotypes, FLARE greatly improves the computational performance compared with the previous LAI53

software20. Other approaches for local ancestry inference are also possible, among which PCAdmix,54

a Principal Components-based algorithm21, and RFMix22, which employs a discriminative modelling55

strategy, are popularly used.56

Our technical contribution is providing two algorithms that fulfil different use cases. Both are57

significantly faster than anything previously reported, especially for identifying fine-scale population58

structure. The most rapid is orders of magnitude faster, opening the application to hundreds of thou-59

sands or even millions of samples as presented by the most challenging modern biobanks and associa-60

tion studies. These approaches avoid storing the entire genotype information in memory, instead using61

the Positional Burrows-Wheeler Transform (PBWT)23,24 to extract only a sparse set of the longest hap-62

lotype matches to the reference panel at each position. In PBWTpaint, only the longest set-maximal63

matches are retained, which we will show is sufficient for genome-wide ancestry. In SparsePainter, we64

extract a richer set of haplotypes on which we show that a sparse implementation of the Li and Stephens65

HMM model17 can be run with a negligible accuracy cost by using a Hash Map data structure25.66

Identifying genomic features that are of biological significance from fine-scale local ancestry infor-67

mation is an under-explored topic and the core of our scientific contribution. Within SparsePainter we68

are able to efficiently compute Linkage Disequilibrium of Ancestry (LDA), LDA score (LDAS) and69

Ancestry Anomaly Score (AAS)12 at scale. These recently proposed summary statistics of local an-70

cestry are predicted under recent population-specific selection, but previous implementations based on71

post-processing local ancestry data are only suitable for examining small sections of genome or small72
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reference datasets. LDA is the correlation of ancestries between SNP pairs, which measures whether73

recombination events between ancestries are more frequent than those within ancestries. LDAS cal-74

culates the total LDA of each SNP on the chromosome weighted by genetic distance. A lower LDAS75

indicates the haplotype inherited from the reference population is shorter than expected. We identify76

two mechanisms that generate low LDAS and both involve a change in selection between the pre-77

existing and admixed population. The first involves selection on a nearby locus, leading to balancing78

selection at the level of haplotypes. The second is against a locus that was high frequency in at least one79

contributing population. AAS is the degree of difference between the estimated average ancestry prob-80

abilities and the genome-wide average, which detects signals of recent selection for loci experiencing81

changes in ancestry frequencies.82

We benchmarked SparsePainter against ChromoPainter and FLARE, which demonstrates that Sparse-83

Painter is faster both empirically and in scaling at fine scale, i.e. as the number of reference populations84

grows. PBWTpaint is faster than all methods by orders of magnitude in identifying genome-wide hap-85

lotype structure within a single dataset, which is its specific capability.86

In exploring population structure within the UK Biobank (UKB) with PBWTpaint, we construct87

haplotype principal components (HCs) which we compare to the widely-used SNP-based principal88

components (PCs). HCs are better associated with birthplace and seem to capture more nuanced ge-89

netic variation than PCs, revealing distinct ancestral patterns among ethnic backgrounds and significant90

regional distinctions within the UK and Ireland, suggesting potential for more refined population strat-91

ification in genetic studies. Using 1000 Genomes Project (1000GP) Data26 as reference, we can apply92

the LDAS and AAS statistics to identify genes that show signals of recent changes to population-93

specific selection. This approach, applied genome-wide, identifies a number of genes that are almost94

entirely immune-related, pointing to population-specific immune response as a central driver of selec-95

tion acting on historical timescales.96

Results97

Method Overview98

There are two main approaches to ancestry inference. The first is unsupervised learning, which ad-99

dresses the goal of learning fine-scale population structure. Examples include clustering18, unsuper-100

vised admixture models27,1, or dimensionality reduction such as Principal Component Analysis (PCA)101

based on either genotype28,29 or haplotype data18. Here, the data are not typically curated and we102

aim to form the largest dataset possible for the analysis. The second approach is supervised learning,103

in which target individuals are compared to carefully curated reference populations, and recently ad-104

mixed individuals (which are the majority of individuals) are not directly used. The goal of supervised105

learning divides into ancestry estimation which can be used analogously to unsupervised genome-wide106

ancestry profiles30, or local ancestry estimation in which the ancestry of particular sections of DNA is107

inferred.108
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Fig. 1: An overview of the scientific use-cases of SparsePainter and PBWTpaint. PBWTpaint
performs all-vs-all painting, for use in fine-scale structure estimation via unsupervised learning ap-
proaches, such as clustering (plot from Lawson et al. (2012)18) and PCA. SparsePainter performs
supervised learning which can be separated into reference-vs-reference painting for admixture estima-
tion and population history modelling, and target-vs-reference painting for local ancestry inference,
such as LDAS and AAS (plots from Barrie et al. (2024)12).

These goals are met by two tools that facilitate a completely new scale of haplotype-based ancestry109

analysis, as described in Fig. 1. The first of these is PBWTpaint, a direct extension of the PBWT23
110

which rapidly identifies long matches. This uses two innovations to achieve extreme computational111

performance for unsupervised learning of a single dataset, comparing each individual to every other in112

all-vs-all painting. First, PBWTpaint only considers a very limited subset of possible matches repre-113

senting the maximally shared haplotypes at any locus (called set-maximal). Further, the Li & Stephens114

model is replaced with an approximation that only considers overlapping set-maximal matches, run-115

ning in linear-time so that mega-scale analyses are straightforward. Larger datasets uncover longer,116

more recent matches, and any inaccuracies due to modelling approximations average out over the117

whole genome for genome-wide analyses.118

The second tool is SparsePainter, which is designed to perform accurate local ancestry inference119

efficiently. Whilst SparsePainter can perform all-vs-all painting, it is optimised for either painting a120

reference panel against itself (reference-vs-reference painting), or painting target individuals using a121

reference panel (target-vs-reference painting). There are two primary outputs of SparsePainter. The122

first is local ancestry estimates, which are the probabilities that a haplotype at a particular chromosomal123
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location is inherited from each ancestral individual or population. By efficient representation of this124

we can efficiently compute the selection statistics LDA, LDAS and AAS.125

Chromosome Painting is different to identifying haplotypes identical-by-descent; it assigns every126

position of the genome to the most-recent common ancestor in the reference, without allowing overlaps127

or conditioning on length and hence expected age of a sharing event. This facilitates fine-scale ancestry128

estimation or ‘Admixture Modelling’18,1 using the expected fraction of the total genome shared most129

recently between a target and each reference ancestral individual or population. As we use a leave-130

one-out scheme to make individuals from the reference and target datasets exchangeable, i.e. receive131

the same ancestry inference if they share the same ancestry (see Methods for a formal definition), this132

allows population history reconstruction without assuming perfect references1.133

134

PBWTpaint135

Storing the genotype information of all the samples in memory is a problem for large datasets. The136

Positional Burrows-Wheeler Transform (PBWT)23 is a data structure to transform a binary matrix Xik137

(with 2N haplotypes and K SNPs) into a sequence of run-length compressed arrays per SNP, in each138

of which the haplotype values at the SNP are sorted according to the reversed haplotype prefixes pre-139

ceding the SNP. From a PBWT, long matches can be efficiently extracted using the ReportMatches140

algorithm, and set-maximal matches with the ReportSetMaximalMatches algorithm, in O(NK) oper-141

ations for all haplotypes at the same time. Our models are built on these matches.142

For each target individual i, PBWTpaint iterates through the M(k) matches at a locus k (which143

are typically very sparse, and sparse by construction for set-maximal matches). For each matched144

reference haplotype j we extract the start sjk and end ejk positions of the maximal exact match to j145

covering k, i.e. sjk is the location just after the first upstream mismatch, and ejk is the location just146

before the first downstream mismatch. From these, we compute a weight wjk = (k−sjk)(ejk−k), i.e.147

the weight increases linearly with distance from each end of the match, and quadratically with the total148

length of the match for positions at the midpoint of the match. This is normalised over matches j to149

give a local ancestry score pjk = wjk/
∑2N

l=1wlk, which we sum over loci k to produce a genome-wide150

ancestry estimate pj . We also provide estimates of the total number of recombination events, as well151

as regional bootstraps, to enable clustering with FineSTRUCTURE18.152

153

From PBWT to an accurate Sparse Data Matrix154

For local ancestry inference, the longest haplotype matches at the target locus are the most important,155

since short matches appear within any ancestry due to statistical noise and incomplete lineage sorting,156

i.e. ancient structure shared across ancestries rather than recent genealogical relationships. As such,157

short matches provide little useful information for tracing local ancestry.158

Whilst the original PBWT algorithm finds long matches only within the same database, it has been159

extended to report long matches between different haplotype sets24. For accurate and efficient local an-160

cestry inference we detect all matches longer than some threshold L, but there may be no genome-wide161
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‘correct’ L. Some target haplotypes will only have short matches if they diverged a long time ago, and162

few or even no matches are longer than L. Other target haplotypes will share extremely long segments163

of DNA with many reference haplotypes leading to many matches being retained, the shorter of which164

(also longer than L) are not helpful for inferring ancestry. To address this barrier, we revisited the ‘long165

match query’ algorithm of PBWT and proposed the Algorithm ‘ReportLongestMatches’ which aims166

to find at least Q longest matches at each position for a target sample i (Methods). With this algorithm,167

we maintain a particular sparsity level at each location while also preserving the longest matches to168

guarantee accuracy.169

170

Using Hash Map to perform HMM Forward-Backward Algorithm in sparse form171

SparsePainter stores haplotype matches in a Hash Map data structure that implements an associative172

array abstract data type for efficient key-value storage and retrieval25, facilitating O(1) storage and173

lookup of values (here painting probabilities) based on unique identifiers or keys (here haplotype in-174

dices). We then employ a sparse approximation to Li and Stephen’s17 model by vectorising the forward175

and backward probabilities and assuming a vanishing mutation rate (Methods). The forward and back-176

ward computation is only required within the Q longest matches to the target haplotype at each locus,177

allowing efficient computation of the local ancestry probabilities and the expected genome shared.178

Compared with computing and storing the probabilities at all N haplotypes, our approach reduces179

both memory usage and compute time from O(N) to O(Q).180

181

Simulation overview182

We used SLiM 3.7.131 to simulate genetic data on 20 megabases throughout 3000 generations, aiming183

to compare the accuracy, speed and memory utilization of SparsePainter, ChromoPainter, FLARE and184

PBWTpaint in terms of local ancestry and genome-wide estimates. Here we focused on comparing185

tools which are useful for large reference panels. Therefore, we excluded MOSAIC and RFMix which186

are not sufficiently scalable20. For this comparison, we used four distinct simulation models with187

20k SNPs (noting that all methods have linear compute and memory requirements in the genome size188

analysed; see Methods for details):189

• Simulation 1: A hierarchical model designed to assess the speed, memory usage, and accuracy of190

PBWTpaint, SparsePainter, and ChromoPainter for within reference (supervised or unsupervised)191

painting;192

• Simulation 2a: An evolutionary process that generates from 2 to 100 different populations, to inves-193

tigate the scaling of SparsePainter and ChromoPainter in target-vs-reference painting;194

• Simulation 2b: A less-separated version of Simulation 2a with limited populations, to assess the195

accuracy of target-vs-reference painting for SparsePainter, ChromoPainter, and FLARE;196

• Simulation 2c: A larger-scale version of Simulation 2b to investigate how SparsePainter balances197

accuracy against speed and memory utilization in target-vs-reference painting.198
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Fig. 2: Speed and memory comparison between software. a-b, Speed and memory of admixture
estimates for reference-vs-reference painting between software with 5 or 10 populations and different
reference sizes with 20k SNPs (Simulation 1). c-d, Speed and memory of painting 50 target individuals
between software with different numbers of populations and reference sizes with 20k SNPs (Simulation
2a).

Within-sample performance comparison199

We first compared the efficiency of PBWTpaint (using all-vs-all painting) and SparsePainter and Chro-200

moPainter (using reference-vs-reference painting) under Simulation 1. FLARE is excluded as it can201

neither perform within-sample (i.e. reference-vs-reference), nor genome-wide, comparisons. Perfor-202

mance is measured using the recovery rate of an individual’s own population ancestry fraction using203

squared Pearson’s correlation coefficient (denoted as r2) with the truth (Methods).204

Fig. 2a-b illustrates that both in theory and practice, ChromoPainter has a quadratic cost as a func-205

tion of panel size, so scales poorly to larger reference sizes. SparsePainter is close to linear in both206

speed and memory efficiency regardless of reference sizes. Whilst PBWTpaint also scales linearly, it207
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Fig. 3: Accuracy of software and the trade-off between accuracy and computational cost in
SparsePainter. a, Self-recovery rate for reference-vs-reference painting with 20k SNPs (Simulation
1). b, Accuracy of local ancestry estimates with 20k SNPs and 50 target individuals sampled 13
generations after admixture (Simulation 2b). c-d: compute time and memory usage of SparsePainter
for painting with different sparsity and reference sizes under a 5-way admixture model (Simulation 2c)
with 20k SNPs.

is orders of magnitude faster, and only introduces a minor trade-off in terms of accuracy (Fig. 3a).208

Notably, PBWTpaint only retains accuracy for genome-wide estimation, as its simple model with set-209

maximal matches isn’t suitable for estimating local ancestries (Methods).210

211

Target-vs-reference speed and memory comparison for LAI212

As PBWTpaint neither can paint target samples against different reference panels, nor perform local213

ancestry estimates, we restricted our speed and memory comparison to SparsePainter, ChromoPainter214

and FLARE with Simulation 2a. As all those software are based on the Li and Stephen’s hidden215
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Markov model, their computational costs for genome-wide and local ancestry estimates are expected216

to be similar.217

The speed and memory of SparsePainter and ChromoPainter remain largely unaffected by the num-218

ber of true populations. Conversely, whilst FLARE demonstrates impressive speed and efficient mem-219

ory usage with few populations (npop ≤ 5), its efficiency dramatically diminishes compared to Sparse-220

Painter when handling 20 or more populations (Fig. 2c-d). When painting with 100 populations,221

SparsePainter is over 100 times faster and 10 times more memory-efficient than FLARE.222

A recent study30 decomposed the UK Biobank into 129 distinct fine-scale reference ancestries. We223

replicated their analysis with the 4334 reference individuals from non-restricted data sources (i.e. all224

except POPRES) spanning 129 populations. For 1000 target individuals on chromosome 21 which225

comprises 9522 SNPs, SparsePainter is dramatically faster and requires minimal memory (6 minutes226

and 1.5GB) compared with ChromoPainter (272 minutes and 10.2GB) and FLARE (338 minutes and227

14.2GB).228

229

Target-vs-reference accuracy comparison for LAI and admixture estimation230

We have illustrated the circumstances when SparsePainter has superior speed and memory use than231

FLARE and ChromoPainter, but it is crucial to maintain accuracy. In Simulation 2b we examined232

the accuracy of local ancestry estimated by both the squared Pearson’s correlation coefficient and233

the proportion of accurate local ancestry predictions (Methods). Across all software, the accuracy of234

local ancestry estimation consistently improves with increased reference sizes and reduced number of235

populations (Fig. 3b and Supplementary Fig. 1).236

The accuracy of SparsePainter and Flare is always comparable. Also as anticipated, SparsePainter237

displays a negligible accuracy drop compared to ChromoPainter, given that SparsePainter is essentially238

a sparse implementation of ChromoPainter.239

Sparsity in SparsePainter240

To investigate SparsePainter’s tradeoff between sparsity and accuracy, we varied the reference size of241

a 5-way admixture model (Simulation 2c). Fig. 3c-d shows that a larger reference size substantially242

boosts accuracy, whilst increments in the number of matches only marginally elevate it, and larger243

reference samples dilute the accuracy’s sensitivity to sparsity. Conversely, computational time and244

memory demands surge considerably as match density escalates. This indicates that if large reference245

datasets are available, opting for a constant number of matches (so diminished match proportion) yields246

significant computational savings, at a negligible compromise in accuracy.247

248

Haplotype Principal Components Analysis for the UK Biobank249

The UK Biobank (UKB)’s principal components (PCs) are widely used for correctly inferring the pop-250

ulation structure. We inferred the (sparse) genome-wide pairwise coancestry of N = 406, 733 UK251

Biobank individuals via PBWTpaint from L = 569, 200 SNPs, taking 41 CPU hours (which is paral-252

lizable and scales as O(NL)). We summarised these ancestries into the top 150 haplotype components253
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Fig. 4: Comparison between UK Biobank PCs and HCs and the decomposition of HCs. a,
the coefficient of determination for predicting the first 16 UKB PCs (y-axis) using the first 150 HCs
(x-axis) with linear regression models (n=406,733 individuals), which shows strong correlations. b,
the coefficient of determination for predicting the first 16 UKB HCs (y-axis) using the first 150 PCs
(x-axis) with linear regression models (n=406,733 individuals), which shows strong correlations on
only 12 of the first 16 HCs. c, Visualisation of the average of the 5th, 8th and 11th HC stratified by
birthplaces within the UK and Ireland (n=347,532 individuals), corresponding to the red, green, and
blue channels, respectively, in the composite plot (left), and the right plot shows the decomposition of
each HC. We have also shown the median prediction error range of the birthplace of HCs (white circle,
radius 39.7km) and PCs (yellow circle, radius 77.5km) of an east Wales location (red point).

(HCs) (Methods), and compared their informativeness with PCs in several ways. First, we can accu-254

rately predict the first 16 PCs with the first 150 HCs using linear regression models (Fig. 4a), especially255

for the first 9 PCs which have a coefficient of determination (R2) exceeding 80%. Conversely, when256

using the first 150 PCs to predict the first 16 HCs, some of the HCs are poorly explained (Fig. 4b).257

This observation indicates that HCs might encapsulate additional ancestry information beyond that258

conveyed by PCs.259

To investigate consistency across chromosomes, we split the SNPs from the odd and even chromo-260

somes and then computed the top 150 PCs and HCs from the even chromosome set. Subsequently, we261

used 150 HCs/PCs from one set to predict each of the top 50 HCs/PCs from the other set. HCs are well262

explained with R2 > 90% for the majority of them (Extended Data Fig. 3), indicating HCs capture263

ancestry information that is shared in all the chromosomes. By contrast, few PCs can be predicted264

from different chromosome sets, which corresponds to the previous finding that all PCs except the top265

few of them are related to specific genetic regions32.266

HCs are associated with self-reported ethnicity (Extended Data Fig. 1): the 2nd and 3rd HCs ef-267

fectively differentiate within white and black backgrounds, respectively, whereas the 4th and 6th HCs268

reflect variations associated with South Asian ancestry. HCs are also associated with geography: fil-269
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tering to the 347,532 individuals with white, British or Irish ethnicity born in the UK or Ireland, we270

plotted the average HC for 23 UK regions (Extended Data Fig. 2). The 5th HC represents the variation271

between Scotland, Irish, and the rest of the UK, while the 11th HC differentiates Ireland and Wales272

from the other regions. By mapping the 5th, 8th, and 11th HCs onto the geography of the UK and273

Ireland, we created a colour-coded depiction (Fig. 4c) which uniquely identifies each county. Further,274

predicting birth location using HCs has a median error of 39.7km, whilst PCs give a nearly double275

error of 77.5km in out-of-sample individuals (see Methods). This is a surprisingly high accuracy as276

these individuals were not filtered for having ancestry from a single location, so prediction accuracy is277

bounded by migration since people need not be born where their ancestors came from.278

279

Ethnicity-specific selection in the UK Biobank compared to the 1000 Genomes populations280

To demonstrate the scientific value of SparsePainter, we inferred the local ancestry of 487,409 UK281

Biobank33 individuals using the 2504 individuals spanning 26 populations from the 1000 Genomes282

Project (1000GP)26 as reference. From this, we evaluated selection using LDA score, which quantifies283

genomic regions with particularly short ancestry segments, compared to the base recombination rate,284

as well as an Ancestry Anomaly Score (AAS), which quantifies regions of unusual ancestry, compared285

to genome-wide (see Methods). We report results that replicate over 7 primary self-reported ethnic286

backgrounds (hereafter ethnicities) within the UK Biobank: British, Irish, Indian, Caribbean, African,287

Pakistani, and Chinese. The LDAS, AAS and average probabilities of 26 1000GP populations for each288

SNP analysed within each ethnicity are available in Supplementary Tab. 2-8.289

Our goal is to demonstrate applications of local ancestry at scale outside of population history and290

admixture estimation (Fig. 5a, Methods). We look for signals of ‘putative selection’ in the form of low291

LDAS and unusual AAS that are shared, i.e. identified in every UKB primary ethnicity, after extensive292

quality control (Methods). As a sensitivity analysis, we further painted the UK Biobank with 1000GP293

data using 5 continental ancestries (EUR, AFR, SAS, EAS and AMR). The LDAS and AAS results294

of different UKB ethnicities are illustrated in Fig. 5b-c. These are mapped to genes, with shared295

significant low LDAS and AAS signals visualised in Fig. 6 and investigated in detail in Supplementary296

Note 1. Genes with ethnicity-specific AAS signals are reported in Supplementary Tab. 1.297

To aid in interpreting these signals, we extended simulations for low LDAS from Barrie et al.298

(2024)12 (Methods, Extended Data Fig. 5-6). Two scenarios produce significantly low LDAS and299

extreme AAS, and both imply a change in selection following admixture. One scenario is single-locus300

negative selection in the admixed population, following non-negative selection in the pre-existing pop-301

ulations. The second scenario is multi-locus positive selection in the admixed population, while those302

loci are either absent or present at low frequency in some of the pre-existing populations. Selection303

under these scenarios is not detected by iHS, iHH12 or nSL as calculated using selscan34, showing that304

extreme LDAS SNPs are not expected to be previously reported as under selection.305

Extreme AAS signals in all 7 UKB ethnicities (Extended Fig. 7) include LINC01432 from chro-306

mosome 20 (linked to retroperitoneum carcinoma and early-onset androgenetic alopecia) which has an307
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Fig. 5: Modelling of 7 UK Biobank self-reported ethnicities using 26 1000GP populations. a,
Overall ancestry inference stratified by UKB ethnicities. For each ethnicity, the column shows an-
cestry decomposition for a single individual, with colours representing different 1000GP reference
populations, named as regions followed by local population in standard abbreviation26. b, Linkage-
Disequilibrium of Ancestry Score (LDAS), reporting -log10 of the p-value of low LDAS (normality
test). c, Ancestry Anomaly Score (AAS) as a function of genome position, reporting -log10 of the p-
value of AAS (chi-squared test, -log10(p) is capped at 340 in the plot). All plots describe the analysis
of n=487,409 individuals on 569,200 SNPs. In b-c, the non-light-grey points (light grey points) rep-
resent the SNPs’ maximum and minimum values that exhibit significant (insignificant) scores in both
(either) paintings with 1000GP 26 populations and 5 continents, respectively (Methods), and blue (or-
ange) lines connect the maximum and minimum values at each SNP that are shared (ethnicity-specific)
across the 7 ethnicities in both paintings. The thresholds used to determine significance are depicted
as horizontal lines in dashed red, blue and orange, respectively.

exceptionally high Japanese ancestry (EAS JPT) across all UKB ethnicities. Similarly, in the genes308

PNRC2 and SRSF10 on chromosome 1, the Puerto Rican ancestry (AMR PUR) is over-represented,309

particularly within European and Asian ethnicities. Notably, LINC03004 (highly expressed in testis310
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Fig. 6: Summary of previous findings for genes with low LDAS and AAS signals shared between
7 UK Biobank self-reported ethnic backgrounds. Genes with low LDAS and AAS signals in both
26-pop and 5-continent paintings include those with core immune gene or response regulation, while
those in 26-pop painting only include many broad-impact immune genes. Genes with LDAS-only sig-
nals in both 26-pop and 5-continent paintings more typically affect responses to specific infections, and
genes with AAS-only signals have varied functions and disease associations. Classification (colour)
and category summaries (bold quoted text) are based on heuristic features of previous work; see Sup-
plementary Note 1 for details.

and the gall bladder) and its nearby gene PTPN11P3 on chromosome 6 are predominantly represented311

by African ancestry across all ethnicities, a striking example of which is seen in Chinese ethnicity,312

where LINC03004 is almost completely African.313

We observed that the different selection patterns of genes associated with the immune system were314

related to distinct hierarchies of control of immune response, from control of gene expression to T cell315

receptor recognition and inflammation. At the core were genes with low LDAS and AAS signals in316

both the 26 population ancestries and the 5 continental ancestries. These genes affect RNS degradation317

(PNRC2) and RNA splicing (SRSF10), and include a receptor that binds high-mannose structures on318

the surface of potentially pathogenic viruses, bacteria, and fungi (MRC1). The product of these genes319

affects immune responses (Supplementary Note 1.1), but their function is also central to non-immune320

pathways, and mutations in these genes can give rise to, for example, various congenital disorders and321

neurological and metabolic diseases.322

The second level of control is broad-impact immune genes with low LDAS and AAS signals only323
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in the (more recently separated) 26 population ancestries. The product of these genes affects antigen324

presentation and the strength of receptor signalling. One of the genes (HLA-DRB1) presents antigens325

to T cells and helps regulate immune responses. Over 2000 variants of DRB1 have been identified35,326

some of which are associated with certain diseases or conditions (autoimmune diseases and susceptibil-327

ity or protection infection). Whilst HLA-DRB6 is a pseudogene with, as of now, no known function,328

SIRPB1 encodes a signal-regulatory-protein that interacts with TYROBP/DAP12, a transmembrane329

adaptor protein on natural killer (NK) cells, peripheral blood monocytes, macrophages, dendritic cells,330

osteoclasts, and microglia. Through this interaction, SIRPB1 is involved in regulating both adaptive331

and innate immune responses and other pathways.332

The least-central control level primarily affects responses to specific infections (T cell recognition,333

signalling) or localized responses that occur at the site of infection (inflammation), and have low LDAS334

scores but no AAS signals. Among them are eight less-commonly expressed TRBV genes, which335

are noteworthy for well-established associations with globally widespread and ancient herpesviruses,336

bacteria, and old pathogens such as hepatitis virus B and C, and influenza36. The TRBV genes encode337

part of the beta chain, which, together with the alpha chain (encoded by TRAV), form the T cell338

receptor’s antigen binding site. Notably, 8 TRBV but no TRAV genes are identified. SIRPG is a339

signal-regulatory protein (SIRP) member and is involved in the negative regulation of receptor tyrosine340

kinase-coupled signalling processes. It affects the signal regulatory protein gamma (SIRPγ) expression341

on T-cells and helps regulate immune responses, cell adhesion, and phagocytosis. IL20RA mediates the342

pro-inflammatory effects of IL-20 cytokines, helps to regulate immune responses, tissue homeostasis,343

and inflammation, and is a central player in the immune system. TMPRSS11E affects epithelial barrier344

function, inflammation and wound healing. Conversely, only two genes out of the 16 with only an AAS345

signal are associated with the immune system, as the CNR2 gene product has anti-inflammatory effects,346

among other non-immune related functions, and PDK1 is a key regulator of immune cell development347

and function.348

Discussion349

Local ancestry inference is fundamental to understanding the genetic history of admixed populations,350

and fundamentally all populations are admixed. Our study presents efficient tools for performing an-351

cestry inference that substantially enhance computational efficiency while retaining inference accuracy.352

This achievement comes from the observation that in large panels, relatively few matches are required353

to describe local ancestry, even in the presence of sequencing error, facilitating fine-scale haplotype354

analyses for large-scale projects that aim to paint thousands or even millions of individuals, such as the355

UK Biobank and the larger biobanks of the future.356

Our tools are extensions of chromosome painting to describe genome-wide ancestries, and are not357

specifically designed for local ancestry inference. Scenarios where they might not be the optimal tool358

include local ancestry estimation with few populations, for which FLARE offers an edge in terms of359
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speed and memory with comparable accuracy. When reference panels are themselves very admixed,360

MOSAIC offers a two-stage HMM that allows the reconstruction of ancestries from imperfect ref-361

erence panels. Conversely, the efficiency of PBWTpaint for genome-wide ancestry estimation under362

reference-vs-reference painting makes it inaccurate at the level of local ancestry.363

This work’s broad implications extend beyond just technical improvement. The haplotype compo-364

nents (HCs) computed using PBWTpaint allow robust prediction of principal components (PCs) and365

may capture subtle genetic variations that PCs overlook - e.g. we found improved birthplace predic-366

tion performance within the UK Biobank. Haplotype summaries have other desirable properties such367

as not being associated with particular genomic regions, so replacing PCs with HCs is likely to result in368

a similar improvement as with ancestry components (ACs)30, which require comparison to a reference369

panel as SparsePainter is designed for. We therefore left a thorough examination of this task to future370

work and focused on the visualisation of population genetic structure using HCs at scale.371

We presented a more in-depth exploration of two measures of selection at the ancestry level - LDAS372

which identifies ancestry segments that are too short (or too long), and AAS which identifies regions373

with unusual ancestry patterns. We have been careful to treat these as ‘putative selection’ when inter-374

preting them because there are other reasons for these anomalies to occur. LDAS and AAS would be375

sensitive to SNP density, long repeats, regions with many low-quality reads, or other structural issues.376

AAS is particularly sensitive to the makeup of the reference panel, which must be ‘less admixed’ than377

the target individuals on average to obtain a signal. LDAS is also sensitive to recombination map de-378

tails (though the recombination rate for each ethnicity is separately normalised). Although (as we have379

attempted) such issues are typically removed in quality control or by post-hoc considerations (low data380

volume regresses to the prior genome-wide ancestry), we know of no other methods that can confirm381

these types of selection on this timescale.382

AAS has previously linked infection in admixed Scottish wildcat Felis silvestris to selectively retain383

an immune response developed in domestic cats Felis catus37 over just 10 generations. Here, without384

looking specifically for it, we found many strong signals for core immune genes for all ethnicities using385

LDAS and AAS signals in the UK Biobank, which can be explained if there was a change in selection386

when these modern populations were formed as a mixture from older populations. Dating each would387

be very valuable - the admixture is only hundreds of years old for the African and European admixture388

seen in Afro-Caribbeans, and the last few thousand years for established populations described by 26389

inter-continental populations from the 1000 Genomes Project. This historical timescale is consistent390

with the continued expansion of populations and their pathogens around the globe and implies a ‘melt-391

ing pot’ of diverse diseases that evolved locally, likely related to environmental and cultural factors38
392

and spread into global impact. For example, two selected immune genes (MRC1 and STAM) which393

have higher South Asian ancestries than expected facilitate the entry of the dengue virus, which is es-394

timated to have evolved approximately 500-1000 years ago and first became endemic in parts of South395

and South-East Asia39,40. Today, it is widespread globally, and its range continues to expand as global396

warming increases the mosquito habitat that carries the dengue virus. It remains to be seen if the signal397
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we see is this or some older virus that affects a related immune response.398

It is hard to obtain ground truthing for selection statistics, and LDAS being relatively new and399

population-specific by design is no exception. We have attempted to rule out the most obvious con-400

founders - beyond the usual quality control, we removed low or heterogeneous SNP density regions,401

which preferentially removes regions near centromeres, telomeres and indels, as well as testing for402

GC bias and structural variation (Methods). The strongest evidence is the clear interpretability of the403

signal as being immunity-associated in all 7 ethnicities. Additional evidence is needed before coming404

to firm conclusions, but we believe that this strongly motivates more widespread investigation of local405

ancestry outside of the reconstruction of individual and population histories.406

Our analysis suggested that varying genetic selective patterns prevailed at different levels of control407

of a hierarchical complex biological system such as the immune system. Using these methods with408

carefully constructed reference panels targeting particular admixture times, and the analysis of specific409

contact events, could eventually build the pathogenic landscape around the world, and bring insights410

into more diseases and traits selected in our recent ancestors.411

Methods412

Modes of SparsePainter and PBWTpaint413

As in Figure 1, there are three modes of SparsePainter and one mode of PBWTpaint as below. The414

painting with a leave-one-out strategy (as required for GLOBETROTTER1 and related methods) is415

classified as panel painting, which is only possible for SparsePainter.416

(1) all-vs-all. Under this mode, we paint each individual against all the other individuals, i.e. only the417

individual itself is left out. This is for clustering, computing HCs, or similar tasks. PBWTpaint has the418

best performance of speed and can only operate in this mode.419

(2) reference-vs-reference painting with npop populations. For exchangeability between a target and420

the reference, one individual is left out of each other population and oneself is left out from the own421

population. Then we paint a reference panel against itself. This ‘panel painting’ makes a palette for422

each of the npop populations as required for GLOBETROTTER1, NNLS, and related admixture esti-423

mation methods. SparsePainter is efficient for this.424

(3) target-vs-reference with npop populations. We paint target individuals using a reference panel. We425

can optionally use leave-one-out painting (one individual is left out of each population) for admixture426

estimation, or without leave-one-out, we can do local ancestry inference. SparsePainter is efficient for427

this.428

429

Algorithm ‘ReportLongestMatches’430

The code implementation of the PBWT structure in SparsePainter drew extensively form Sanaullah et431

al. (2021)24. We extend the ‘long match query’ algorithm of PBWT in Algorithm ‘ReportLongest-432

Matches’ which aims to find at least Q longest matches at each position for a target sample i, in a433
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two-stage process. In stage 1 we ensure a minimum number of matches, by storing only matches of434

length Lmin or longer containing SNPs with fewer than Q matches in a set {s}. For efficiency, we435

search the longest matches first, by iteratively halving the match length Lq, beginning from L0. For436

every SNP that still has fewer than Q matches, all matches longer than Lq containing the SNP are437

added to {s}, until all positions have at least Q matches or the halved length falls below Lmin.438

Stage 2 reduces the number of matches. First, we calculate the genetic length for each match in439

{s} and sort them in descending order of their genetic lengths. An empty set {e} = ∅ is then populated440

with only the required matches. The algorithm traverses through the sorted {s}, adding a match to {e}441

if any of its positions have fewer than Q matches in {e}. The final set {e}, containing elements that442

each specify the start position, end position, and reference sample number, represents the selected long443

matches to the reference haplotypes for the target sample i.444

Algorithm 1 ReportLongestMatches—-find at least Q Longest matches at each position for target
sample i

Stage 1: Ensuring a minimum number of matches;

Run PBWT and record all matches longer than or equal to L0 SNPs in set {s}.
Let r be a list of SNP indices with fewer than Q matches;
Iteration q ← 1 and current minimum length Lq ← L0/2;
while |r| ≠ 0 ∧ Lq ≥ Lmin do

Run PBWT and with min length Lq ;
Add matches containing SNPs in r with length ∈ [Lq, Lq−1) to set {s};
Update r with the indices of SNPs with fewer than Q matches of length Lq or longer;
Half the minimum match length Lq subject to constraints, i.e. Lq+1 ← max(Lq/2, Lmin);
q ← q + 1;

end while

Stage 2: Reduce the number of matches;
▷ Retain only the longest, required matches.

Compute the genetic distance of each match in set {s} and store in {g}
Sort set {s} in descending order of {g};
Define {e} as an empty set to record final selected matches;
for b← 1 to |s| do

Add match s[b] to set {e} if it contains SNPs with fewer than Q matches;
If all SNPs have at least Q matches break;

end for
Report {e} as the selected long matches to reference haplotypes for target sample i.

The efficiency of this algorithm is reflected by the majority of the genome being processed in Stage445
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1 with few long matches, even though there are huge numbers of matches throughout the genome.446

Subsequently, we only need to proceed to search relatively short sections of genomes for few relatively447

short matches.448

Note that because of the limitation of Lmin, we may end up having fewer than Q matches or even449

no matches at specific positions. The former doesn’t decrease the accuracy of local ancestry inference,450

and we will address the latter in Methods – hidden Markov model.451

452

Hidden Markov model in vector form453

Let N be the number of haplotypes in the reference panel K be the number of SNPs, and µ be the454

mutation probability per SNP. λ is a recombination scaling constant, proportional to effective popu-455

lation size in simple demographies and called Ne in18. The reference panel X is an N by K matrix,456

and a target haplotype y is an K-vector, all taking values of either 0 or 1 corresponding to whether the457

reference allele is present or not. However, we can simplify this into a match matrix M of dimension458

N ×K which also takes values of either 0 or 1, with Mij = 1 if Xij = yj and 0 otherwise. We will459

refer to the row vectors mj = M·j and use the shorthand D(x) = Diag(x) as the matrix with the vector460

x on the diagonal. We will refer to DN(x) as an N ×N matrix with the scalar x on the diagonal.461

SparsePainter implements the Li and Stephen’s model17 in the form of ChromoPainter18 in a sparse462

setting. We define V as the emission matrix, and the column vectors are vj = V·j463

Vij =

1− µ if Mij = 1

µ if Mij = 0
(1)

The observation matrix is an N ×N matrix:464

Oj = (1− µ)DN(mj) + µDN(1N −mj) = DN(vj) (2)

The transition matrix from position j to position j + 1 is an N ×N matrix:465

Tj = ρjDN(1) +
1− ρj
N

1N×N (3)

where ρj = exp(−λgj) with gj being the genetic distance between position j and position j + 1 in466

Morgans.467

Let f0 = 1/N be the prior probabilities for the matches. We can write the forward probabilities for468

j = 1, . . . , K as:469

fj = fj−1Tj−1Oj, (4)

where fj are row vectors (1 × N ). With bK = 1N where 1N is an 1 × N row vector, the backward470

probabilities for j = 1, . . . , K − 1 are:471

bT
j = TjOj+1b

T
j+1. (5)
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However, Equation (4) and (5) can be significantly simplified due to the special form of the output472

and transition matrices. We can arrive at a vector form for which computations are O(N) instead of473

O(N2).474

To simplify notation, we write the marginal (partial) probabilities
∑N

i=1 fij = f̃j and
∑N

i=1 bij = b̃j ,475

the total number of matches m̃j =
∑N

i=1 mij , and ρ̃j =
1−ρj
N

. These are all scalar properties in what476

follows below. For the forward probabilities:477

fj = fj−1 [ρj−1DN(1) + ρ̃j−11N×N ] [(1− µ)D (mj) + µD (1N −mj)]

= fj−1ρj−1 [(1− µ)DN (mj) + µD (1N −mj)] + f̃j−1ρ̃j−11N [(1− µ)D (mj) + µD (1N −mj)]

= (1− µ)mj ◦
[
ρj−1fj−1 + f̃j−1ρ̃j−11N

]
+ µ

[
ρj−1fj−1 + f̃j−1ρ̃j−11N

]
◦ (1N −mj)

= vj ◦
[
ρj−1fj−1 + f̃j−1ρ̃j−11N

]
(6)

where we use the notation x ◦ y for entry-wise vector multiplication (Hadamard product). Similarly478

for the backward probabilities, using the shorthand cj = mj ◦ bj and
∑N

i=1 mijbij = c̃j:479

bT
j = [ρjDN(1) + ρ̃j1N×N ] [(1− µ)DN (mj+1) + µDN (1N −mj+1)]b

T
j+1

=ρj [(1− µ)DN (mj+1) + µDN (1N −mj+1)]b
T
j+1+

ρ̃j1N×N

[
(1− µ) (mj+1 ◦ bj+1)

T + µbT
j+1 ◦ (1N −mj+1)

T
]

=ρj(1− µ)cTj+1 + ρjµ
(
bT
j+1 − cTj+1

)
+ ρ̃j(1− µ)c̃j+11

T
N + ρ̃jµ

(
b̃j+1 − c̃j+1

)
1T
N

=ρj
(
cTj+1 − 2µcTj+1 + µbT

j+1

)
+ ρ̃j

(
c̃j+1 − 2µc̃j+1 + µb̃j+1

)
1T
N

=ρjd
T
j+1 + ρ̃j d̃j+11

T
N

(7)

where dj = vj ◦ bj and such that
∑N

i=1 vijbij = d̃j. Finally, the posterior probabilities are written in480

the following form:481

P (mj|O) ∝ fj ◦ bT
j . (8)

If we assume the mutation rate µ → 0, the forward and backward probabilities (Equation (6) and482

(7)) simplify to483

fj = mj ◦
[
ρj−1fj−1 + f̃j−1ρ̃j−11N

]
(9)

and484

bT
j = ρjδ

T
j+1 + ρ̃j δ̃j+11

T
N (10)

respectively, where δj = mj ◦ bj and δ̃j =
∑N

i=1 mijbij . In this case, only the forward probabilities fj485

for the matched samples at position j are non-zero and need to be calculated. For backward probabili-486

ties, we compute different bT
j for matched samples at position j + 1, with unmatched samples sharing487

the same default value ρ̃j δ̃j+1 in the jth hash vector. Finally, when computing the posterior proba-488

bilities P (mj|O) (Equation (8)), only samples with matches in SNP j or j + 1 require computation,489

whereas the others are exactly 0.490
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Note that this assigns non-zero probability to single mutation breaks in haplotypes, provided a491

match is found both to the left and the right. In conclusion, the Hash-Map-based forward and backward492

algorithm reduces computational cost from O(N) (e.g., ChromoPainter18) to approximately O(Q).493

There are instances when few positions have no matches spanning at least Lmin SNPs, and are494

therefore interpreted as no matches, which disrupts the forward and backward algorithm because a495

0-vector of fj causes all ft to become 0-vectors for any t > j. To address this issue, for each position496

without matches longer than Lmin SNPs, we find the closest SNP (in genetic distance) that has matches.497

We then impute the matches from this closest SNP to the position without matches.498

The recombination scaling constant λ is usually estimated by the Expectation–Maximization (E-499

M) algorithm (Supplementary Note 2.2). However, the Viterbi algorithm, a dynamic programming500

technique to identify the most probable sequence of hidden states in a hidden Markov model, can be501

advantageously employed to improve the efficiency of estimating λ, compared with the E-M algorithm.502

In this context, let Nseg represent the minimum number of contiguous segments from different reference503

samples required to construct the target haplotype, and therefore Nbreak = Nseg − 1 is essentially the504

number of distinct recombination events that have been inferred. Then λ is estimated as505

λ∗ =
Nbreak∑K
j=1 gj

. (11)

506

507

The normalised versions of the forward and backward equations508

It is helpful to work in the normalised versions of the forward and backward equations f̌j = fj/f̃j and509

b̌j = bj/b̃j . We define Fj and Bj as the normalising constant at state j.510

fj

f̃j−1

= mj ◦
[
(1− µ)

(
ρj−1f̌j−1 + ρ̃j−11N

)
− µ

(
ρj−1f̌j−1 + ρ̃j−11N

)]
+ µ

[
ρj−1f̌j−1 + ρ̃j−11N

]
(12)

Setting µ→ 0, vj shrinks to mj:511

fj = mj ◦ [ρj−1fj−1 + f̃j−1ρ̃j−11N ]

f̌j =
f̃j−1

f̃j

fj

f̃j−1

=
f̃j−1

f̃j
mj ◦ [ρj−1f̌j−1 + ρ̃j−11N ]

=
1

Fj

mj ◦ [ρj−1f̌j−1 + ρ̃j−11N ]

(13)

which has the following consequences:512

(a) Let sj be the set of matches at SNP j: i ∈ sj ⇐⇒ mij = 1.513

(b) f̌ ∗
ij = ρj−1f̌i(j−1) + ρ̃j−1 if i ∈ sj and is zero otherwise.514

(c) Fj =
∑

i∈sj f̌
∗
ij and f̌ij = f̌ ∗

ij/Fj .515

(d) for a sparse algorithm, we only need to track matches and the relative sums of their probabilities.516
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For the backward algorithm with µ→ 0, dj shrinks to cj :517

bT
j = ρjc

T
j+1 + ρ̃j c̃j+11

T
N

b̌T
j =

c̃j+1

b̃j

[
ρj č

T
j+1 + ρ̃j1

T
N

] (14)

which has the following consequences:518

(a) b̌∗ij = ρj b̌i(j+1) + ρ̃j c̃j+1 if i ∈ sj+1 and b̌∗ij = ρ̃j c̃j+1 otherwise, where c̃j+1 =
∑

i∈sj+1
bi(j+1).519

(b) Bj =
∑

i∈sj+1
b̌∗ij + (N − nj+1)ρ̃j c̃j+1 and b̌ij = b̌∗ij/Bj .520

(c) Again this can be computed without explicit reference to non-matches and we need to sum over521

only matches.522

523

Estimation of the expected length of copied chunks524

Let l̂i denote the posterior expected length (in Morgans) of the total genome for which the sample525

haplotype copies from the ith reference haplotype.526

l̂i =
1

2Pr(D)

K−1∑
j=1

gj
[
fijbij + fi(j+1)bi(j+1)

]
=

1

2
∏K

k=1 Fk

K−1∑
j=1

gj

[
f̌ij b̌ij(

j∏
k=1

Fk)(
K∏
k=j

Bk) + f̌i(j+1)b̌i(j+1)(

j+1∏
k=1

Fk)(
K∏

k=j+1

Bk)

]

=
1

2

K−1∑
j=1

gj
[
wl

j f̌ij b̌ij + wr
j f̌i(j+1)b̌i(j+1)

]
(15)

where

wl
j = exp

(
log(

j∏
k=1

Fk) + log(
K∏
k=j

Bk)− log(
K∏
k=1

Fk)

)
and

wr
j = exp

(
log(

j+1∏
k=1

Fk) + log(
K∏

k=j+1

Bk)− log(
K∏
k=1

Fk)

)
.

527

528

Estimation of the expected number of chunks copied529
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Let ĉi denote the posterior expected number of chunks copied from the ith reference haplotype.530

ĉi =
1

Pr(D)
fi1bi1 +

1

Pr(D)

K−1∑
j=1

[
fi(j+1)bi(j+1) − fijbi(j+1)Vi(j+1)ρj

]
=

1∏K
k=1 Fk

f̌i1b̌i1F1B1+

1∏K
k=1 Fk

K−1∑
j=1

[
f̌i(j+1)b̌i(j+1)(

j+1∏
k=1

Fk)(
K∏

k=j+1

Bk)− f̌ij b̌i(j+1)(

j∏
j=1

Fj)(
K∏

k=j+1

Bk)Vi(j+1)ρj

]

=
1∏K

k=1 Fk

f̌i1b̌i1F1B1 +
K−1∑
j=1

[
alj f̌i(j+1)b̌i(j+1) − arj f̌ij b̌i(j+1)Vi(j+1)ρj

]
(16)

where

alj = exp

(
log(

j+1∏
k=1

Fk) + log(
K∏

k=j+1

Bk)− log(
K∏
k=1

Fk)

)
and

arj = exp

(
log(

j∏
k=1

Fk) + log(
K∏

k=j+1

Bk)− log(
K∏
k=1

Fk)

)
.

531

532

Non-negative Least Squares (NNLS) for admixture estimation533

Admixture estimation can be performed on both the reference individuals and the target individuals534

via NNLS, which requires the expected total genome shared between each reference ancestry, and535

each reference (or target) individual with each reference ancestry. The former is derived by paint-536

ing the reference samples against themselves with one sample left out of each other population (i.e.537

reference-vs-reference painting). We then average the expected length of copied chunks for each ref-538

erence individual within each reference ancestry to provide a reference palette. When investigating539

admixture estimation for target individuals, we also require painting each target sample (i.e. target-vs-540

reference painting) against a reference panel, with one sample left out from every reference ancestry.541

Reference (target) samples are then described as a mixture of the reference ancestries using NNLS,542

calculated by the R package ‘nnls’1. In detail, we fit the NNLS model by minimising ||Ax− b||2 with543

the constraints x ≥ 0, where A is the reference palette and b is the expected length of copied chunks544

for each reference (target) sample, and finally obtain the estimates x.545

546

Simulation details for comparison between SparsePainter, PBWTpaint, ChromoPainter and FLARE547

We simulated different simple models (Simulation 2a-c) for target-vs-reference painting, and a hierar-548

chical model (Simulation 1) for reference-vs-reference painting. Each simulation is repeated 10 times,549

and the average statistics, i.e. compute time, memory usage and accuracy, are reported.550

The simple simulation model for target-vs-reference painting (Simulation 2a-c) begins with an551

ancestral population of 50000 individuals that evolved for 2500 generations prior to diverging into npop552
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populations with different sizes. Here we specify the population sizes for Simulation 2b-c, including553

npop = 2, 3, 5:554

(1) 5000 and 20000 for 2-way admixture model;555

(2) 5000, 15000 and 25000 for 3-way admixture model;556

(3) 5000, 10000, 7000, 14000 and 9000 for 5-way admixture model.557

Following an evolutionary period of another 500 generations, these npop populations admixed into558

1000 modern individuals with different proportions. Again, we specify the admixture proportions for559

Simulation 2b-c:560

(1) 50% and 50% for 2-way admixture model;561

(2) 20%, 50% and 30% for 3-way admixture model;562

(3) 20%, 10%, 10%, 40% and 20% for 5-way admixture model.563

The admixed individuals had a growth rate of 5% per generation, and they were sampled 13 generations564

after admixture.565

For Simulation 1, we constructed a hierarchical model that mirrors the evolutionary trajectory of566

real-world populations, which is used for the comparison of reference-vs-reference panel painting. We567

simulated a 5-population and a 10-population hierarchical model. Here we illustrate the 5-population568

(Pi(i = 1, 2, ..., 5)) model in detail. After an ancestral population with 10000 individuals evolved for569

2700 generations, it split into P1 and P4 with 7000 and 3000 individuals. After generation 2890, P2570

emerged from migrations originating from P1 with a population size of 3000. Moving forward to the571

2940th generation, 1000 people from P2 migrated to a new population P3. A final migration occurred572

at the 2950th generation when 2000 individuals from P4 settled to create P5. All the populations573

had a growth rate of 5% from the 2970th to the 3000th generation. At the 3000th generation, we574

sampled an equivalent number of individuals (20, 40, 60, 100, 180, 300 and 500) from each population575

Pi(i = 1, 2, ..., 5). A similar model was constructed for simulating 10 hierarchical populations.576

Because all methods considered are linear in genome length, all simulations (Simulation 1 and577

Simulation 2a-c) use 20 megabases (Mb) of genome, characterized by a mutation rate of 1.44 × 10−8
578

per base pair per generation, a recombination rate of 1 × 10−8 Morgans per base pair per generation.579

Following Browning et al. (2023)20, we included gene conversion at twice the recombination rate with580

an average tract length of 300 base pairs, and genotype error with a proportion of 0.02%. We retained581

20k SNPs with Minor Allele Frequency (MAF)≥ 1% shared between the reference and target datasets.582

The true local ancestry is defined as 5 generations before admixture, which is derived from the583

recombination events recorded in the tree sequences (in SLiM) during the 500 generations before584

admixture. Some regions (around 10%-20%) in target haplotypes were inherited from the ancestral585

population and haven’t experienced any recombination events during the 500 generations. As in20, to586

compare the local ancestry estimates we excluded the SNPs within those regions, but we emphasise587

that the ‘true’ local ancestry of these regions can only be defined in terms of a mixture of the descen-588

dent populations. Genome-wide ancestry estimates are obtained by summing the probabilities as in589

ChromoPainter18.590
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For all the simulations, we also retained 20,000 common SNPs with Minor Allele Frequency591

(MAF) of at least 1% from the reference and target datasets presented in the Variant Call Format592

(VCF). In detail, all simulations generated more than 20,000 SNPs after MAF filtering, and we sam-593

pled 20,000 random SNPs from them for analysis. Subsequently, we merged the reference and target594

datasets and phased the merged dataset with Beagle 5.441 before splitting it into the reference and tar-595

get datasets. FLARE requires input data in VCF format, while ChromoPainter requires phase format,596

and SparsePainter and PBWTpaint enable both input formats (we used the phase format). Phase format597

can be converted from VCF efficiently with PBWT.598

For SparsePainter, unless otherwise stated, we ensured no more than 10 longest matches (longer599

than 20 SNPs) at each locus are retained. All simulations are performed on an MSI laptop with an Intel600

Core i7-10750H processor running at 2.60GHz on 10 CPU cores in parallel.601

We explored a number of different parameters for Simulation 2a-c.602

• Simulation 2a: we simulated 2-, 5-, 10-, 20-, 40-, 60-, 80- and 100-way admixture (npop = 2, 5, 10,603

20, 40, 50, 80 and 100) models to compare the speed and memory of painting 50 admixed individuals604

between software, with varying numbers of total reference sizes (2000, 4000 and 8000) with random605

numbers of (at least 10) individuals per reference ancestry.606

• Simulation 2b: we simulated 2-, 3- and 5-way admixture (npop = 2, 3 and 5) models to compare the607

local ancestry inference accuracy of 50 admixed individuals between software, with varying numbers608

of reference sizes for each reference ancestry (100, 200, 500, 1000 and 2000).609

• Simulation 2c: we drew from reference pools of 1000, 2000, or 4000 individuals for each of the610

npop = 5 reference ancestries. We then evaluated SparsePainter’s efficiency in painting 1000 ad-611

mixed individuals under varying levels of sparsity, i.e. only the longest 5, 10, 20, 40 and 80 matches612

which are longer than 20 SNPs are retained at each SNP. This was manipulated via the ‘nmatch’613

parameter in SparsePainter.614

Methods to evaluate the accuracy of local ancestry and NNLS estimates615

We used two different methods to assess the accuracy of local ancestry estimates. The first method is616

the squared Pearson’s correlation coefficient (denoted as r2). At each SNP, we calculated the estimated617

dosage of each individual by averaging the posterior probabilities of both haplotypes for each reference618

ancestry, and the true dosage is the average true local ancestry which takes values of 0, 0.5, or 1.619

We computed the r2 between the estimated and actual dosages for each reference ancestry across all620

individuals and positions, and the unweighted mean r2 of these values is reported to measure the overall621

accuracy. The second method evaluates the proportion of accurate local ancestry predictions across all622

haplotypes and positions. For each haplotype at a specific position, a correct local ancestry inference623

is determined when the true local ancestry corresponds to the highest estimated posterior probability,624

i.e. the best-guess strategy.625

To evaluate the accuracy of admixture estimation, we calculated the squared correlation between626

the NNLS-estimated coefficient (see above) and the true proportion for all the individuals, and reported627

24

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 10, 2024. ; https://doi.org/10.1101/2024.03.13.24304206doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.13.24304206
http://creativecommons.org/licenses/by-nc/4.0/


the unweighted mean r2 of NNLS from different populations.628

629

The accuracy of PBWTpaint for local ancestry estimation630

Unlike SparsePainter, PBWTpaint does not provide a calibrated estimate of local ancestry. To assess631

this, we compare local ancestry estimates under reference-vs-reference panel painting. On the simple632

simulation model (Simulation 2a-2c) in which the ancestries are distinct, the r2 between PBWTpaint633

and SparsePainter is high at 0.79. However, for complex cases in which there is uncertainty, or the634

true ancestry is an ancestor of extant populations (Simulation 1), the set maximal matches used by PB-635

WTpaint lead to over-confident or inaccurate local ancestry assignment (r2 = 0.3) even though these636

mistakes are self-averaging for the estimation of genome-wide ancestry. This illustrates that PBWT-637

paint is not an appropriate method for performing local ancestry estimates.638

639

Paint all UK Biobank individuals against themselves and calculate haplotype principal compo-640

nents641

To infer the haplotype principal components, we painted UKB biobank individuals against themselves,642

i.e. all-vs-all painting. We first excluded related individuals as described by Bycroft et al. (2018)33 and643

excluded withdrawn individuals. We then performed PBWTpaint (with command pbwt -paintSparse)644

on each chromosome of UK Biobank phased genotype data, which in total has 406,733 individu-645

als with approximately 569,200 SNPs. The total chunk length of PBWTpaint for each individual on646

chromosome i is 2Ki, where Ki is the number of SNPs. Assume gi is the total genetic distance for647

chromosome i, we weighted the chunk length for chromosome i with weight gi/Ki. Then we summed648

up the sparse chunk length matrix for all the chromosomes as matrix A, such that for each individual649

(i.e. each row of A), the expected lengths of copied chunks from all other individuals reached the sum650

of the total genetic distance G =
∑22

i=1 gi.651

We performed singular value decomposition (SVD) on the log-transformed sparse chunk length652

matrix log10(A + 1) with R package ‘sparsesvd’: log10(A + 1) = UDV T , where D is a diagonal653

matrix of the singular values. Then we extracted the the first 150 columns of U
√
D as the top 150654

haplotype principal components.655

656

Prediction of birth locations with HCs and PCs657

We conducted an analysis to evaluate the predictive accuracy of Haplotype Components (HCs) and658

Principal Components (PCs) on the birth locations, i.e. the east and north coordinates, within the UK.659

We selected a cohort of 347,532 individuals who were born in the UK or Ireland and identified as660

white, British, or Irish ethnicity. This cohort was divided into two groups: a training set comprising661

80% of the individuals, and a test set consisting of the remaining 20%. Subsequently, with either the662

top 150 PCs or HCs as explanatory variables and either the east or north coordinate as the response663

variable, we used a 5-fold CV to determine the optimal number of boosting iterations before fitting664

the regression model on the training set with eXtreme Gradient Boosting (XGBoost42), and then we665
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predicted the birth coordinates of individuals in the test set. Finally, we computed the direct distance666

between the predicted coordinates and the actual coordinates of each individual on the test set and667

reported the median which reveals that using HCs as predictors (median error=39.7km) reduced 49%668

error compared with using PCs as predictors (median error=77.4km). This indicates a notably higher669

predictive accuracy of birthplaces when using HCs.670

671

Paint UK Biobank with 1000 Genomes Project672

We inferred the local ancestry of UK Biobank individuals using the 1000 Genomes Project (1000GP) as673

the reference data, which includes 2504 individuals from 26 populations. We retained the common bi-674

allelic SNPs with MAF ≥ 5% before merging these two datasets. Then we used Beagle 5.441 to phase675

the merged dataset, after which it was split into the reference and target datasets. For a comparative676

analysis of the genetic painting and population structure within the UK Biobank, we randomly selected677

10,000 individuals with self-reported British backgrounds, and incorporated all individuals from spe-678

cific self-reported ethnic backgrounds: Irish (12713), Indian (5660), Caribbean (4297), African (3203),679

Pakistani (1747), and Chinese (1503).680

We estimated the average recombination scaling constant λ = 164.2 of all these individuals on681

chromosome 19. This fixed parameter was subsequently used for painting across chromosomes 1-22.682

We configured the parameters of SparsePainter to aim for finding the 50 longest matches (longer than683

20 SNPs) at each position.684

685

Quality control for shared and ethnicity-specific LDAS and AAS686

Here we explain the method for finding shared and ethnicity-specific LDAS and AAS, and the addi-687

tional Quality Controls (QC) applied. As introduced by Barrie et al. (2024)12, we compute the LDAS688

of SNP j in principle as the integral of the LDA between every other position genome with gj , over the689

recombination map with length Lj consisting of the chromosome holding the j-th SNP:690

LDAS(j) =

∫ Lj

0

LDA(g, gj) dg. (17)

In practice the pairwise LDA shrinks to almost 0 when the closest SNPs are more than 3 centiMor-691

gan (cM) away, so the integral is approximated over a X = 4cM window as LDAS(j;X) by:692

LDAS(j;X) =


∫ gj+X

gj−X
LDA(g, gj) dg if X ≤ gj ≤ Lj −X,∫ gj+X

0
LDA(g, gj) dg +

∫ gj+X

2gj
LDA(g, gj) dg if gj < X,∫ Lj

gj−X
LDA(g, gj) dg +

∫ 2gj−Lj

gj−X
LDA(g, gj) dg if gj > Lj −X.

(18)

where gj is the genetic position in centiMorgan for the jth SNP, and LDA(g, gj) is the LDA between693

position g and the target SNP at position gj .694

Because LDA can only be computed at discrete SNPs, in practice these integrals are approximated,695

which leads to an error that must be controlled. If the SNPs present are random with respect to the696
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true recombination locations, then the lowest mean-square-error estimate of LDAS in Equation (18)697

integral treats LDA as a piecewise linear function:698

LDA(g, gj) = (1− α)LDA(gi, gj) + αLDA(gi+1, gj),

where α = (g − gi)/(gi+1 − gi) ∈ [0, 1) for g ∈ [gi, gi+1). Further, an upper bound and lower bound699

can be obtained by replacing the piecewise linear function with a step function. In detail, we take the700

larger and smaller LDA values of two neighbouring SNPs, respectively, as the fixed LDA in the genetic701

distance between two SNPs i and j in the integral:702

LDAupper(g, gj) = max {LDA(gi, gj),LDA(gi+1, gj)}

and703

LDAlower(g, gj) = min {LDA(gi, gj),LDA(gi+1, gj)} .

These estimates are substituted into Equation 18 to obtain an upper and lower bound respectively704

of the LDAS of SNP j. When computing LDASlower(j;X), we assume the chromosome ends have705

zero LDA with the target SNP, i.e. LDA(0, gj) = LDA(Lj, gj) = 0 for conservative estimation.706

The maximum possible error in the LDAS estimate at SNP j is707

LDASerror(j;X) = LDASupper(j;X)− LDASlower(j;X). (19)

It is necessary to account for different scales of LDAS across different ethnic backgrounds, because708

of different admixture times with respect to the populations in the panel. Therefore, for each ethnic709

background, we normalise the LDASerror with the average LDAS across the genome, i.e. LDAS∗
error =710

LDASerror/E(LDAS). Finally, in the QC we remove SNPs with large relative error, i.e. LDAS∗
error ≥ δ711

where δ is a specified threshold (we used δ = 0.3). This provides an implicit condition of high SNP712

density with respect to the recombination map.713

A final challenge is that no LDA can be detected if SNPs are very sparse, so that LDASupper714

is estimated near zero and the error is undefined. We therefore remove SNPs if any nearby 0.5cM715

region within 3cM has too few SNPs: SNP j is removed if at least one of nm(j) < θ for m =716

0.5, 1, 1.5, 2, 2.5, 3, where nm(j) is the number of SNPs that is (m− 0.5,m]cM away from SNP j and717

θ is a specified threshold (we used θ = 10).718

In conclusion, we use two additional filters; firstly that LDASerror < δ and nm ≥ θ(m=0, 0.5,719

1.0, 1.5, 2, 2.5) as the quality control of SNPs, which alleviates the bias estimates due to sparsity720

of the painting data and therefore avoids extreme LDA scores. In practice this removes 3.5% of the721

genome (20,075 out of 569,200 SNPs) in 62 contiguous segments (see Supplementary Tab. 2-8 for722

detail). Because of the SNP selection process inherent in the UK Biobank genotyping chip, these are723

predominantly centromeres, telomeres, and regions that already have SNPs removed due to standard724

QC procedures, including where there are missing data due to e.g. indels, alignment issues, etc.725
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The computation of AAS is not affected by the discrepancy of recombination events across chro-726

mosomes and ethnicities, and we implemented the procedures as described in Barrie et al. (2024)12
727

with SparsePainter.728

As validated through simulation, we assume normality of LDAS for all ethnicities across the729

genome. We converted the LDAS into p-values through the one-sided normality test which aims to730

detect low LDAS, and we only focused on SNPs with LDAS from at least one ethnic background that731

is significant at p = 10−6. Those SNPs are classified as shared or ethnicity-specific low LDAS if732

LDAS from all the other ethnic backgrounds are significant at p = 0.05, or insignificant at p = 0.1,733

respectively.734

As AAS approximately follows a Gamma distribution and produces more extreme p-values (through735

the one-sided Gamma test), we employed a stricter significance level, p = 10−50, for filtering SNPs736

with significant AAS. Similarly, those SNPs are categorized as having shared or ethnicity-specific sig-737

nificant AAS if AAS from all the other ethnic backgrounds are significant at p = 10−10, or insignificant738

at p = 10−5, respectively.739

Furthermore, to ensure robust results, we repainted UKB using 5 continental populations as de-740

lineated by the 1000GP continents (Europe, Africa, America, South Asia and East Asia) to obtain an741

alternate set of LDAS and AAS results. We then mapped each SNP with low LDAS and AAS signals742

to its gene (if the SNP overlaps with a gene) via R package ‘gprofiler2’, and visualised the results in743

Fig. 5 and Fig. 6.744

To ensure the validity of LDAS and AAS signals, we evaluated their association with GC bias.745

Using the GC frequency reported for East Asia, Europe and Africa43, we found that all the regions746

with shared LDAS or AAS signals had random frequencies of G+C (Supplementary Fig. 3), which747

showed no evidence of association with GC bias. We also checked the association of LDAS and AAS748

signals with structural variation (SV). We downloaded the regions with SV in 1000GP44, and found749

this covers 3.91% of the whole genome. For SNPs with LDAS or AAS signals, we classified them into750

various small regions which are no longer than 10kb, and computed the proportion of these regions that751

have SV. We detected 7.45%, 7.04%, 7.48% and 8.89% of the regions with 26-pop LDAS, 5-continent752

LDAS, 26-pop AAS, and 5-continent AAS signals, respectively. Whilst it is plausible that selection753

acts on SV and LDAS jointly, we cannot rule out reverse causation of SV causing an LDAS or AAS754

signal without selection. Therefore those regions with SV were excluded from further analysis, though755

this choice does not materially affect the conclusions (see Supplementary Tab. 9 for a list of SNPs756

affected).757

758

Simulation for LDAS under genetic drift759

We assessed the robustness of the LDAS and its sensitivity to demographic changes by examining it760

under genetic drift across exponentially expanding population sizes over time. We simulated a genome761

of a 500Mb region as follows: initially, an ancient population evolves for 1000 generations, subse-762

quently diverging into five distinct subpopulations. Each of these subpopulations, growing at a rate of763
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2% per generation, evolves independently for 100 generations. This period of divergence is followed764

by a phase of admixture, forming a modern, unified population, which then undergoes evolution for an765

additional 30 generations at an increased growth rate of 5% per generation.766

We computed the LDAS of 500 simulated modern individuals with 2000 simulated reference indi-767

viduals from each of the 5 subpopulations. After normalisation, the z-scores of the LDAS (Extended768

Data Fig. 4a) predominantly exhibit under-dispersion, despite some noticeable deviation on both tails.769

This pattern suggests that the normal distribution is a reasonable approximation for the LDAS distribu-770

tion. Subsequently, we calculated the p-values for low LDAS through a one-sided test for normality, as771

depicted in Extended Data Fig. 4b. Notably, no low LDAS signals are detected under the genetic drift772

model (excluding selection effects), as evidenced by the most significant SNP with p < 10−3 through773

the one-sided normality test. This outcome solidifies our conclusion that low LDAS signals are not774

present under this model.775

776

Simulation for comparing LDAS with statistics for positive selection777

Here we simulated the similar two-loci and one-locus model as used in Barrie et al. (2024)12.778

For the two-loci selection model (Extended Data Fig. 5), we simulated a genome of 150Mb. Ini-779

tially, an ancient population evolved for 2200 generations before splitting into two sub-populations780

P1 and P2. After evolving 400 generations, we added mutation m1 for P1 and m2 for P2 at locus781

20Mb and 23Mb, respectively. These added mutations were then positively selected in the following782

300 generations before admixing to P3 at generation 2900. m1 and m2 then experienced strong pos-783

itive selection for another 50 generations, after which we sampled 500 individuals from P3 as target784

individuals. 500 individuals are sampled for P1 and P2 at generation 2899 as the reference panel.785

For the one-locus selection model (Extended Data Fig. 6), we simulated a genome of 50Mb.786

The remaining difference from the above mode is that only one locus m0 at 20Mb was added at787

generation 2601 for both P1 and P2, and it was positively selected until generation 2900. In the788

admixture population P3, this SNP underwent negative selection until generation 2950 when the target789

individuals were sampled.790

Both simulations had a mutation rate of 1.44 × 10−8 per base pair per generation, and a recombi-791

nation rate of 1× 10−8 Morgans per base pair per generation.792

793

Comparison of LDAS and AAS signals with natural selection in Bronze Age Britain and archaic794

adaptive introgression in 1000GP populations795

Our LDAS and AAS analyses from painting 7 UK Biobank ethnic backgrounds with 1000GP pop-796

ulations have detected various signals of selection (Fig. 6 and Supplementary Tab. 1), and we in-797

vestigated the overlaps with the other selection signals. By comparison with the genome-wide sig-798

nificant (P < 10−7) selection signals in the ancient British data45, we found the only overlap genes799

are HLA-DRB6 and HLA-DRB1 on chromosome 6. We compared loci that have been identified as800

exhibiting adaptive introgression from Neanderthal or Denisovan ancestries in the 1000GP popula-801
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tions46. Although none of them overlaps genes with LDAS signals, we discovered that the ADARB2802

gene, located on chromosome 10 overlaps with AAS signals. This gene experiences introgression from803

Denisovan ancestry within the 1000GP PEL population, and coincides with the AAS signals in British,804

Irish, Indian, Caribbean and Chinese ethnicities. Notably, the utilization of different reference panels805

can probably lead to the identification of distinct genes exhibiting selection signals of LDAS and AAS.806

Data availability807

The phased 1000 Genomes Project data build GRCh37/hg19 are available at https://bochet.gcc.biostat.808

washington.edu/beagle/1000 Genomes phase3 v5a/b37.vcf/. The genetic map build GRCh37/hg19809

is available from https://bochet.gcc.biostat.washington.edu/beagle/genetic maps/. The UK Biobank810

data can be accessed by approved researchers through https://www.ukbiobank.ac.uk. We used the UK811

Biobank data under project 81499. The UK map data are available at https://gadm.org.812

Code availability813

The C++ code for SparsePainter is available on GitHub at https://github.com/YaolingYang/SparsePainter,814

and the website for SparsePainter is at https://sparsepainter.github.io/. PBWTpaint is available on815

GitHub at https://github.com/richarddurbin/pbwt. The UK Biobank painting pipeline and methods816

to compute haplotype components (HCs) are available on GitHub at https://github.com/YaolingYang/817

SparsePainter/tree/main/painting-pipeline.818
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35. Wysocki, T., Olesińska, M. & Paradowska-Gorycka, A. Current understanding of an emerging902

role of HLA-DRB1 gene in rheumatoid arthritis–from research to clinical practice. Cells 9, 1127903

(2020).904

36. Kitaura, K., Shini, T., Matsutani, T. & Suzuki, R. A new high-throughput sequencing method for905

determining diversity and similarity of T cell receptor (TCR) α and β repertoires and identifying906

potential new invariant TCR α chains. BMC Immunology 17, 1–16 (2016).907

37. Howard-McCombe, J. et al. Genetic swamping of the critically endangered Scottish wildcat was908

recent and accelerated by disease. Current Biology 33, 4761–4769 (2023).909

38. Benton, M. L. et al. The influence of evolutionary history on human health and disease. Nature910

Reviews Genetics 22, 269–283 (2021).911

39. Holmes, E. C. & Twiddy, S. S. The origin, emergence and evolutionary genetics of dengue virus.912

Infection, Genetics and Evolution 3, 19–28 (2003).913

40. Messina, J. P. et al. Global spread of dengue virus types: mapping the 70 year history. Trends in914

Microbiology 22, 138–146 (2014).915

41. Browning, B. L., Tian, X., Zhou, Y. & Browning, S. R. Fast two-stage phasing of large-scale916

sequence data. The American Journal of Human Genetics 108, 1880–1890 (2021).917

42. Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd918

acm sigkdd international conference on knowledge discovery and data mining, 785–794 (2016).919
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Extended Data928

Extended Data Fig. 1: Two-dimensional plots for the first 18 HCs stratified by UKB self-reported
ethnic backgrounds (n=406,773 individuals).
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Extended Data Fig. 2: Visualisation of the average of the first 49 HCs stratified by birthplaces
within the UK and Ireland. This analysis includes n=347,532 individuals. The average HC of each
region bigger than, smaller than and equal to the worldwide average is coloured in red, blue and white,
respectively.
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Extended Data Fig. 3: Average Coefficient of determination for predicting top 50 HCs/PCs com-
puted from odd (even) chromosomes using the first 150 HCs/PCs from even (odd) chromosomes
of 406,773 individuals. The top 50 HCs are well predicted from both plots, while only few top PCs
can be predicted with high accuracy.
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Extended Data Fig. 4: Distribution of LDAS under the simulation of a 500Mb genome. a, The
quantile-quantile plot of the z-scores of LDAS. b, The P-values (represented in -log10 scale) under the
normality test for detecting low LDAS across the simulated genome.
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Extended Data Fig. 5: iHS, iHH12, nSL, LDAS and AAS under two-loci positive position selec-
tion in both ancient and modern populations (reporting the -log10 of P-values). The red and blue
vertical lines indicate the loci under selection in population p1 and p2, respectively.
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Extended Data Fig. 6: iHS, iHH12, nSL, LDAS and AAS under one-locus positive selection
in ancient populations and negative selection in modern population (reporting the -log10 of P-
values). The red vertical line indicates the loci under selection.
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Extended Data Fig. 7: Average probabilities of 26 1000GP populations at genes with shared
LDAS and AAS signals across 7 UK Biobank self-reported ethnicities. We sampled a representative
SNP from each gene with low LDAS or AAS signals (in 26-pop painting) shared between all 7 UKB
ethnicities, as visualised in Fig. 6. The genome-wide average probabilities are shown on the left of
each plot for comparison.
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